Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (4): 750-764.doi: 10.3864/j.issn.0578-1752.2026.04.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Irrigation Methods on Water-Salt Transport, Rice Yield, and Water Use Efficiency in Saline Soil in Ningxia

GUO FuCheng(), TANG HaiJiang, HAO XinYi, MA GuoLin, YANG JiuJu, HUANG LinFeng, TIAN Lei, WANG Bin, LUO ChengKe()   

  1. College of Agriculture, Ningxia University, Yinchuan 750021
  • Received:2025-07-29 Online:2026-02-10 Published:2026-02-10
  • Contact: LUO ChengKe

Abstract:

【Objective】This study aimed to elucidate the effects of different irrigation methods on soil water-salt transport, rice yield, and water use efficiency (WUE) in salinized paddy fields in Ningxia, as well as their physiological mechanisms, so as to clarify the suitable irrigation methods for rice in this region.【Method】Using the locally dominant cultivar Ningjing 52 as the test material, a two-year field positioning experiment was conducted to systematically investigate the patterns of soil water-salt transport, rice physiological traits, yield, and WUE under conventional irrigation (CK) and different levels of alternate wetting and drying (AWD) irrigation (W1, W2, and W3 treatments). Specifically, for the AWD treatments, from the early tillering to the late grain-filling stage, the field was re-flooded after the soil water potential dropped to -10 kPa, -20 kPa, and -30 kPa under W1, W2, and W3, respectively, and this cycle was repeated. A partial least squares path model (PLS-PM) was employed to analyze the interactions among these factors.【Result】The different irrigation methods practices significantly altered soil water-salt distribution, with the 0-40 cm soil layer being the primary zone for salt leaching. Compared with CK, W1 reduced the water content in the 0-40 cm soil layer by 11.46%, increased the electrical conductivity (EC) in the 0-20 cm layer by 8.43%, and achieved a desalination rate of 6.14% in the 20-40 cm layer, significantly outperforming CK (2.21%). Physiological analysis revealed that W1 significantly increased root length, root volume, and root-shoot ratio at the heading and grain-filling stages compared with CK, enhanced root activity, total root absorption area, and active absorption area during grain filling, and improved canopy photosynthetic efficiency (SPAD value and net photosynthetic rate of rice leaves). Consequently, yield increased by 3.96%-4.75%, and WUE improved by 18.30%-19.77%. In contrast, W2 and W3 treatments led to a notable decline in soil water content, increased soil salt accumulation, inhibited root development, and reduced photosynthetic efficiency, resulting in yield reductions of 20.00%-46.46%. Further PLS-PM analysis indicated that different irrigation methods practices influenced rice canopy photosynthetic efficiency by regulating soil physicochemical properties, root morphology, and physiology, thereby directly or indirectly affecting yield. Among these factors, canopy photosynthetic efficiency was the primary driver of rice yield.【Conclusion】The alternate wetting and drying irrigation method under -10 kPa effectively coordinates water-salt distribution, improves root morphology and physiology, and enhances photosynthetic efficiency, thereby achieving water-saving and yield-increasing effects in salinized rice fields. It could serve as a suitable irrigation method for salinized soils in Ningxia.

Key words: salinized soil, rice, yield, alternate wetting and drying irrigation, physiological traits, water use efficiency, PLS-PM

Table 1

Basic physical and chemical properties of soil"

年份
Year
土层
Depth
(cm)
全盐
Total salt
(g·kg-1)
pH 全氮
Total N
(g·kg-1)
有机质
Organic matter
(g·kg-1)
速效磷
Available P
(mg·kg-1)
碱解氮
Alkali-hydrolysable
N (mg·kg-1)
速效钾
Available K
(mg·kg-1)
2023 0—20 4.69 8.78 0.41 8.79 29.70 14.93 139.49
20—40 3.59 8.90 0.28 8.75 16.79 11.20 158.61
2024 0—20 4.34 8.78 0.35 10.71 23.06 17.92 142.13
20—40 2.83 9.11 0.21 9.58 18.18 11.67 167.18

