Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (2): 233-238.doi: 10.3864/j.issn.0578-1752.2026.02.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Discussion on Hybridization Breeding Technology and Strategy of Rice in the New Era of Breeding

LÜ WenYan1(), CHENG HaiTao1, MA ZhaoHui1, TIAN ShuHua2   

  1. 1 College of Agronomy, Shenyang Agricultural University, Shenyang 110866
    2 Xing'an League Agricultural and Animal Husbandry Technology Extension Center, Ulanhot 012000, Inner Mongolia
  • Received:2025-07-21 Accepted:2025-09-18 Online:2026-01-16 Published:2026-01-22

Abstract:

With the passage of time and the advancement of technology, crop breeding has gone through generations from 1.0 to 4.0 and is now moving towards generation 5.0. Although the 3.0 and 4.0 generations of breeding have received extensive attention, only hybrid breeding of the 2.0 generation can enable the parents to achieve genome-wide recombination, resulting in a large number of complex and unpredictable interactions within and between genes, which may be the basis for the emergence of breakthrough traits. Thus hybrid breeding still holds an important position. However, at present, taking rice as an example, the hybrid breeding operations carried out by the majority of breeders may still have issues that need improvement in terms of scientificity and efficiency. In light of the current situation, in order to select high-yielding, high-quality, and multi-resistant varieties, and to overcome the homogenization of varieties, hybrid rice breeding should pay attention to the following aspects. Firstly, the breeding goals should be combined with the local natural conditions and effectively coordinate the combination of advantageous traits. Only in this way can the high-yield, high-quality and highly-resistant high-level goals be achieved, so as to break through the homogenization of varieties. Secondly, because the F1 generation combines the superior traits of both parents and has certain hybrid vigor, it may be the best-performing generation of the same combination. If F1 performs poorly overall, it is difficult for its offspring to produce the expected types that meet the breeding goals. Therefore, this generation should be selected as a key generation, which is conducive to significantly improving the efficiency of breeding. Thirdly, in the early stage of breeding, the main task is to promote generations. To enhance the breeding efficiency, direct seeding should be adopted, which can save land and resources. During the breeding process, the current generation should be combined with the early-generation tests to increase predictability and further eliminate combinations to improve the breeding efficiency. Fourth, during the high-generation selection process, after field selecting, the panicle traits of the combinations should be further compared indoors to select the optimal combination, so as to achieve the best from the best. Finally, the intelligent varieties of the 5.0 generation of breeding are those that can adapt to the ecological and biological factors of the wide range of environments, and can meet the production needs with wide adaptability. Due to the complexity of the environmental conditions for crop growth, it is necessary to conduct extensive and long-term identification of the varieties to achieve the breeding goals. In conclusion, by optimizing the field operations and selection techniques in hybrid breeding, the breeding efficiency will be significantly enhanced, laying the foundation for the selection of breakthrough varieties.

Key words: rice, hybrid, breeding objective, selection technology, generational promotion, eurytopic

Table 1

The traits of the winning varieties and the rapidly developing japonica rice varieties in the Northeastern region"

品种
Variety
产量Yield (kg·hm-2) 生育期
Growth duration (d)
株高
Plant
height
(cm)
分蘖数
Tiller number
穗长
Spike length
(cm)
每穗颖花数
Spikelets
结实率
Seed rate
(%)
千粒重
1000-seeds weight
(g)
品质
Quality
区试
Regional test
生试
Production test
中科发5号
Zhongkefa 5
10332.6 9808.2 150.1 102.8 27.3 17.8 118.3 79.9 26.9 长粒
Long grain
优2
Grade 2
盐丰47
Yanfeng 47
9751.5 9576.0 157.2 98.1 25.3 16.5 129.0 85.1 26.2 圆粒
Round grain
优2
Grade 2
辽星1
Liaoxing 1
9615.0 9217.5 157.0 103.0 NA 19.0 140.0 89.0 24.5 中长
Medium grain
优2
Grade 2
吉粳88
Jigeng 88
8545.5 7629.0 153.5 95.0 NA 17.6 134.2 88.0 21.2 圆粒
Round grai n
优1
Grade 1
龙粳31
Longgeng 31
8165.4 9135.8 NA 92.0 NA 15.7 86.0 NA 26.3 圆粒
Round grain
优1
Grade 1
特性
Character
产量偏高
High yield
株高偏矮
Short
height
分蘖数偏多
More tiller number
粒数偏多
More grains
结实率偏高
High seed rate and large grain
籽粒偏大
The grains are relatively large
米质偏好
Good rice quality
[1]
WALLACE J G, RODGERS-MELNICK E, BUCKLER E S. On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics. Annual Review of Genetics, 2018, 52: 421-444.

