Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (3): 528-542.doi: 10.3864/j.issn.0578-1752.2026.03.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Potassium Levels on Waterlogging Resistance and Endogenous Hormone Balance of Rapeseed During Seedling Stage

SHEN LiQiong1,2(), HE LinLi1(), LIU Ni1, LU JunXing1, ZHU Bo1(), ZHANG Tao1()   

  1. 1 Chongqing Key Laboratory of Plant Environmental Adaptation Biology/College of Life Sciences, Chongqing Normal University, Chongqing 401331
    2 Chongqing Yubei Center of Agro-Product Safety and Quality, Chongqing 401120
  • Received:2025-06-29 Accepted:2026-01-08 Online:2026-02-01 Published:2026-01-31
  • Contact: ZHU Bo, ZHANG Tao

Abstract:

【Objective】This study aimed to investigate the effect of potassium (K) on the waterlogging tolerance of rapeseed (Brassica napus L.) and elucidate the physiological regulatory mechanisms involving K in the plant's response to waterlogging stress, to provide a theoretical basis for effective waterlogging management in rapeseed production. 【Method】A sand culture pot experiment was conducted with two water treatments: well-watered (CK) and waterlogging (WL), and two potassium levels: 1.0 mmol K2SO4·L-1 (HK) and 0.1 mmol K2SO4·L-1 (LK). Seven-day waterlogging stress was imposed at the seedling stage. Differences in growth, photosynthetic characteristics, antioxidant enzyme activities, and endogenous hormone levels under different K levels were compared. 【Result】Rapeseed growth was significantly affected by waterlogging and K level. Biomass, root-shoot ratio, and net photosynthetic rate consistently exhibited the hierarchical pattern: HK_CK>HK_WL>LK_CK>LK_WL. Waterlogging elevated superoxide dismutase (SOD) and catalase (CAT) activity in leaves, while the activities of both enzymes were suppressed in LK treatments (LK_CK and LK_WL) compared to HK treatments (HK_CK and HK_WL). Consequently, the MDA content was significantly higher in the LK treatments than in the HK treatment. Waterlogging and K deficiency profoundly altered the endogenous hormone profiles in rapeseed. Leaf abscisic acid (ABA) cotent progressively increased across treatments: HK_CK<HK_WL<LK_CK<LK_WL. Both waterlogging and potassium deficiency significantly increased the leaf jasmonic acid (JA) content after 7 d of waterlogging stress, peaking at LK_WL treatment. Waterlogging and K deficiency induced salicylic acid (SA) accumulation, with the highest SA content observed in LK_WL treatment. During the recovery stage, both waterlogging and potassium deficiency induced the decrease of indole-3-acetic acid (IAA) content in root and leaf, with the most pronounced depletion occurring in LK treatments (LK_CK and LK_WL). 【Conclusion】Waterlogging stress inhibited rapeseed growth and severely restricted root development. Root growth and K+ uptake were significantly promoted, and leaf photosynthetic capacity as well as SOD and CAT activities were enhanced by elevated K levels, thereby improving waterlogging tolerance. Waterlogging stress triggered the accumulation of ABA, JA, and SA in leaves. The stress responses induced by ABA and JA accumulation were significantly alleviated by improved K levels and promoted the accumulation of IAA in roots and leaves after stress removal, facilitating the recovery growth of rapeseed.

Key words: waterlogging, potassium, Brassica napus L., endogenous hormones, flooding

Fig. 1

Phenotypic differences of rapeseed under different potassium levels on 21 d (14 d after stress removal) following waterlogging stress during seedling stage"

Fig. 2

Effect of different potassium levels on biomass and root/shoot ratio of rapeseed under waterlogging stress HK_CK, HK_WL, LK_CK, and LK_WL represent normal watering with normal potassium supply, waterlogging stress, low potassium stress, and combined waterlogging with low potassium stress, respectively. Different lowercase letters above bars indicate statistically significant differences among treatments (P<0.05),and error bars represent the standard error. The same as below"

Fig. 3

Effects of different potassium levels on K+ concentration and K+ accumulation of rapeseed under waterlogging stress"

