Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (2): 265-277.doi: 10.3864/j.issn.0578-1752.2026.02.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Effect of Exogenous Nitroprusside on Sugar Metabolism in Rice Seedlings Under Alkaline Stress

LIAO TingLu(), SHI YaFei, XIAO DongHao, SHE YangMengFei, GUO FuCheng, YANG JiuJu, TANG HaiJiang, LUO ChengKe()   

  1. College of Agriculture, Ningxia University/Key Laboratory of Modern Molecular Breeding of Advantageous Characteristic Crops in Ningxia, Yinchuan 750021
  • Received:2025-06-19 Accepted:2025-08-18 Online:2026-01-16 Published:2026-01-22
  • Contact: LUO ChengKe

Abstract:

【Objective】 Sodium nitroprusside (SNP), as an exogenous nitric oxide (NO) donor, plays a critical regulatory role in plant stress responses. This study aimed to investigate the effects of exogenous SNP on sugar metabolism in rice seedlings under alkaline stress, for providing a theoretical basis for elucidating the mechanism of SNP enhancing rice alkali tolerance. 【Method】 Seedlings of rice cultivars Zhonghua 11 and Ningjing 52 were used as test materials. Four treatments were applied: control (CK), CK+SNP (50 µmol·L-1), alkaline stress (AS, a mixed alkaline solution containing NaHCO3 and Na2CO3 at a 1:1 ratio, pH 9.55, 20 mmol·L-1), and AS+SNP (20 mmol·L-1 AS+50 µmol·L-1 SNP). The effects of these treatments on sugar metabolism in the seedlings of the two rice cultivars were analyzed. 【Result】 Compared with AS treatment, AS+SNP treatment significantly increased rice seedling height, root length, fresh weight, and dry weight of rice seedlings. AS+SNP treatment upregulated the expression of chlorophyll synthase-related genes (OsChlH, OsCAO1, and OsCAO2), thereby increasing chlorophyll content and promoting photosynthesis. Concurrently, it upregulated the expression of the sucrose invertase gene OsNIN1, leading to decreased fructose and sucrose content but increased glucose content, which facilitated glycolysis and the tricarboxylic acid cycle, promoting the accumulation of malate and citrate to maintain energy balance. Additionally, SNP induced the expression of sucrose phosphate synthase OsSPS1, gibberellin synthase-related genes (OsGA3ox2, and OsGA20ox1), and proline synthesis gene (OsP5CS), increasing the levels of gibberellin (GA), abscisic acid (ABA), proline (Pro), and soluble sugar. This regulation helped maintain osmotic and hormonal balance and promoted sucrose transport from source to sink tissues. 【Conclusion】 Exogenous SNP application enhanced rice seedling tolerance to alkaline stress by upregulating chlorophyll biosynthesis genes, promoting chlorophyll accumulation, and sustaining photosynthetic efficiency, thereby facilitating glucose synthesis. Moreover, SNP activated glycolysis and the tricarboxylic acid cycle, directing sugar metabolites toward malate and citrate production, thus promoting organic acid accumulation. Additionally, exogenous SNP modulated osmotic regulation and GA/ABA hormonal balance, facilitating sucrose transport and sugar metabolic pathway activation, and ensuring efficient energy metabolism. These mechanisms collectively improved rice seedling resilience under alkaline stress.

Key words: NO, alkaline stress, sugar metabolism, gene expression, physiological response, rice

Table 1

Genes detected and RT qPCR primer sequences"