Table 2

Effects of different irrigation methods on rice yield"

年份
Year
处理
Treatment
穗数
Panicle number (×104·hm-2)
每穗粒数
Spikelets per panicle
结实率
Setting percentage
(%)
千粒重
Thousand-grain
weight (g)
产量
Yield
(kg·hm-2)
2023 CK 454a 72.88a 88.97b 23.86a 6815a
W1 435a 76.64a 93.09a 23.33ab 7085a
W2 363b 54.15b 90.34b 22.80b 4917b
W3 379b 49.38b 76.47c 21.95c 3649c
2024 CK 472a 67.80a 90.60b 23.76a 6608a
W1 446a 69.98a 93.30a 23.50a 6922a
W2 388b 52.82b 88.63b 22.47b 5287b
W3 379b 49.38b 79.86c 21.95c 3605c
方差分析 ANOVA
年份 Year (Y) ns * ns ns ns
处理 Treatment (T) ** ** ** ** **
年份×处理 Y×T ns ns ** ns ns

Fig. 1

Effects of different irrigation methods on water quantity and water use efficiency"

Fig. 2

The dynamic variation of soil water content in 0-100 cm soil layer under different irrigation methods SS: Seedling stage; TS: Tillering stage; HS: Heading stage; GFS: Grain-filling stage. The same as below"

Fig. 3

The dynamic variation of EC value in 0-100 cm soil layer under different irrigation methods"

Fig. 4

Desalination rate of 0-100 cm soil layer under different irrigation methods"

Table 3

Effects of different irrigation methods on root length and root volume in rice"

年份
Year
处理
Treatment
根总长 Total root length (cm/plant) 根体积 Root volume (mm3/plant)
苗期
Seedling
分蘖期
Tillering
抽穗期
Heading
灌浆期
Grain-filling
苗期
Seedling
分蘖期
Tillering
抽穗期
Heading
灌浆期
Grain-filling
2023 CK 69.00a 893.60b 1007.11b 780.12a 294.16a 66442.56b 75676.85b 58328.72a
W1 70.64a 975.36a 1256.63a 809.72a 257.86a 80106.52a 102707.10a 63131.65a
W2 67.24a 817.70c 960.28bc 709.08b 278.34a 51793.50c 58511.00c 36429.62b
W3 62.91a 811.58c 831.81c 606.26c 264.40a 46877.37c 35676.99d 23734.85c
2024 CK 66.76b 852.75a 1053.29b 723.72a 249.27b 64931.85b 72674.76b 47491.38a
W1 64.58b 908.45a 1230.24a 787.81a 270.11a 76090.57a 86082.73a 56550.26a
W2 65.68b 709.16b 938.43c 652.10ab 269.82a 51251.57c 48047.37c 32250.94b
W3 72.59a 680.26b 799.13d 541.93b 252.23b 40978.19d 39785.55c 25743.48b
方差分析 ANOVA
年份 Year (Y) ns ns ns * ns ns * ns
处理 Treatment (T) ns ** ** ** ns ** ** **
年份×处理 Y×T ns ns ns ns ns ns ns ns

Fig. 5

Effects of different irrigation methods on root shoot ratio in rice"

Fig. 6

Effects of different irrigation methods on root vigor of rice"

Fig. 7

Effects of different irrigation methods on total and active absorption area of rice root system"

Table 4

Effects of different irrigation methods on tillering and tiller earring rate in rice"

年份
Year
处理
Treatment
茎蘖数 Number of tillers 茎蘖成穗率
Productivre tillers (%)
分蘖初期Initial tillering 分蘖盛期Active tillering 灌浆期Grain-filling
2023 CK 555±5.8b 827±9.8a 454±5.3a 54.93±0.9a
W1 589±5.3a 793±15.4b 435±8.1a 54.95±2.0a
W2 592±12.9a 795±4.7b 363±2.2b 45.63±0.5c
W3 592±8.0a 767±2.4b 379±5.2b 49.43±0.6b
2024 CK 568±2.4b 829±7.0a 472±4.6a 56.87±1.2a
W1 612±4.5a 814±1.2b 446±2.0a 54.82±0.3a
W2 576±10.7b 791±1.2c 388±4.8b 49.01±0.6b
W3 605±3.6a 766±5.2d 379±14.7b 49.51±2.3b
方差分析ANOVA
年份Year (Y) ns ns ns ns
处理Treatment (T) ns ** ** **
年份×处理 Y×T ns ** ns ns