Fig. 4

Effects of different potassium levels on characteristics of photosynthesis under waterlogging stress 7 DAW represents 7 d after waterlogging stress, and 21 DAW represents 14 d after the end of waterlogging stress. The same as below"

Fig. 5

Effects of different potassium levels on activity of SOD, POD, CAT and MDA content under waterlogging stress"

Fig. 6

Effects of different potassium levels on ABA and JA content under waterlogging stress"

Fig. 7

Effects of different potassium levels on SA and IAA content under waterlogging stress"

[1]
AHMED F, RAFII M Y, ISMAIL M R, JURAIMI A S, RAHIM H A, ASFALIZA R, LATIF M A. Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Research International, 2013, 2013(1): 963525.
[2]
COLMER T D, GREENWAY H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. Journal of Experimental Botany, 2011, 62(1): 39-57.

doi: 10.1093/jxb/erq271
[3]
LIU M M, TAN X F, SUN X H, ZWIAZEK J J. Properties of root water transport in canola (Brassica napus) subjected to waterlogging at the seedling, flowering and podding growth stages. Plant and Soil, 2020, 454(1): 431-445.

doi: 10.1007/s11104-020-04669-z
[4]
SHABALA S. Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytologist, 2011, 190(2): 289-298.

doi: 10.1111/j.1469-8137.2010.03575.x pmid: 21563365
[5]
鞠英芹, 杨霏云, 马德栗, 朱晓炜, 罗蒋梅, 李文科. 江淮地区油菜渍害的时空分析. 自然灾害学报, 2017, 26(6): 136-146.
JU Y Q, YANG F Y, MA D L, ZHU X W, LUO J M, LI W K. Temporal and spatial analysis of rape waterlogging in Jianghuai region. Journal of Natural Disasters, 2017, 26(6): 136-146. (in Chinese)
[6]
PLOSCHUK R A, MIRALLES D J, COLMER T D, PLOSCHUK E L, STRIKER G G. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Frontiers in Plant Science, 2018, 9:1863.

doi: 10.3389/fpls.2018.01863 pmid: 30619425
[7]
ZHOU W J, LIN X Q. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Research, 1995, 44(2/3): 103-110.

doi: 10.1016/0378-4290(95)00075-5
[8]
KUAI J, LI X Y, LI Z, XIE Y, WANG B, ZHOU G S. Leaf carbohydrates assimilation and metabolism affect seed yield of rapeseed with different waterlogging tolerance under the interactive effects of nitrogen and waterlogging. Journal of Agronomy and Crop Science, 2020, 206(6): 823-836.

doi: 10.1111/jac.v206.6
[9]
XU M Y, MA H Q, ZENG L, CHENG Y, LU G Y, XU J S, ZHANG X K, ZOU X L. The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L. Field Crops Research, 2015, 180: 238-245.

doi: 10.1016/j.fcr.2015.06.007
[10]
BOEM F H G, LAVADO R S, PORCELLI C A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Research, 1996, 47(2/3): 175-179.

doi: 10.1016/0378-4290(96)00025-1
[11]
LEIGH R A, WYN JONES R G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist, 1984, 97(1): 1-13.

doi: 10.1111/nph.1984.97.issue-1
[12]
BROADLEY M R, BOWEN H C, COTTERILL H L, HAMMOND J P, MEACHAM M C, MEAD A, WHITE P J. Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany, 2004, 55(396): 321-336.

doi: 10.1093/jxb/erh002 pmid: 14739259
[13]
HASANUZZAMAN M, BHUYAN M, NAHAR K, HOSSAIN M, MAHMUD J, HOSSEN M, MASUD A, MOUMITA, FUJITA M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 2018, 8(3): 31.

doi: 10.3390/agronomy8030031
[14]
SHABALA S, POTTOSIN I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 2014, 151(3): 257-279.

doi: 10.1111/ppl.12165
[15]
ZENG F R, KONNERUP D, SHABALA L, ZHOU M X, COLMER T D, ZHANG G P, SHABALA S. Linking oxygen availability with membrane potential maintenance and K+ retention of barley roots: Implications for waterlogging stress tolerance. Plant, Cell & Environment, 2014, 37(10): 2325-2338.