基因名称
Gene symbol
RGAP ID
RGAP ID
引物
Primer sequence (5′—3′) (forward/reverse)
产物长度
Product size (bp)
OsP5CS LOC_Os05g38150 AATGACAGTTTAGCAGGAC/ACCACTATACAACCCATCC 87
OsNIN1 LOC_Os03g20020 CTATTCTGCTTTGCGTTGT/CTGAGCCTGTAGTTGATGG 87
OsSUS5 LOC_Os04g24430 GCATTCGGGCTAACGGTCAT/ATTCCTGCCTCCCTGTCGT 140
OsSPS1 LOC_Os01g69030 GGCACAGCAAGACACTCCC/CGCCACGAACTAGACCATG 134
OsYGL1 LOC_Os05g28200 CTGTTGGTGGGTCCTTGCTT/TAGCTCGCACCAAGAGCAAA 97
OsCAO1 LOC_Os10g41780 TGCTCATCAAGCCTTCCTTCAGGTG/GCGTTGTTCTTTGCATAGTCAGCTC 115
OsCAO2 LOC_Os10g41760 CTGCTCGTCAAGCCTTCCTCCTCCT/CCCTCATGTTGTTCTTGGCATGTTG 130
OsFd1 LOC_Os08g01380 CAGGCGGAGGAGGAAGGGAT/TAGGCGTGGCAGGTGAGGAC 161
OsChlH LOC_Os03g20700 CCAATCCGTAACCCGAAGGT/CAATAATTTTGGCGCTCTTCAA 103
OsNCED2 LOC_Os12g24800 TCCGCAATGGTCCCAACC/ACAGTGTTGACGAGGCCG 111
OsABA8ox2 LOC_Os08g36860 TGGCCAAGCTGGAGATGC/ACGGGCTGTACTCCACCT 96
OsGA3ox2 LOC_Os01g08220 TGTTCTTGAGGGCGCTGG/GTCGCCGTCATCCTCTCG 85
OsGA20ox1 LOC_Os03g63970 GGTGCATGGACGCCTTCT/CTTCCACGGCAGCTTGGA 125

Fig. 1

Effects of exogenous SNP on the growth and biomass of rice seedlings under alkaline stress"

Fig. 2

Effects of exogenous SNP on osmotic regulation of rice seedlings under alkaline stress"

Fig. 3

Effects of exogenous SNP on chlorophyll synthesis in rice seedlings under alkaline stress"

Fig. 4

Effects of exogenous SNP on carbohydrate content in rice seedlings under alkaline stress"

Fig. 5

Effects of exogenous SNP on organic acid content in rice seedlings under alkaline stress"

Fig. 6

Effects of exogenous SNP on hormone levels in rice seedlings under alkaline stress"

Fig. 7

Mechanism pattern diagram of SNP regulation of sugar metabolism in rice seedlings under alkaline stress"

[1]
FAO. Global status of salt-affected soils. Rome: FAO, 2024.
[2]
冯起, 尹鑫卫, 朱猛, 张举涛, 刘蔚, 席海洋, 鱼腾飞, 杨林山, 刘文, 陆志翔. 统筹推进西北地区盐碱地综合治理利用: 现状、 挑战与对策建议. 中国科学院院刊, 2024, 39(12): 2060-2073.
FENG Q, YIN X W, ZHU M, ZHANG J T, LIU W, XI H Y, YU T F, YANG L S, LIU W, LU Z X. Overall promotion of integrated management and utilization of saline-alkali land in Northwest China: Conditions, challenges, and recommendations. Bulletin of Chinese Academy of Sciences, 2024, 39(12): 2060-2073. (in Chinese)
[3]
马国辉, 郑殿峰, 母德伟, 王奉斌, 戴其根, 魏中伟, 冯乃杰, 王才林. 耐盐碱水稻研究进展与展望. 杂交水稻, 2024, 39(1): 1-10.
MA G H, ZHENG D F, MU D W, WANG F B, DAI Q G, WEI Z W, FENG N J, WANG C L. Research progress and prospect of saline-alkali tolerant rice. Hybrid Rice, 2024, 39(1): 1-10. (in Chinese)
[4]
王丽娟. 植物转化酶在糖代谢中的作用. 农业科学研究, 2010, 31(4): 70-75.
WANG L J. Advances on the studies of invertase on sucrose metabolism in higher plant. Journal of Agricultural Science Research, 2010, 31(4): 70-75. (in Chinese)
[5]
郑广杰, 叶昌, 徐春梅, 陈松, 褚光, 陈里鹏, 章秀福, 王丹英. 低温胁迫对水稻胚芽中葡萄糖和水分状态的影响及其与种子出苗成活间的关系. 作物学报, 2024, 50(12): 3055-3068.