Fig. 8

Effects of different irrigation methods on SPAD values and net photosynthetic rate of rice leaves"

Fig. 9

Partial least squares path analysis Right-angled rectangles represent latent variables, rounded rectangles represent observed variables, solid lines indicate positive effects, dashed lines indicate negative effects, arrow width reflects effect size, numerical values in the diagram represent path coefficients, R² denotes the proportion of explained variance, and GOF stands for model goodness-of-fit. * stands for P<0.05, and ** stands for P<0.01"

[1]
张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54(7): 1301-1321. doi:10.3864/j.issn.0578-1752.2021.07.001.
ZHANG H C, HU Y J, YANG J C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H, GUO B W, XING Z P, HU Q. Development and prospect of rice cultivation in China. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. doi:10.3864/j.issn.0578-1752.2021.07.001. (in Chinese)
[2]
OLALEKAN SULEIMAN S, GAJERE HABILA D, MAMADOU F, MUTIU ABOLANLE B, NURUDEEN OLATUNBOSUN A. Grain yield and leaf gas exchange in upland NERICA rice under repeated cycles of water deficit at reproductive growth stage. Agricultural Water Management, 2022, 264: 107507.

doi: 10.1016/j.agwat.2022.107507
[3]
刘涛. 宁夏引黄灌区盐碱荒地水肥盐与植物根系调控技术研究[D]. 北京: 北京林业大学, 2020.
LIU T. The control techniques of water-nutrient-salt and plant root in a saline-alkali wasteland of Ningxia irrigation area[D]. Beijing: Beijing Forestry University, 2020. (in Chinese)
[4]
LIU C, CHEN T T, ZHANG F, HAN H W, YI B J, MENG J, CHI D C, OK Y S. Engineered biochar effects on methane emissions and rice yield under alternate wetting and drying in paddy soils. Environmental Technology & Innovation, 2025, 38: 104133.
[5]
JOHNSON J M, BECKER M, DOSSOU-YOVO E R, SAITO K. Enhancing rice yields, water productivity, and profitability through alternate wetting and drying technology in farmers' fields in the dry climatic zones of West Africa. Agricultural Water Management, 2024, 304: 109096.

doi: 10.1016/j.agwat.2024.109096
[6]
张梅. 吉林省西部苏打盐碱土种稻改良机理与生产关键技术研究[D]. 长春: 吉林农业大学, 2015.
ZHANG M. Research on the mechanism and technology of modified rice soda saline alkali soil in western Jilin Province[D]. Changchun: Jilin Agricultural University, 2015. (in Chinese)
[7]
吴攀, 张志山, 黄磊, 胡宜刚, 陈永乐. 人工布设基质对农田排水沟水质的影响. 中国生态农业学报, 2012, 20(5): 578-584.
WU P, ZHANG Z S, HUANG L, HU Y G, CHEN Y L. Influence of artificially placed substrates on agro-drainage ditch water quality. Chinese Journal of Eco-Agriculture, 2012, 20(5): 578-584. (in Chinese)

doi: 10.3724/SP.J.1011.2012.00578
[8]
赵一波, 杨威, 屈忠义, 王丽萍, 高晓瑜, 张如鑫, 任恩良. 春汇/夏浇灌溉制度对盐碱土壤水盐运移及向日葵水分利用的影响. 灌溉排水学报, 2024, 43(6): 10-17.
ZHAO Y B, YANG W, QU Z Y, WANG L P, GAO X Y, ZHANG R X, REN E L. The effect of dual spring-summer irrigations on water and salt transport in saline-alkali soil and water use of sunflower in Hetao Irrigation District. Journal of Irrigation and Drainage, 2024, 43(6): 10-17. (in Chinese)
[9]
DEVKOTA K P, HOOGENBOOM G, BOOTE K J, SINGH U, LAMERS J P A, DEVKOTA M, VLEK P L G. Simulating the impact of water saving irrigation and conservation agriculture practices for rice-wheat systems in the irrigated semi-arid drylands of Central Asia. Agricultural and Forest Meteorology, 2015, 214-215: 266-280.