doi: 10.1111/pce.2014.37.issue-10
[16]
MUGNAI S, MARRAS A M, MANCUSO S. Effect of hypoxic acclimation on Anoxia tolerance in Vitis roots: Response of metabolic activity and K+ fluxes. Plant & Cell Physiology, 2011, 52(6): 1107-1116.
[17]
TEAKLE N L, BAZIHIZINA N, SHABALA S, COLMER T D, BARRETT-LENNARD E G, RODRIGO-MORENO A, LÄUCHLI A E. Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: The importance of K+ retention in roots. Environmental and Experimental Botany, 2013, 87: 69-78.

doi: 10.1016/j.envexpbot.2012.09.006
[18]
ARMENGAUD P, SULPICE R, MILLER A J, STITT M, AMTMANN A, GIBON Y. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiology, 2009, 150(2): 772-785.

doi: 10.1104/pp.108.133629
[19]
CUI J, DAVANTURE M, ZIVY M, LAMADE E, TCHERKEZ G. Metabolic responses to potassium availability and waterlogging reshape respiration and carbon use efficiency in oil palm. New Phytologist, 2019, 223(1): 310-322.

doi: 10.1111/nph.15751 pmid: 30767245
[20]
CUI J, ABADIE C, CARROLL A, LAMADE E, TCHERKEZ G. Responses to K deficiency and waterlogging interact via respiratory and nitrogen metabolism. Plant, Cell & Environment, 2019, 42(2): 647-658.

doi: 10.1111/pce.v42.2
[21]
ASHRAF M A, AHMAD M S A, ASHRAF M, AL-QURAINY F, ASHRAF M Y. Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop & Pasture Science, 2011, 62(1): 25-38.
[22]
GAO J W, SU Y, YU M, HUANG Y Q, WANG F, SHEN A L. Potassium alleviates post-anthesis photosynthetic reductions in winter wheat caused by waterlogging at the stem elongation stage. Frontiers in Plant Science, 2021, 11: 607475.

doi: 10.3389/fpls.2020.607475
[23]
丛野, 李艳君, 周灿金, 邹崇顺, 张学昆, 廖星, 张春雷. 氮、磷、钾对湿害胁迫下甘蓝型油菜产量的影响. 植物营养与肥料学报, 2009, 15(5): 1122-1129.
CONG Y, LI Y J, ZHOU C J, ZOU C S, ZHANG X K, LIAO X, ZHANG C L. Effect of application of nitrogen, phosphorus and potassium fertilizers on yield in rapeseed (Brassica napus L.) under the waterlogging stress. Plant Nutrition and Fertilizer Science, 2009, 15(5): 1122-1129. (in Chinese)
[24]
ORLOVIUS K, KIRGBY E. Fertilizing for high yield and quality oilseed rape. IPI Bulletin, 2003(16): 125.
[25]
REN T, LU J W, LI H, ZOU J, XU H L, LIU X W, LI X K. Potassium-fertilizer management in winter oilseed-rape production in China. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 429-440.

doi: 10.1002/jpln.v176.3
[26]
中国农业科学院土壤肥料研究所. 中国化肥区划. 北京: 中国农业科学技术出版社, 1986: 13-14.
Institute of Soil and Fertilizer, Chinese Academy of Agricultural Sciences. Chemical Fertilizer Zoning in China. Beijing: China Agricultural Science and Technology Press, 1986: 13-14. (in Chinese)
[27]
韩上, 武际, 胡现荣, 吴新民, 胡鹏, 郭熙盛, 钱晓华, 夏伟光. 安徽省油菜钾肥施用效果及土壤速效钾丰缺指标研究. 土壤, 2016, 48(2): 265-269.
HAN S, WU J, HU X R, WU X M, HU P, GUO X S, QIAN X H, XIA W G. Study on the effect of potassium fertilizer and abundance and deficiency indices of soil available potassium on rapeseed in Anhui Province. Soils, 2016, 48(2): 265-269. (in Chinese)
[28]
徐华丽, 鲁剑巍, 李小坤, 王寅, 苏伟. 湖北省油菜施肥现状调查. 中国油料作物学报, 2010, 32(3): 418-423.
XU H L, LU J W, LI X K, WANG Y, SU W. Investigation of present fertilization on rapeseed in Hubei Province. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 418-423. (in Chinese)
[29]
KUAI J, LI X Y, XIE Y, LI Z, WANG B, ZHOU G S, KUAI J, LI X Y, XIE Y, LI Z, WANG B, ZHOU G S. Leaf characteristics at recovery stage affect seed oil and protein content under the interactive effects of nitrogen and waterlogging in rapeseed. Agriculture, 2020, 10(6): 207.