doi: 10.1146/annurev-genet-120116-024846 pmid: 30285496
[2]
PELEMAN J D, VAN DER VOORT J R. Breeding by design. Trends in Plant Science, 2003, 8(7): 330-334.

doi: 10.1016/S1360-1385(03)00134-1 pmid: 12878017
[3]
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, SLAYMAKER I M, MAKAROVA K S, ESSLETZBICHLER P, VOLZ S E, JOUNG J, VAN DER OOST J, REGEV A, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system. Cell, 2015, 163(3): 759-771.

doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[4]
朱义旺, 林雅容, 陈亮. 我国水稻分子育种研究进展. 厦门大学学报(自然科学版), 2016, 55(5): 661-671.
ZHU Y W, LIN Y R, CHEN L. Research progress of rice molecular breeding in China. Journal of Xiamen University (Natural Science), 2016, 55(5): 661-671. (in Chinese)
[5]
万建民. 中国水稻分子育种现状与展望. 中国农业科技导报, 2007, 9(2): 1-9.
WAN J M. Present status and prospect of molecular breeding in rice. Review of China Agricultural Science and Technology, 2007, 9(2): 1-9. (in Chinese)
[6]
郭龙彪, 程式华, 钱前. 水稻基因设计育种的研究进展与展望. 中国水稻科学, 2008, 22(6): 650-657.
GUO L B, CHENG S H, QIAN Q. Progress and prospects of breeding by gene design in rice. Chinese Journal of Rice Science, 2008, 22(6): 650-657. (in Chinese)
[7]
景海春, 田志喜, 种康, 李家洋. 分子设计育种的科技问题及其展望概论. 中国科学: 生命科学, 2021, 51(10): 1356-1365, 1355.
JING H C, TIAN Z X, CHONG K, LI J Y. Progress and perspective of molecular design breeding. Scientia Sinica (Vitae), 2021, 51(10): 1356-1365, 1355. (in Chinese)
[8]
卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示: 传统与现代相结合. 遗传, 2023, 45(9): 718-740.
BIAN Z, CAO D P, ZHUANG W S, ZHANG S W, LIU Q Q, ZHANG L. Revelation of rice molecular design breeding: The blend of tradition and modernity. Hereditas (Beijing), 2023, 45(9): 718-740. (in Chinese)
[9]
XIE L J, GONG X J, YANG K, HUANG Y J, ZHANG S Y, SHEN L T, SUN Y Q, WU D Y, YE C Y, ZHU Q H, FAN L J. Technology- enabled great leap in deciphering plant genomes. Nature Plants, 2024, 10(4): 551-566.

doi: 10.1038/s41477-024-01655-6
[10]
ALEMU A, ÅSTRAND J, MONTESINOS-LÓPEZ O A, ISIDRO Y, SÁNCHEZ J, FERNÁNDEZ-GÓNZALEZ J, TADESSE W, VETUKURI R R, CARLSSON A S, CEPLITIS A, et al. Genomic selection in plant breeding: Key factors shaping two decades of progress. Molecular Plant, 2024, 17(4): 552-578.

doi: 10.1016/j.molp.2024.03.007 pmid: 38475993
[11]
LI P, CHEN Y H, LU J, ZHANG C Q, LIU Q Q, LI Q F. Genes and their molecular functions determining seed structure, components, and quality of rice. Rice, 2022, 15(1): 18.

doi: 10.1186/s12284-022-00562-8 pmid: 35303197
[12]
HASSAN M A, NI D H, TONG H N, ZHU Q, YI Y M, LI Y R, WANG S M. Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. Frontiers in Plant Science, 2023, 14: 1215371.

doi: 10.3389/fpls.2023.1215371
[13]
陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种. 遗传, 2023, 45(9): 829-834.
CHEN M J, LIU G F, XIAO Y Q, YU H, LI J Y. Breeding of ZhongKeFaZaoGeng1 by molecular design. Hereditas (Beijing), 2023, 45(9): 829-834. (in Chinese)
[14]
XU J J, LEI Y, ZHANG X F, LI J X, LIN Q P, WU X D, JIANG Y G, ZHANG W Y, QIAN R T, XIONG S Y, et al. Design of CoQ10 crops based on evolutionary history. Cell, 2025, 188(7): 1941-1954.e15.

doi: 10.1016/j.cell.2025.01.023
[15]
EDITORIAL. Rethinking field trials. Nature Plants, 2025, 11: 935-936.