doi: 10.1016/j.agrformet.2015.08.264
[10]
朱士江, 孙爱华, 张忠学, 王忠波, 杜平. 不同节水灌溉模式对水稻分蘖、株高及产量的影响. 节水灌溉, 2013(12): 16-19.
ZHU S J, SUN A H, ZHANG Z X, WANG Z B, DU P. Effects of different water-saving irrigation modes on rice tillering, height and yield in cold area. Water Saving Irrigation, 2013(12): 16-19. (in Chinese)
[11]
吴海兵, 刘道红, 钟鸣, 汪友元. 水分管理和钾肥施用对水稻产量和抗倒伏性的影响. 作物杂志, 2019(1): 127-133.
WU H B, LIU D H, ZHONG M, WANG Y Y. Effects of water management and potash application on grain yield and lodging resistance of rice. Crops, 2019(1): 127-133. (in Chinese)
[12]
李永松, 袁帅, 陈基旺, 苏雨婷, 崔璨, 蒋艳方, 陈平平, 王晓玉, 易镇邪. 灌溉方式对湘南双季稻产量的影响机制研究. 杂交水稻, 2022, 37(1): 103-110.
LI Y S, YUAN S, CHEN J W, SU Y T, CUI C, JIANG Y F, CHEN P P, WANG X Y, YI Z X. Mechanism of effects of irrigation modes on yield of double-cropping rice in southern Hunan. Hybrid Rice, 2022, 37(1): 103-110. (in Chinese)
[13]
ULAH H, MOHAMMADI A, DATTA A. Growth, yield and water productivity of selected lowland Thai rice varieties under different cultivation methods and alternate wetting and drying irrigation. Annals of Applied Biology, 173(3): 302-312.

doi: 10.1111/aab.2018.173.issue-3
[14]
徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响. 作物学报, 2024, 50(2): 425-439.

doi: 10.3724/SP.J.1006.2024.32016
XU R, YANG W Y, ZHU J L, CHEN S, XU C M, LIU Y H, ZHANG X F, WANG D Y, CHU G. Effects of different irrigation regimes on grain yield and water use efficiency in Japonica-indica hybrid rice cultivar Yongyou 1540. Acta Agronomica Sinica, 2024, 50(2): 425-439. (in Chinese)

doi: 10.3724/SP.J.1006.2024.32016
[15]
徐国伟, 赵喜辉, 江孟孟, 陆大克, 陈明灿. 轻度干湿交替灌溉协调水稻根冠生长、提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27(8): 1388-1396.
XU G W, ZHAO X H, JIANG M M, LU D K, CHEN M C. Alternate wetting and moderate drying irrigation harmonize rice root and shoot growth, improves grain yield and nitrogen use efficiency. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1388-1396. (in Chinese)
[16]
耿欣宇, 刘月月, 张强, 郭丽颖, 耿艳秋, 桑梦祥, 王金陆, 王昊, 宋春澎, 杨宏森, 邵玺文. 干湿交替灌溉对旱直播水稻产量与品质的影响及其生理机制. 江西农业大学学报, 2023, 45(6): 1331-1346.
GENG X Y, LIU Y Y, ZHANG Q, GUO L Y, GENG Y Q, SANG M X, WANG J L, WANG H, SONG C P, YANG H S, SHAO X W. Effect of alternate wetting and drying irrigation on yield and quality of dry direct seeding rice and its physiological mechanism. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(6): 1331-1346. (in Chinese)
[17]
ZHAO C, CHEN M Y, LI X F, DAI Q G, XU K, GUO B W, HU Y J, WANG W L, HUO Z Y. Effects of soil types and irrigation modes on rice root morphophysiological traits and grain quality. Agronomy, 2021, 11(1): 120.