doi: 10.3390/agriculture10060207
[30]
ZHU B, XU Q W, ZOU Y G, MA S M, ZHANG X D, XIE X Y, WANG L C. Effect of potassium deficiency on growth, antioxidants, ionome and metabolism in rapeseed under drought stress. Plant Growth Regulation, 2020, 90(3): 455-466.

doi: 10.1007/s10725-019-00545-8
[31]
NIU Q F, ZONG Y, QIAN M J, YANG F X, TENG Y W. Simultaneous quantitative determination of major plant hormones in pear flowers and fruit by UPLC/ESI-MS/MS. Analytical Methods, 2014, 6(6): 1766-1773.

doi: 10.1039/C3AY41885E
[32]
宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36(1): 170-176.

doi: 10.3724/SP.J.1006.2010.00170
SONG F P, HU L Y, ZHOU G S, WU J S, FU T D. Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agronomica Sinica, 2010, 36(1): 170-176. (in Chinese)

doi: 10.3724/SP.J.1006.2010.00170
[33]
周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制. 作物学报, 2024, 50(4): 1015-1029.

doi: 10.3724/SP.J.1006.2024.34116
ZHOU X Y, XU J S, XIE L L, XU B B, ZHANG X K. Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L. Acta Agronomica Sinica, 2024, 50(4): 1015-1029. (in Chinese)

doi: 10.3724/SP.J.1006.2024.34116
[34]
WANG H M, LIU X Y, YANG P, WU R Z, WANG S Y, HE S N, ZHOU Q H. Potassium application promote cotton acclimation to soil waterlogging stress by regulating endogenous protective enzymes activities and hormones contents. Plant Physiology and Biochemistry, 2022, 185: 336-343.

doi: 10.1016/j.plaphy.2022.06.019 pmid: 35750001
[35]
HUANG L, LI J X, YANG P, ZENG X H, CHEN Y Y, WANG H M. Potassium application alleviated negative effects of soil waterlogging stress on photosynthesis and dry biomass in cotton. Agronomy, 2023, 13(4): 1157.

doi: 10.3390/agronomy13041157
[36]
高冠龙, 冯起, 张小由, 司建华, 鱼腾飞. 植物叶片光合作用的气孔与非气孔限制研究综述. 干旱区研究, 2018, 35(4): 929-937.

doi: 10.13866/j.azr.2018.04.22
GAO G L, FENG Q, ZHANG X Y, SI J H, YU T F. An overview of stomatal and non-stomatal limitations to photosynthesis of plants. Arid Zone Research, 2018, 35(4): 929-937. (in Chinese)

doi: 10.13866/j.azr.2018.04.22
[37]
朱波, 徐绮雯, 马淑敏, 刘帮艳, 段美春, 王龙昌. 干旱缺钾对油菜内源激素、光合作用和叶绿素荧光特性的影响. 中国油料作物学报, 2022, 44(3): 570-580.

doi: 10.19802/j.issn.1007-9084.2021133
ZHU B, XU Q W, MA S M, LIU B Y, DUAN M C, WANG L C. Effect of potassium deficiency on endogenous hormones, photosynthesis and characteristics of chlorophyll fluorescence in Brassica napus under drought stress. Chinese Journal of Oil Crop Sciences, 2022, 44(3): 570-580. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2021133
[38]
HONG B, ZHOU B Q, PENG Z C, YAO M Y, WU J J, WU X P, GUAN C Y, GUAN M. Tissue-specific transcriptome and metabolome analysis reveals the response mechanism of Brassica napus to waterlogging stress. International Journal of Molecular Sciences, 2023, 24(7): 6015.

doi: 10.3390/ijms24076015
[39]
MEN S N, CHEN H L, CHEN S H, ZHENG S H, SHEN X S, WANG C T, YANG Z P, LIU D H. Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Scientific Reports, 2020, 10: 10201.