doi: 10.1038/s41477-025-02016-7 pmid: 40404861
[16]
余泓, 白世伟, 李家洋. 迈向育种5.0: 智能品种的智能培育. 科学通报, 2024, 69(32): 4687-4690.
YU H, BAI S W, LI J Y. Towards Breeding 5.0: Smart variety by intelligent breeding. Chinese Science Bulletin, 2024, 69(32): 4687-4690. (in Chinese)
[17]
曾攀, 颜小文, 王素华, 孙亮, 杜金平, 胡振华, 应国勇, 乐美旺, 孙建. 高产优质黑芝麻新品种赣芝14号丰产性与广适性的评价分析. 江西农业学报, 2023, 35(12): 40-46.
ZENG P, YAN X W, WANG S H, SUN L, DU J P, HU Z H, YING G Y, LE M W, SUN J. Evaluation of yielding ability and wide adaptability of new black sesame variety Ganzhi No. 14 with high yield and high quality. Acta Agriculturae Jiangxi, 2023, 35(12): 40-46. (in Chinese)
[18]
郭陞垚, 陈剑洪, 詹柳琪, 黄佳华, 龙安, 陈茹艳. 抗病广适性花生新品种泉花557的选育及高产栽培技术研究. 种子, 2025, 44(3): 208-214.
GUO S Y, CHEN J H, ZHAN L Q, HUANG J H, LONG A, CHEN R Y. Study on breeding and high-yield cultivation techniques of Quanhua557, a new Arachis hypogaea variety with wide resistance and adaptability. Seed, 2025, 44(3): 208-214. (in Chinese)
[19]
陆成彬, 张伯桥, 高德荣, 吴宏亚, 范金平, 王朝顺, 褚正虎. 高产广适性小麦新品种‘扬麦20’的培育与推广应用. 中国农学通报, 2013, 29(30): 96-99.
LU C B, ZHANG B Q, GAO D R, WU H Y, FAN J P, WANG C S, CHU Z H. Cultivation and application of wheat varieties ‘Yangmai 20' with high yield and eurytopicity. Chinese Agricultural Science Bulletin, 2013, 29(30): 96-99. (in Chinese)
[20]
黄连富, 董朋飞, 李鸿萍, 李潮海. 利用河南-海南两地三季生态差异鉴定玉米品种丰产稳产性. 中国农业科学, 2015, 48(20): 4042-4055. doi: 10.3864/j.issn.0578-1752.2015.20.006.
HUANG L F, DONG P F, LI H P, LI C H. The identification of high-stable yield maize varieties using the Henan-Hainan ecological difference in three growing season. Scientia Agricultura Sinica, 2015, 48(20): 4042-4055. doi: 10.3864/j.issn.0578-1752.2015.20.006. (in Chinese)
[21]
祖文龙, 王安贵, 陈泽辉, 祝云芳, 吴迅, 郭向阳, 刘鹏飞, 陈华璋. 优质高产广适玉米杂交种金玉579选育研究. 种子, 2019, 38(4): 124-126.
ZU W L, WANG A G, CHEN Z H, ZHU Y F, WU X, GUO X Y, LIU P F, CHEN H Z. Breeding of good quality, high yield and wide adaptability corn hybrid vareity Jinyu 579. Seed, 2019, 38(4): 124-126. (in Chinese)
[22]
丁正权, 王士磊, 潘月云, 黄海祥. 基于GGE双标图的籼粳杂交稻‘中禾优1号’广适性分析. 分子植物育种, 2024, 22(16): 5368-5375.
DING Z Q, WANG S L, PAN Y Y, HUANG H X. Eurytopicity analysis of 'Zhongheyou1', an indica-Japonica hybrid rice variety based on GGE biplot. Molecular Plant Breeding, 2024, 22(16): 5368-5375. (in Chinese)
[23]
吕川根, 李霞, 宗寿余, 邹江石. 超级杂交稻两优培九的广适性分析. 中国水稻科学, 2019, 33(3): 191-205.