doi: 10.3390/agronomy11010120
[18]
李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响. 中国水稻科学, 2019, 33(4): 293-302.

doi: 10.16819/j.1001-7216.2019.8116
LI T T, FENG Y F, ZHU A, HUANG J, WANG H, LI S Y, LIU K, PENG R M, ZHANG H L, LIU L J. Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots. Chinese Journal of Rice Science, 2019, 33(4): 293-302. (in Chinese)

doi: 10.16819/j.1001-7216.2019.8116
[19]
WANG K, XU F Y, YUAN W, DING Y X, SUN L Y, FENG Z W, LIU X, XU W F, ZHANG J H, WANG F. Elevated CO2 enhances rice root growth under alternate wetting and drying irrigation by involving ABA response: Evidence from the seedling stage. Food and Energy Security, 2023, 12(2): e442.

doi: 10.1002/fes3.442
[20]
法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展. 作物杂志, 2024(6): 1-8.
FA X T, MENG Q H, WANG C, GU H Z, JING W J, ZHANG H. Research progress on response of rice root morphology and physiology to alternate wetting and drying irrigation. Crops, 2024(6): 1-8. (in Chinese)
[21]
GU H Z, WANG X, ZHANG M H, JING W J, WU H, XIAO Z L, ZHANG W Y, GU J F, LIU L J, WANG Z Q, ZHANG J H, YANG J C, ZHANG H. The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice. Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

doi: 10.1016/j.jia.2023.06.031
[22]
邱佳慧, 刘博懿, 靳伟荣, 才硕, 喻宏磊. 不同灌溉模式对水稻耗水量及产量的影响. 江西水利科技, 2021, 47(5): 313-316.
QIU J H, LIU B Y, JIN W R, CAI S, YU H L. Effects of different irrigation modes on water consumption and yield of rice. Jiangxi Hydraulic Science & Technology, 2021, 47(5): 313-316. (in Chinese)
[23]
杨文伟, 石亚飞, 高莲, 张娟伟, 陈丽, 孙建昌, 罗成科. 播深和播量对宁夏地区直播稻幼苗素质和产量的影响. 核农学报, 2023, 37(1): 148-158.

doi: 10.11869/j.issn.1000-8551.2023.01.0148
YANG W W, SHI Y F, GAO L, ZHANG J W, CHEN L, SUN J C, LUO C K. Effects of sowing depth and amount on rice seedling growth and yield in Ningxia Region. Journal of Nuclear Agricultural Sciences, 2023, 37(1): 148-158. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.01.0148
[24]
曹振玺, 李勇, 申孝军, 宋妮, 王峰, 王兴鹏. 不同灌水技术参数对农田水盐运移的影响. 灌溉排水学报, 2020, 39(3): 57-62, 71.
CAO Z X, LI Y, SHEN X J, SONG N, WANG F, WANG X P. Effects of drip irrigation schedule on water and salt movement in soil. Journal of Irrigation and Drainage, 2020, 39(3): 57-62, 71. (in Chinese)
[25]
杨颖. 不同籼稻品种的农艺生理特征对干湿交替灌溉的响应[D]. 扬州: 扬州大学, 2022.
YANG Y. The response of agronomic and physiological characteristics in mid-season indica rice varieties to alternate wetting and drying irrigation[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
[26]
张伟杨, 任维晨, 于吉祥, 张耗, 顾骏飞, 王志琴, 刘立军, 赵步洪, 杨建昌. 轻干湿交替灌溉促进水稻茎中碳同化物积累与转运的机制. 扬州大学学报(农业与生命科学版), 2021, 42(6): 9-16.
ZHANG W Y, REN W C, YU J X, ZHANG H, GU J F, WANG Z Q, LIU L J, ZHAO B H, YANG J C. The mechanism underlying alternate wetting and moderate soil drying irrigation enhancing carbon assimilates accumulation and remobilization of rice stems. Journal of Yangzhou University (Agricultural and Life Science Edition), 2021, 42(6): 9-16. (in Chinese)
[27]
褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42(7): 1026-1036.
CHU G, ZHAN M F, ZHU K Y, WANG Z Q, YANG J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese)