doi: 10.3724/SP.J.1006.2024.42014
ZHENG G J, YE C, XU C M, CHEN S, CHU G, CHEN L P, ZHANG X F, WANG D Y. Effect of low-temperature stress on glucose and water status in rice germ and its relationship with seedling emergence. Acta Agronomica Sinica, 2024, 50(12): 3055-3068. (in Chinese)

doi: 10.3724/SP.J.1006.2024.42014
[6]
ROLLAND F, MOORE B, SHEEN J. Sugar sensing and signaling in plants. The Plant Cell, 2002, 14(Suppl_1): S185-S205.

doi: 10.1105/tpc.010455
[7]
GONG X, LIU M L, ZHANG L J, RUAN Y Y, DING R, JI Y Q, ZHANG N, ZHANG S B, FARMER J, WANG C. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiologia Plantarum, 2015, 153(1): 119-136.
[8]
MA Q J, SUN M H, LU J, LIU Y J, HU D G, HAO Y J. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiology, 2017, 174(4): 2348-2362.

doi: 10.1104/pp.17.00502
[9]
李佳馨, 李霞, 谢寅峰. 外源海藻糖增强高表达转玉米C4型PEPC水稻耐旱性的机制. 植物学报, 2021, 56(3): 296-314.
LI J X, LI X, XIE Y F. Mechanism on drought tolerance enhanced by exogenous trehalose in C4-PEPC rice. Chinese Bulletin of Botany, 2021, 56(3): 296-314. (in Chinese)
[10]
王丽华, 李改玲, 李晶, 左师宇, 曹鑫波, 佟昊阳, 魏湜. 外源糖对盐胁迫下小黑麦幼苗糖代谢的影响. 麦类作物学报, 2017, 37(4): 548-553.
WANG L H, LI G L, LI J, ZUO S Y, CAO X B, TONG H Y, WEI S. Effect of exogenous sugar on the sugar metabolism in Triticale seedling under salt stress. Journal of Triticeae Crops, 2017, 37(4): 548-553. (in Chinese)
[11]
MENG F Y, FENG N J, ZHENG D F, LIU M L, ZHANG R J, HUANG X X, HUANG A Q, CHEN Z M. Exogenous Hemin alleviates NaCl stress by promoting photosynthesis and carbon metabolism in rice seedlings. Scientific Reports, 2023, 13: 3497.

doi: 10.1038/s41598-023-30619-7 pmid: 36859499
[12]
陈丽珊, 周红艳, 林伟伟. 外源褪黑素对盐胁迫下水稻苗期碳氮代谢的影响. 生态学杂志, 2023, 42(7): 1635-1643.
CHEN L S, ZHOU H Y, LIN W W. Effects of exogenous melatonin on carbon and nitrogen metabolism of rice seedlings under salt stress. Chinese Journal of Ecology, 2023, 42(7): 1635-1643. (in Chinese)
[13]
BASIT F, ABBAS S, SHETEIWY M S, BHAT J A, ALSAHLI A A, AHMAD P. Deciphering the alleviation potential of nitric oxide, for low temperature and chromium stress via maintaining photosynthetic capacity, antioxidant defence, and redox homeostasis in rice (Oryza sativa). Plant Physiology and Biochemistry, 2024, 214: 108957.

doi: 10.1016/j.plaphy.2024.108957
[14]
PIACENTINI D, RONZAN M, FATTORINI L, DELLA ROVERE F, MASSIMI L, ALTAMURA M M, FALASCA G. Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots. Plant Physiology and Biochemistry, 2020, 151: 729-742.

doi: S0981-9428(20)30173-X pmid: 32353678
[15]
吴坤, 邢承华, 饶玉春, 宋洪明, 陈晓阳, 蔡妙珍. 外源NO对铝毒下水稻根系生长和抗氧化系统的影响. 西北植物学报, 2014, 34(3): 536-542.
WU K, XING C H, RAO Y C, SONG H M, CHEN X Y, CAI M Z. Effect of exogenous nitric oxide on root growth and antioxidant system in rice seedlings under aluminum toxicity. Journal of Northeast Agricultural University, 2014, 34(3): 536-542. (in Chinese)
[16]
方淑梅, 梁喜龙, 纪伟波, 林岩. 外源NO对盐碱胁迫下水稻幼苗生长抑制的缓解作用. 江苏农业科学, 2013, 41(8): 67-69.
FANG S M, LIANG X L, JI W B, LIN Y. Alleviating effect of exogenous NO on growth inhibition of rice seedlings under saline-alkali stress. Jiangsu Agricultural Sciences, 2013, 41(8): 67-69. (in Chinese)
[17]
HSU Y T, LEE T M. Abscisic acid-dependent nitric oxide pathway and abscisic acid-independent nitric oxide routes differently modulate NaCl stress induction of the gene expression of methionine sulfoxide reductase A and B in rice roots. Journal of Plant Physiology, 2018, 231: 374-382.