doi: 10.1038/s41598-020-67260-7
[40]
HUSSAIN M A, NAEEM A, PITANN B, MÜHLING K H. High sulfur (S) supplementation imparts waterlogging tolerance to oilseed rape (Brassica napus L.) through upregulating S metabolism and antioxidant pathways. Journal of Plant Growth Regulation, 2023, 42(12): 7591-7605.

doi: 10.1007/s00344-023-11034-8
[41]
VISHWAKARMA K, UPADHYAY N, KUMAR N, YADAV G, SINGH J, MISHRA R K, KUMAR V, VERMA R, UPADHYAY R G, PANDEY M, SHARMA S. Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Frontiers in Plant Science, 2017, 8: 161.

doi: 10.3389/fpls.2017.00161 pmid: 28265276
[42]
WANG Z Y, HAN Y L, LUO S, RONG X M, SONG H X, JIANG N, LI C W, YANG L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. Frontiers in Plant Science, 2022, 13: 1048227.

doi: 10.3389/fpls.2022.1048227
[43]
CHEN H, WU Q K, NI M, CHEN C, HAN C, YU F Y. Transcriptome analysis of endogenous hormone response mechanism in roots of Styrax tonkinensis under waterlogging. Frontiers in Plant Science, 2022, 13: 896850.

doi: 10.3389/fpls.2022.896850
[44]
ARBONA V, GÓMEZ-CADENAS A. Hormonal modulation of Citrus responses to flooding. Journal of Plant Growth Regulation, 2008, 27(3): 241-250.

doi: 10.1007/s00344-008-9051-x
[45]
PAN J W, SHARIF R, XU X W, CHEN X H. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Frontiers in Plant Science, 2021, 11: 627331.

doi: 10.3389/fpls.2020.627331
[46]
HAYAT Q, HAYAT S, IRFAN M, AHMAD A. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 2010, 68(1): 14-25.

doi: 10.1016/j.envexpbot.2009.08.005
[47]
ARIF Y, SAMI F, SIDDIQUI H, BAJGUZ A, HAYAT S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany, 2020, 175: 104040.

doi: 10.1016/j.envexpbot.2020.104040
[48]
王桂林, 范伟国, 彭福田. 桃树淹水及不同时间喷布水杨酸的生理响应. 果树学报, 2015, 32(5): 872-878.
WANG G L, FAN W G, PENG F T. Physiological responses of the young peach tree to water-logging and spraying SA at different timing. Journal of Fruit Science, 2015, 32(5): 872-878. (in Chinese)
[49]
KIM Y H, HWANG S J, WAQAS M, KHAN A L, LEE J H, LEE J D, NGUYEN H T, LEE I J. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Frontiers in Plant Science, 2015, 6: 714.
[50]
VIDOZ M L, LORETI E, MENSUALI A, ALPI A, PERATA P. Hormonal interplay during adventitious root formation in flooded tomato plants. The Plant Journal, 2010, 63(4): 551-562.

doi: 10.1111/j.1365-313X.2010.04262.x pmid: 20497380
[51]
ZHANG X C, SHABALA S, KOUTOULIS A, SHABALA L, JOHNSON P, HAYES D, NICHOLS D S, ZHOU M X. Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant and Soil, 2015, 394(1): 355-372.

doi: 10.1007/s11104-015-2536-z
[52]
BASHAR K K. Hormone dependent survival mechanisms of plants during post-waterlogging stress. Plant Signaling & Behavior, 2018, 13(10): e1529522.
[53]
IMTIAZ H, MIR A R, CORPAS F J, HAYAT S. Impact of potassium starvation on the uptake, transportation, photosynthesis, and abiotic stress tolerance. Plant Growth Regulation, 2023, 99(3): 429-448.