doi: 10.16819/j.1001-7216.2019.8132
C G, LI X, ZONG S Y, ZOU J S. Analysis of the eurytopicity of super hybrid rice liangyoupeijiu. Chinese Journal of Rice Science, 2019, 33(3): 191-205. (in Chinese)

doi: 10.16819/j.1001-7216.2019.8132
[24]
王雷, 郭岩, 杨淑华. 非生物胁迫与环境适应性育种的现状及对策. 中国科学: 生命科学, 2021, 51(10): 1424-1434.
WANG L, GUO Y, YANG S H. Designed breeding for adaptation of crops to environmental abiotic stresses. Scientia Sinica (Vitae), 2021, 51(10): 1424-1434. (in Chinese)
[25]
肖宁, 吴云雨, 王如意, 赵均良, 余玲, 高鹏, 郝泽芸, 宁约瑟, 李爱宏. 水稻抗稻瘟病基因克隆及其育种应用研究进展. 生命科学, 2025, 37(5): 558-566.
XIAO N, WU Y Y, WANG R Y, ZHAO J L, YU L, GAO P, HAO Z Y, NING Y S, LI A H. Advancements in cloning of rice blast resistance genes and their application in breeding. Chinese Bulletin of Life Sciences, 2025, 37(5): 558-566. (in Chinese)
[26]
何旎清, 林少俊, 程朝平, 杨德卫. 作物抗病虫相关基因的挖掘与利用. 中国农业科学, 2024, 57(23): 4589-4592. doi: 10.3864/j.issn.0578-1752.2024.23.001.
HE N Q, LIN S J, CHENG Z P, YANG D W. Guidance: Mining and utilization of crop disease resistance and insect-related genes. Scientia Agricultura Sinica, 2024, 57(23): 4589-4592. doi: 10.3864/j.issn.0578-1752.2024.23.001. (in Chinese)
[27]
鄂志国, 王磊. 水稻抗病性基因的克隆和功能研究进展. 遗传, 2009, 31(10): 999-1005.
WANG L. Advance on the cloning and functional analysis of disease resistance genes in rice. Hereditas, 2009, 31(10): 999-1005. (in Chinese)
[28]
吴梦露, 李鹏, 于文清, 黄文慧, 熊佳诗, 许诺, 汪文俊, 方子剑, 刘文志. 水稻防御酶与其抗病性关系研究进展. 分子植物育种, 2024, 22(7): 2413-2420.
WU M L, LI P, YU W Q, HUANG W H, XIONG J S, XU N, WANG W J, FANG Z J, LIU W Z. Advances in the research of relationship between defensive enzymes and disease resistance in rice. Molecular Plant Breeding, 2024, 22(7): 2413-2420. (in Chinese)
[1] LIAO TingLu, SHI YaFei, XIAO DongHao, SHE YangMengFei, GUO FuCheng, YANG JiuJu, TANG HaiJiang, LUO ChengKe. The Effect of Exogenous Nitroprusside on Sugar Metabolism in Rice Seedlings Under Alkaline Stress [J]. Scientia Agricultura Sinica, 2026, 59(2): 265-277.
[2] LIU TianSheng, LIU GengYuan, ZHAO AnQi, YANG Xu, CAI MingXue, YANG AiWen, LOU MingXuan, LI MuKai, WANG Han, ZHANG YaLing. Pathogenic Population of Rice Bakanae Disease in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2026, 59(2): 305-321.
[3] WANG ZhongNi, LEI Yue, LI JiaLi, GONG YanLong, ZHU SuSong. Functions of ABC Transporter OsARG1 in Rice Heading Date Regulation [J]. Scientia Agricultura Sinica, 2026, 59(1): 1-16.
[4] FEI YaoYing, WANG Di, TANG WeiJie, GUO CaiLi, ZHANG XiaoHu, QIU XiaoLei, CHENG Tao, YAO Xia, JIANG ChongYa, ZHU Yan, CAO WeiXing, ZHENG HengBiao. Estimation of Rice Grain Protein Content Using Fusion Imagery from UAV-based Multi-Sensors [J]. Scientia Agricultura Sinica, 2026, 59(1): 41-56.
[5] DONG GuiChun, WANG ZiHan, WANG ShuShen, LI Jie, HUO XiaoQing, YANG Rui, ZHOU Juan, SHU XiaoWei, LI Yan, CAO LiangJing, WANG ZiRui, YAO YouLi, HUANG JianYe. Technical Approaches for Enhancing Rice Yield and Nitrogen Use Efficiency with Sulfur-Coated Controlled-Release Fertilizers [J]. Scientia Agricultura Sinica, 2026, 59(1): 57-77.
[6] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[7] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[8] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[9] HE JiaoPing, HAN Meng, ZHOU Ting, GU Gang, LAI YuFei, LAI RongQuan. Effects of Wild Populations for Hybridization and Outdoor Population Exercise on the Parasitic Ability of Aphidius gifuensis and Enzymes Related to the Growth and Development [J]. Scientia Agricultura Sinica, 2025, 58(7): 1344-1354.
[10] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[11] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[12] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[13] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[14] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[15] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!