doi: 10.3724/SP.J.1006.2016.01026
[28]
许兴, 张佳宝, 李玉义, 尹雪斌, 田军仓, 陈小兵, 赵举, 佘冬立. 黄河流域盐碱地改良与综合利用. 农业科学研究, 2024, 45(4): 1-12.
XU X, ZHANG J B, LI Y Y, YIN X B, TIAN J C, CHEN X B, ZHAO J, SHE D L. Improvement and comprehensive utilization of saline-alkali land in the Yellow River Basin. Journal of Agricultural Sciences, 2024, 45(4): 1-12. (in Chinese)
[29]
宋仁友, 吕廷波, 刘一凡, 李文昊, 付鑫法, 李港强. 春灌定额对不同盐碱度农田水盐分布影响研究. 节水灌溉, 2024(4): 19-26.

doi: 10.12396/jsgg.2023452
SONG R Y, T B, LIU Y F, LI W H, FU X F, LI G Q. Study on the influence of spring irrigation quota on the water and salt distribution in different salinization farmlands. Water Saving Irrigation, 2024(4): 19-26. (in Chinese)
[30]
宁慧峰, 曹振玺, 李松敏, 史璐剑, 申孝军, 李勇, 韩其晟, 张现波, 杨光. 灌溉处理对膜下滴灌棉花根区水盐分布及水分利用效率的影响. 灌溉排水学报, 2025, 44(8): 9-19.
NING H F, CAO Z X, LI S M, SHI L J, SHEN X J, LI Y, HAN Q S, ZHANG X B, YANG G. Effects of irrigation amount and frequency on soil water and salt dynamics and water use efficiency of mulched drip-irrigated cotton in Southern Xinjiang. Journal of Irrigation and Drainage, 2025, 44(8): 9-19. (in Chinese)
[31]
刘小媛, 高佩玲, 杨大明, 张晴雯, 张宇航. 咸淡水间歇组合灌溉对盐碱耕地土壤水盐运移特性的影响. 土壤学报, 2017, 54(6): 1404-1413.
LIU X Y, GAO P L, YANG D M, ZHANG Q W, ZHANG Y H. Effects of intermittent combined irrigation on the characteristics of soil water and salt movement in farm land of salt-affected soil. Acta Pedologica Sinica, 2017, 54(6): 1404-1413. (in Chinese)
[32]
吴忠东, 王全九. 微咸水波涌畦灌对土壤水盐分布的影响. 农业机械学报, 2010, 41(1): 53-58.
WU Z D, WANG Q J. Effect of saline water surge flow border irrigation on soil water-salt distribution. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 53-58. (in Chinese)
[33]
KROES J, SUPIT I, VAN DAM J, VAN WALSUM P, MULDER M. Impact of capillary rise and recirculation on simulated crop yields. Hydrology and Earth System Sciences, 2018, 22(5): 2937-2952.

doi: 10.5194/hess-22-2937-2018
[34]
胡旭凯, 陈居田, 朱利霞, 李俐俐. 干湿交替对土壤团聚体特征的影响. 中国农业科技导报, 2021, 23(2): 141-149.