doi: S0176-1617(18)30403-6 pmid: 30388677
[18]
刘海艳, 杨丽洁, 丁艳锋, 李刚华, 王绍华, 刘正辉, 唐设, 刘仁梅, 蒋卫红. NO对水稻孕穗期干旱胁迫下叶片光合及产量的影响. 南京农业大学学报, 2017, 40(2): 195-202.
LIU H Y, YANG L J, DING Y F, LI G H, WANG S H, LIU Z H, TANG S, LIU R M, JIANG W H. Effects of nitric oxide on photosynthesis and yield of rice under drought stress at booting stage. Journal of Northeast Agricultural University, 2017, 40(2): 195-202. (in Chinese)
[19]
闵炜芳, 方晶莹, 石亚飞, 摆小蓉, 舍杨梦斐, 田浩天, 罗成科. 硝普钠添加对碱胁迫下萌发期水稻碳氮代谢的影响. 植物营养与肥料学报, 2024, 30(5): 934-947.
MIN W F, FANG J Y, SHI Y F, BAI X R, SHE Y, TIAN H T, LUO C K. Effect of sodium nitroprusside addition on carbon and nitrogen metabolism of rice during germination under alkali stress. Plant Nutrition and Fertilizer Science, 2024, 30(5): 934-947. (in Chinese)
[20]
石亚飞, 闵炜芳, 摆小蓉, 舍杨梦斐, 田浩天, 罗成科. 外源物调节碱胁迫水稻生理特性及相关基因表达的效应. 植物营养与肥料学报, 2023, 29(5): 813-825.
SHI Y F, MIN W F, BAI X R, SHE Y, TIAN H T, LUO C K. Effects of exogenous regulatory substances on physiological characteristics and gene expression of rice seedlings under alkali stress. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 813-825. (in Chinese)
[21]
路旭平, 李芳兰, 石亚飞, 张娟伟, 杨文伟, 罗成科, 田蕾, 李培富. 不同水稻品种幼苗响应碱胁迫的生理差异及胁迫等级构建. 生态环境学报, 2021, 30(8): 1757-1768.

doi: 10.16258/j.cnki.1674-5906.2021.08.023
LU X P, LI F L, SHI Y F, ZHANG J W, YANG W W, LUO C K, TIAN L, LI P F. Physiological differences of seedlings of different rice varieties in response to alkali stress and construction of stress levels. Ecology and Environment Sciences, 2021, 30(8): 1757-1768. (in Chinese)

doi: 10.16258/j.cnki.1674-5906.2021.08.023
[22]
李芳兰. 碱胁迫对中花11种子萌发、幼苗生长的影响及外源物的缓解作用[D]. 银川: 宁夏大学, 2021.
LI F L. Effects of alkali stress on seed germination and seedling growth of Zhonghua 11 and mitigation effects of exogenous substance[D]. Yinchuan: Ningxia University, 2021. (in Chinese)
[23]
LI M, YUE T R, HAN J T, WANG J Q, XIAO H J, SHANG F D. Exogenous glucose irrigation alleviates cold stress by regulating soluble sugars, ABA and photosynthesis in melon seedlings. Plant Physiology and Biochemistry, 2024, 217: 109214.

doi: 10.1016/j.plaphy.2024.109214
[24]
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. Principles and Techniques of Plant Physiological Biochemical experiment. Beijing: Higher Education Press, 2000. (in Chinese)
[25]
LU X P, MIN W F, SHI Y F, TIAN L, LI P F, MA T L, ZHANG Y X, LUO C K. Exogenous melatonin alleviates alkaline stress by removing reactive oxygen species and promoting antioxidant defence in rice seedlings. Frontiers in Plant Science, 2022, 13: 849553.