doi: 10.1007/s10725-022-00925-7
[1] LÜ XuDong, SUN ShiYuan, LI YaNan, LIU YuLong, WANG YanQun, FU Xin, ZHANG JiaYing, NING Peng, PENG ZhengPing. Effects of Intelligent Mechanized Layered Fertilization on Root-Soil Nutrient Distribution and Yield in Wheat Fields [J]. Scientia Agricultura Sinica, 2026, 59(1): 129-146.
[2] ZHAO YuXuan, MIAO JiYuan, HU Wei, ZHOU ZhiGuo. Effects of Low Temperature at Seedling Stage on Cotton Floral Bud Differentiation and Cotton Plant Yield [J]. Scientia Agricultura Sinica, 2025, 58(7): 1311-1320.
[3] MENG ZiZhen, REN Tao, LIU Chen, WANG KunKun, LIAO ShiPeng, LI XiaoKun, CONG RiHuan, LU ZhiFeng, FANG YaTing, LU JianWei. Balanced Application of Nitrogen, Phosphorus and Potassium Fertilizer in Rice-Rapeseed Rotation System Improves Crop Yield and Nutrient Utilization [J]. Scientia Agricultura Sinica, 2025, 58(16): 3190-3200.
[4] GAO ZiYi, WU HaiYa, LIU JunQuan, CUI Xin, LIU AiHua, FANG YaTing, REN Tao, LI XiaoKun, LU JianWei. Characteristics of Potassium Utilization and Crop Yield Formation in Rice-Rapeseed Rotation System Under Different Potassium Fertilizer Application Rates [J]. Scientia Agricultura Sinica, 2025, 58(16): 3245-3255.
[5] ZHAO Yong, ZHANG ZhongFu, WANG YuTong, AI Jing, LIU JiaYong, WU JianMing, DENG Jun, ZHANG YueBin. Effects of Potassium Application on Root Rhizosphere Microbial Community Changes and Growth of Sugarcane [J]. Scientia Agricultura Sinica, 2025, 58(13): 2630-2644.
[6] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[7] GUAN ZhiLin, JIN FengWei, LIU TingTing, WANG Yi, TAN YingYing, YANG ChunHui, LI RuiTong, WANG Bo, LIU KeDe, DONG Yun. Genetic Analysis and Gene Mapping of Glossy Leaf in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(4): 650-662.
[8] ZHANG WuJun, DUAN XiuJian, LI MaoYu, LUO Xia, LIU QiangMing, TANG YongQun, LI JingYong, YAO Xiong. Effects of Foliar Application Uniconazole on Culm Morphological Characters, Anatomical Traits and Stem Lodging Resistance of Hybrid Indica Rice Under Low Light Stress [J]. Scientia Agricultura Sinica, 2024, 57(15): 2946-2963.
[9] HAO LeiXiao, CHU Chu, WEN PeiPei, PENG SongYue, YANG Zhuo, ZOU HuiYing, FAN YiKai, WANG HaiTong, LIU WenJu, WANG DongWei, LIU WeiHua, YANG JunHua, ZHAO Juan, LI WeiQi, WEN Wan, ZHOU JiaMin, ZHANG ShuJun. Establishment of Prediction Models for Sodium, Potassium and Magnesium Content in Milk of Chinese Holstein Cows Based on Mid-Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2024, 57(14): 2862-2873.
[10] YANG WenHui, LUO HaoCheng, DONG ErWei, WANG JinSong, WANG Yuan, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Long-Term Fertilization and Deep Plough on Crop Potassium Utilization and Soil Potassium Forms in Maize-Sorghum Rotation System [J]. Scientia Agricultura Sinica, 2024, 57(12): 2390-2403.
[11] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[12] YE Nan, ZHU Yan, ZHAO YuanShou, ZHU JianNing, MEN JiaWei, CHEN Fu, KONG DeYuan, ZHANG WeiBing, ZONG YuanYuan, LI YongCai. Effects of Seed Soaking with Chitooligosaccharide on the Growth of Sprout and Endogenous Phytohormone Content in Potato Minitubers [J]. Scientia Agricultura Sinica, 2023, 56(4): 788-800.
[13] FAN JunQiang, WU JunYan, LIU LiJun, MA Li, YANG Gang, PU YuanYuan, LI XueCai, SUN WanCang. Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(4): 599-618.
[14] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[15] ZHU PeiPei, QIN HaoXiang, ZHANG JianXia. Changes of Endogenous Hormones and Polyamines During Ovule Development of Stenospermocarpic Seedless Grape [J]. Scientia Agricultura Sinica, 2023, 56(23): 4789-4800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!