doi: 10.13304/j.nykjdb.2019.0471
HU X K, CHEN J T, ZHU L X, LI L L. Effects of dry-wet alternation on characteristics of soil aggregates. Journal of Agricultural Science and Technology, 2021, 23(2): 141-149. (in Chinese)

doi: 10.13304/j.nykjdb.2019.0471
[35]
春宇, 李向颖, 元元, 萨日娜. 盐碱胁迫对藜麦生理生化及代谢水平的影响综述. 农业科学研究, 2024, 45(4): 67-77.
CHUN Y, LI X Y, YUAN Y, SA R N. Overview of the impact of salinity-alkali stress on quinoa's physiological, biochemical, and metabolic levels. Journal of Agricultural Sciences, 2024, 45(4): 67-77. (in Chinese)
[36]
蒋玉兰. 干湿交替灌溉对水稻产量、根系形态生理和土壤性状的影响[D]. 扬州: 扬州大学, 2018.
JIANG Y L. Effect of alternate wetting and drying irrigation on yield, root morphological physiology and soil properties of rice[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
[37]
徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141.
XU G W, WANG H Z, ZHAI Z H, SUN M, LI Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132-141. (in Chinese)
[38]
李萍, 刘玉皎. 高海拔地区蚕豆/马铃薯根系时空分布特征及根系活性研究. 宁夏大学学报(自然科学版), 2013, 34(4): 338-343.
LI P, LIU Y J. Research on temporal and spacial distribution of faba bean and potato's root and their root TTC's intercropping system in high Altitude. Journal of Ningxia University (Natural Science Edition), 2013, 34(4): 338-343. (in Chinese)
[39]
唐文帮, 邓化冰, 肖应辉, 张桂莲, 范科, 莫慧, 陈立云. 两系杂交水稻C两优系列组合的高产根系特征. 中国农业科学, 2010, 43(14): 2859-2868. doi:10.3864/j.issn.0578-1752.2010.14.004.
TANG W B, DENG H B, XIAO Y H, ZHANG G L, FAN K, MO H, CHEN L Y. Root characteristics of high-yield C liangyou rice combinations of two-line hybrid rice. Scientia Agricultura Sinica, 2010, 43(14): 2859-2868. doi:10.3864/j.issn.0578-1752.2010.14.004. (in Chinese)
[40]
YANG J C, ZHANG J H. Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 2011: 3177-3189.
[41]
张静, 刘娟, 陈浩, 杜彦修, 李俊周, 孙红正, 赵全志. 干湿交替条件下稻田土壤氧气和水分变化规律研究. 中国生态农业学报, 2014, 22(4): 408-413.
ZHANG J, LIU J, CHEN H, DU Y X, LI J Z, SUN H Z, ZHAO Q Z. Change in soil oxygen and water contents under alternate wetting and drying in paddy fields. Chinese Journal of Eco-Agriculture, 2014, 22(4): 408-413. (in Chinese)
[1] CHEN Min, JIAO ZiLan, QIAO ChengBin, XU Hao, ZHANG Bi, MA DongHua, KONG WeiRu, WANG JingWen, SONG JiaWei, LUO ChengKe, LI PeiFu, TIAN Lei. Morpho-Physiological Responses and Adaptive Strategies of Rice Germplasm Accessions from Different Subspecies Under Salt Stress [J]. Scientia Agricultura Sinica, 2026, 59(4): 705-722.
[2] LUO Wei, YU Hong, YUAN LiXin, WANG LingLing, ZHAO JinPeng, YIN Wei, WANG MingTian, WANG RuLin. Change of Geographic Distributions of Ratoon Rice in Sichuan- Chongqing Under Global Climate Change [J]. Scientia Agricultura Sinica, 2026, 59(4): 765-780.
[3] ZHANG WeiJian, YAN ShengJi, SHANG ZiYin, TANG ZhiWei, WU LiuGe, LI JiaRui, CHEN HaoTian, DENG AiXing, ZHANG Jun, ZHANG Xin, ZHENG ChengYan, SONG ZhenWei. Methane Emissions from Paddy Fields: Not Entirely Attributable to Rice Cultivation [J]. Scientia Agricultura Sinica, 2026, 59(4): 824-833.