doi: 10.3389/fpls.2022.849553
[26]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262
[27]
ZHANG H T, LI J J, YOO J H, YOO S C, CHO S H, KOH H J, SEO H S, PAEK N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 2006, 62(3): 325-337.

doi: 10.1007/s11103-006-9024-z pmid: 16915519
[28]
LEE S, KIM J H, YOO E S, LEE C H, HIROCHIKA H, AN G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Molecular Biology, 2005, 57(6): 805-818.

pmid: 15952067
[29]
HE L, LI M, QIU Z N, CHEN D D, ZHANG G H, WANG X Q, CHEN G, HU J, GAO Z Y, DONG G J, et al. Primary leaf-type ferredoxin 1 participates in photosynthetic electron transport and carbon assimilation in rice. The Plant Journal, 2020, 104(1): 44-58.

doi: 10.1111/tpj.v104.1
[30]
AZZOUZ-OLDEN F, HUNT A G, DINKINS R. Transcriptome analysis of drought-tolerant sorghum genotype SC56 in response to water stress reveals an oxidative stress defense strategy. Molecular Biology Reports, 2020, 47(5): 3291-3303.

doi: 10.1007/s11033-020-05396-5
[31]
金姣姣, 刘自刚, 米文博, 徐明霞, 邹娅, 徐春梅, 赵彩霞. 利用RNA-Seq鉴定调控甘蓝型油菜叶片光合特性的低温胁迫应答基因. 生物技术通报, 2022, 38(4): 126-142.

doi: 10.13560/j.cnki.biotech.bull.1985.2021-1048
JIN J J, LIU Z G, MI W B, XU M X, ZOU Y, XU C M, ZHAO C X. Identification of low temperature stress-responsive genes regulating photosynthetic characteristics in the leaves of Brassica napus by RNA-seq. Biotechnology Bulletin, 2022, 38(4): 126-142. (in Chinese)
[32]
张荣, 刘淋茹, 付凯霞, 武紫君, 宋一凡, 王璐媛, 侯阁阁, 贺利, 冯伟, 段剑钊, 王永华, 郭天财. 干旱胁迫下外源褪黑素对冬小麦小花发育及碳营养代谢的调控. 中国农业科学, 2024, 57(23): 4644-4657. doi:10.3864/j.issn.0578-1752.2024.23.006.
ZHANG R, LIU L R, FU K X, WU Z J, SONG Y F, WANG L Y, HOU G G, HE L, FENG W, DUAN J Z, WANG Y H, GUO T C. Regulatory of exogenous melatonin on floret development and carbon nutrient metabolism in winter wheat under drought stress. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657. doi:10.3864/j.issn.0578-1752.2024.23.006. (in Chinese)
[33]
谷闻东, 刘春娟, 李邦, 刘畅, 周宇飞. 外源色氨酸对低氮胁迫下高粱苗期叶片碳氮平衡和衰老特性的影响. 中国农业科学, 2023, 56(7): 1295-1310. doi:10.3864/j.issn.0578-1752.2023.07.008.
GU W D, LIU C J, LI B, LIU C, ZHOU Y F. Effects of exogenous tryptophan on C/N balance and senescence characteristics of sorghum seedlings under low nitrogen stress. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310. doi:10.3864/j.issn.0578-1752.2023.07.008. (in Chinese)
[34]
FANG S M, HOU X, LIANG X L. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science, 2021, 12: 667458.

doi: 10.3389/fpls.2021.667458
[35]
DU J G, LI W L, WANG Z, CHEN Z H, WANG C, LU W, XIONG A S, TAN G F, ZHENG Y X, LI M Y. Effects of exogenous melatonin on drought stress in celery (Apium graveolens L.): Unraveling the modulation of chlorophyll and glucose metabolism pathways. BMC Genomics, 2024, 25(1): 1104.

doi: 10.1186/s12864-024-11054-y
[36]
DU X L, FENG N J, ZHENG D F, LIN Y, ZHOU H, LI J H, YANG X H, HUO J X, MEI W Q. Effects of exogenous Uniconazole (S3307) on oxidative damage and carbon metabolism of rice under salt stress. BMC Plant Biology, 2025, 25(1): 541.

doi: 10.1186/s12870-025-06467-0
[37]
李俊伟, 刘景辉, 王俊英, 郭来春, 王春龙, 任长忠. 盐与碱胁迫对燕麦离子平衡和有机酸含量的影响. 西北植物学报, 2022, 42(10): 1700-1710.
LI J W, LIU J H, WANG J Y, GUO L C, WANG C L, REN C Z. Effect of salt and alkali stress on oat ion balance and organic acid content. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(10): 1700-1710. (in Chinese)
[38]
刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢调控盐碱胁迫下裸燕麦叶片糖和酚酸代谢反应. 中国生态农业学报(中英文), 2023, 31(3): 463-477.
LIU J X, LIU R R, LIU X L, JIA H Y, BU T, LI N. Exogenous hydrogen sulfide modulates metabolic responses of sugar and phenolic acid in naked oat leaves under saline-alkali stress. Chinese Journal of Eco-Agriculture, 2023, 31(3): 463-477. (in Chinese)
[39]
LEMOINE R, LA CAMERA S, ATANASSOVA R, DÉDALDÉCHAMP F, ALLARIO T, POURTAU N, BONNEMAIN J L, LALOI M, COUTOS-THÉVENOT P, MAUROUSSET L, et al. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 2013, 4: 272.

doi: 10.3389/fpls.2013.00272 pmid: 23898339
[40]
SCOFIELD G N, HIROSE T, AOKI N, FURBANK R T. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. Journal of Experimental Botany, 2007, 58(12): 3155-3169.

pmid: 17728297
[41]
马福林, 马玉花. 干旱胁迫对植物的影响及植物的响应机制. 宁夏大学学报(自然科学版), 2022, 43(4): 391-399.
MA F L, MA Y H. Effect of drought stress on plants and their response mechanism. Journal of Ningxia University (Natural Science Edition), 2022, 43(4): 391-399. (in Chinese)
[42]
CHEN Q C, HU T, LI X H, SONG C P, ZHU J K, CHEN L Q, ZHAO Y. Phosphorylation of SWEET sucrose transporters regulates plant root: Shoot ratio under drought. Nature Plants, 2022, 8(1): 68-77.

doi: 10.1038/s41477-021-01040-7
[43]
MATHAN J, SINGH A, RANJAN A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiologia Plantarum, 2021, 171(4): 620-637.

doi: 10.1111/ppl.v171.4
[44]
DINLER B S, ANTONIOU C, FOTOPOULOS V. Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. Journal of Plant Physiology, 2014, 171(18): 1740-1747.

doi: 10.1016/j.jplph.2014.07.026
[45]
ZHANG A Y, ZHANG J, ZHANG J H, YE N H, ZHANG H, TAN M P, JIANG M Y. Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant & Cell Physiology, 2011, 52(1): 181-192.
[46]
SANG J R, ZHANG A Y, LIN F, TAN M P, JIANG M Y. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. Cell Research, 2008, 18(5): 577-588.

doi: 10.1038/cr.2008.39 pmid: 18364679
[47]
LIANG Y F, ZHAO J Y, YANG R, BAI J Y, HU W X, GU L X, LIAN Z Y, HUO H Q, GUO J, GONG H J. PROCERA interacts with JACKDAW in gibberellin-enhanced source-sink sucrose partitioning in tomato. Plant Physiology, 2024, 197(1): kiaf024.
[48]
FRESCHI L. Nitric oxide and phytohormone interactions: Current status and perspectives. Frontiers in Plant Science, 2013, 4: 398.