[4] HAO Kun, CHEN HongDe, ZHANG Wei, ZHONG Yun, DANG MeiRong, ZHU ShiJiang, HUANG ZhiKun, JIN Ying. Comprehensive Evaluation of Water-Nitrogen Management Under Surge-Root Irrigation Based on Citrus Yield, Quality, and Water- Nitrogen Use Efficiency [J]. Scientia Agricultura Sinica, 2026, 59(4): 862-873.
[5] ZHU Shu, GUO ZhiPeng, SUN Ying. Functional Analysis of Rice Target of Rapamycin OsTOR in Regulating Root Elongation [J]. Scientia Agricultura Sinica, 2026, 59(3): 475-485.
[6] XIAN QingLin, XIAO JianKe, GAO AQing, GAO LiChuang, LIU Yang. Effects of Planting Patterns Combined with Soil Moisture Measurement and Supplementary Irrigation on the Yield and Water Use Efficiency of Winter Wheat [J]. Scientia Agricultura Sinica, 2026, 59(3): 589-601.
[7] YAN TingLin, DU YaDan, HU XiaoTao, WANG He, LI XiaoYan, WANG YuMing, NIU WenQuan, GU XiaoBo. The Impacts of Nitrogen Fertilizer Organic Alternatives Under Aerated Drip Irrigation on Cotton Yield and Water Use Efficiency Under Deficit Irrigation Conditions [J]. Scientia Agricultura Sinica, 2026, 59(3): 602-618.
[8] LÜ WenYan, CHENG HaiTao, MA ZhaoHui, TIAN ShuHua. Discussion on Hybridization Breeding Technology and Strategy of Rice in the New Era of Breeding [J]. Scientia Agricultura Sinica, 2026, 59(2): 233-238.
[9] YANG Rui, CHEN JingDong, HUANG Ying, XIE LingLi, ZHANG XueKun, ZHOU DengWen, LIU QingYun, XU JinSong, XU BenBo. Genetic Improvement and Configuration Analysis of High-Yield Rapeseed Lines in the Upper Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2026, 59(2): 250-264.
[10] LIAO TingLu, SHI YaFei, XIAO DongHao, SHE YangMengFei, GUO FuCheng, YANG JiuJu, TANG HaiJiang, LUO ChengKe. The Effect of Exogenous Nitroprusside on Sugar Metabolism in Rice Seedlings Under Alkaline Stress [J]. Scientia Agricultura Sinica, 2026, 59(2): 265-277.
[11] CHEN GuiPing, WEI JinGui, GUO Yao, LI Pan, WANG FeiEr, QIU HaiLong, FENG FuXue, YIN Wen. Synergistic Effects of Wide-Narrow Row and Density Enhancement on the Photosynthetic Characteristics and Resource Utilization of Maize in Oasis Irrigation Areas [J]. Scientia Agricultura Sinica, 2026, 59(2): 278-291.
[12] CAI TingYang, ZHU YuPeng, LI RuiDong, WU ZongSheng, XU YiFan, SONG WenWen, XU CaiLong, WU CunXiang. Effects of Leaf-Cutting at Seedling Stage on Photosynthetic Characteristics, Pod Distribution and Yield Formation in Soybean in the Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2026, 59(2): 292-304.
[13] LIU TianSheng, LIU GengYuan, ZHAO AnQi, YANG Xu, CAI MingXue, YANG AiWen, LOU MingXuan, LI MuKai, WANG Han, ZHANG YaLing. Pathogenic Population of Rice Bakanae Disease in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2026, 59(2): 305-321.
[14] ZHANG ZhiYong, TAN ShiChao, XIONG ShuPing, MA XinMing, WEI YiHao, WANG XiaoChun. Effects of Annual Water and Nitrogen Optimization on Yield and Nitrogen Migration of Wheat-Maize Rotation System in Irrigation Area of Northern Henan [J]. Scientia Agricultura Sinica, 2026, 59(2): 336-353.
[15] WANG ZhongNi, LEI Yue, LI JiaLi, GONG YanLong, ZHU SuSong. Functions of ABC Transporter OsARG1 in Rice Heading Date Regulation [J]. Scientia Agricultura Sinica, 2026, 59(1): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!