doi: 10.3389/fpls.2013.00398 pmid: 24130567
[49]
CHEN L C, SUN S H, SONG C P, ZHOU J M, LI J Y, ZUO J R. Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis. Journal of Genetics and Genomics, 2022, 49(8): 756-765.
[1] LÜ WenYan, CHENG HaiTao, MA ZhaoHui, TIAN ShuHua. Discussion on Hybridization Breeding Technology and Strategy of Rice in the New Era of Breeding [J]. Scientia Agricultura Sinica, 2026, 59(2): 233-238.
[2] LIU TianSheng, LIU GengYuan, ZHAO AnQi, YANG Xu, CAI MingXue, YANG AiWen, LOU MingXuan, LI MuKai, WANG Han, ZHANG YaLing. Pathogenic Population of Rice Bakanae Disease in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2026, 59(2): 305-321.
[3] HE ZhiLin, SUN CuiXia, YUE HongLi, TAN YueXia, ZHANG YaoHai, WANG FuSheng, LIU SiTao, JIANG Dong. Genetic Diversity Analysis and GWAS of Alloocimene Based on Resequencing of Citron, Lemon Germplasm Resources [J]. Scientia Agricultura Sinica, 2026, 59(2): 386-401.
[4] ZHANG MengBo, TAN HongBing, SHEN Tian, XU MeiLong, ZHOU XinMing, FANG YuLin, JU YanLun. Effects of Different Irrigation Amounts and Anti-transpirant Treatments on Wine Quality [J]. Scientia Agricultura Sinica, 2026, 59(2): 413-436.
[5] WANG ZhongNi, LEI Yue, LI JiaLi, GONG YanLong, ZHU SuSong. Functions of ABC Transporter OsARG1 in Rice Heading Date Regulation [J]. Scientia Agricultura Sinica, 2026, 59(1): 1-16.
[6] GUO HuiTing, SUN YanWen, NIU YiHeng, LI YaPeng, LI JianHua, XU MingGang. Fertilization Significantly Changed Soil Bacterial Diversity and Dominant Microbial Community in Croplands of Northern China—Meta Analysis [J]. Scientia Agricultura Sinica, 2026, 59(1): 114-128.
[7] ZHAO JiaLi, BIAN XianYu, SONG JiaPeng, WANG Chen, TANG XueChao, LI YunChuan, ZHOU JinZhu, ZHU XueJiao, TAO Ran, DONG HaiLong, ZHANG XueHan, LI Bin. Preparation of Monoclonal Antibody to Porcine Rotavirus VP4 and Preliminary Characterization of Antigenic Epitope [J]. Scientia Agricultura Sinica, 2026, 59(1): 220-232.
[8] FEI YaoYing, WANG Di, TANG WeiJie, GUO CaiLi, ZHANG XiaoHu, QIU XiaoLei, CHENG Tao, YAO Xia, JIANG ChongYa, ZHU Yan, CAO WeiXing, ZHENG HengBiao. Estimation of Rice Grain Protein Content Using Fusion Imagery from UAV-based Multi-Sensors [J]. Scientia Agricultura Sinica, 2026, 59(1): 41-56.
[9] DONG GuiChun, WANG ZiHan, WANG ShuShen, LI Jie, HUO XiaoQing, YANG Rui, ZHOU Juan, SHU XiaoWei, LI Yan, CAO LiangJing, WANG ZiRui, YAO YouLi, HUANG JianYe. Technical Approaches for Enhancing Rice Yield and Nitrogen Use Efficiency with Sulfur-Coated Controlled-Release Fertilizers [J]. Scientia Agricultura Sinica, 2026, 59(1): 57-77.
[10] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[11] ZHANG YiRu, HAN Xue, YAO XinJie, FENG Jun, WEI AiLi, LI WenChao, ZHANG Bin, HAN YuanHuai, LI HongYing. Integrated Multi-Omics Elucidates the Pigmentation Dynamics During Post-Harvest Maturation in Foxtail Millet (Setaria italica) [J]. Scientia Agricultura Sinica, 2025, 58(9): 1702-1718.
[12] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[13] WANG BingJie, QIN ShiHan, LI DeCheng, HU WenYou, JIANG Jun, CHI FengQin, ZHANG Chao, ZHANG JiuMing, XU YingDe, WANG JingKuan. Spatial Distribution Pattern and Transfer Function Construction of Soil Bulk Density in Nenjiang City, Heilongjiang Province [J]. Scientia Agricultura Sinica, 2025, 58(9): 1791-1803.
[14] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[15] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!