Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (2): 402-412.doi: 10.3864/j.issn.0578-1752.2026.02.013

• HORTICULTURE • Previous Articles     Next Articles

Functional Analysis of the CsGPDH Gene in Seed Oil Accumulation of Tea Plant

SHEN YingZi(), LI DuoJiao, JIANG Li, HU XingRong, CHEN Bin, ZHENG ZhaiSheng, YUAN MingAn()   

  1. Jinhua Academy of Agricultural Sciences, Jinhua 321017, Zhejiang
  • Received:2025-06-12 Accepted:2025-08-11 Online:2026-01-16 Published:2026-01-22
  • Contact: YUAN MingAn

Abstract:

【Objective】 Oil content is a key indicator determining the quality and economic value of oil crops. Tea plant (Camellia sinensis (L.) O. Kuntze), as an economically significant plant, holds potential application value in oil resource development through its fruit, tea seeds. The glycerol-3-phosphate dehydrogenase gene (GPDH) is a crucial regulatory gene in plant oil biosynthesis. Cloning CsGPDH and conducting an in-depth analysis of its expression characteristics and function aims to provide a theoretical basis for elucidating the molecular mechanism by which CsGPDH regulates oil synthesis in tea plants. 【Method】 Using ‘Jincha No.18’ as plant material, the full-length sequence of CsGPDH was cloned. Bioinformatics tools were employed to analyze the structural characteristics and evolutionary relationships of its encoded amino acid sequence. Real-time quantitative PCR (qRT-PCR) was used to detect the expression pattern of CsGPDH in different tea plant tissues and during key stages of oil synthesis. Subcellular localization of the encoded protein was observed using laser scanning confocal microscopy. Agrobacterium-mediated genetic transformation was utilized to generate CsGPDH-overexpressing Arabidopsis thaliana plants. Phenotypic analysis was performed on transgenic and wild-type Arabidopsis plants, measuring indicators such as seed oil content and fatty acid composition. 【Result】 CsGPDH was successfully cloned, with a coding sequence (CDS) length of 1 128 bp. The protein encoded by CsGPDH possesses a typical glycerol-3-phosphate dehydrogenase domain and exhibits high sequence similarity with homologous proteins from other species. Subcellular localization revealed that the CsGPDH protein is localized to the plasma membrane and cytoplasm. qRT-PCR analysis showed that CsGPDH expression significantly increased during the middle and late stages of seed development, highly coinciding with the period of rapid oil accumulation. Functional validation in transgenic Arabidopsis demonstrated that overexpression of CsGPDH increased seed oil content by 20.6%-25.2% and significantly elevated the proportion of unsaturated fatty acids (C18:1, C18:2). 【Conclusion】 CsGPDH expression is regulated by the seed developmental process, showing high expression during the critical phase of oil synthesis. Overexpression of CsGPDH can significantly enhance seed oil content in plants and plays an important positive regulatory role in the plant oil biosynthesis metabolic pathway.

Key words: Camellia sinensis, tea seeds, glycerol-3-phosphate dehydrogenase gene, CsGPDH, oil content, fatty acid composition

Table 1

Sequences of primers used in this study"

引物名称Primers name 引物序列Primers sequence (5′-3′) 用途Function
CsGPDH-F CTCTCTCTCTCTCTCTCTCTCTCTCTC ORF分离
ORF isolated
CsGPDH-R GTTTGGTACCGAAATTTACATAAA
qRT-CsGPDH-F AAACAGGAAATGTGCGGA qRT-PCR
qRT-CsGPDH-R ACAATGGCTGATGGTGGA
Actin-F GCCATCTTTGATTGGAATGG 茶树内参基因
Tea plant endogenous control
Actin-R GGTGCCACAACCTTGATCTT
PR101-CsGPDH-F TTGATACATATGCCCGTCGACATGGCTCCATTCTTGGAAT 亚细胞定位、转基因表达载体
Subcellular localization, transgenic expression vector
PR101-CsGPDH-R GCTCACCATGGATCCGGTACCGTAAAATTGGGCAGCGCTT

Fig. 1

Dynamic changes in the development of tea seeds A: Morphological changes of tea seeds at different developmental stages; B: Total oil content; C: Fatty acid profiles; D: Soluble sugar content; E: Total protein content; F: Starch content"

Fig. 2

Homology analysis and subcellular localization of CsGPDH A: Phylogenetic tree analysis of GPDH proteins from different species; B: Alignment of the amino acid sequences of CsGPDH, CfGPDH and OeGPDH protein; C: Subcellular localization of CsGPDH in epidermal cells of tobacco"

Fig. 3

Tissue-specific expression and seed development expression of CsGPDH A: Tissue-specific expression analysis of CsGPDH; B: Expression analysis of CsGPDH at different developmental stages"

Fig. 4

Phenotypic identification of CsGPDH transgenic Arabidopsis seeds A: Pod Morphology; B: Pod length; C: Seed size; D: Thousand-seed weight. Different letters indicate significant difference at P<0.05. The same as below"

Fig. 5

Analysis of oil content in CsGPDH transgenic Arabidopsis seeds"

Fig. 6

Analysis of storage substance content in seeds of CsGPDH transgenic Arabidopsis thaliana"

[1]
曹国锋, 邬冰, 钟守贤. 茶叶籽油、 油茶籽油与茶树油的区别. 中国油脂, 2008, 33(8): 17-20.
CAO G F, WU B, ZHONG S X. Differences among tea seed oil, oil-tea Camellia seed oil and tea tree oil. China Oils and Fats, 2008, 33(8): 17-20. (in Chinese)
[2]
恽卓婷, 廖鲜艳, 翁新楚. 茶叶籽油与油茶籽油理化性质及脂肪酸组成比较. 食品工业科技, 2011, 32(6): 136-138.
YUN Z T, LIAO X Y, WENG X C. Comparison of physicochemical properties and fatty acids composition of tea seed oil and Camellia oleifera seed oil. Science and Technology of Food Industry, 2011, 32(6): 136-138. (in Chinese)
[3]
常亚丽, 黄晓兵, 蒋双丰, 黄双杰, 孙慕芳, 刘威, 郭桂义. 豫南茶树种质资源籽实脂肪含量及脂肪酸组成分析. 茶叶科学, 2020, 40(3): 352-362.
CHANG Y L, HUANG X B, JIANG S F, HUANG S J, LIU W, GUO G Y. Analysis of fat content and fatty acid composition and absolute content in the tea seeds from southern Henan tea germplasms. Journal of Tea Science, 2020, 40(3): 352-362. (in Chinese)
[4]
YAO Y, LU Y, PENG K T, HUANG T, NIU Y F, XIE W H, YANG W D, LIU J S, LI H Y. Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnology for Biofuels, 2014, 7(1): 110.

doi: 10.1186/1754-6834-7-110
[5]
GOMMA A E, LEE S K, SUN S M, YANG S H, CHUNG G. Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda. Indian Journal of Microbiology, 2015, 55(4): 447-455.
[6]
VIGEOLAS H, GEIGENBERGER P. Increased levels of glycerol- 3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta, 2004, 219(5): 827-835.
[7]
VIGEOLAS H, WALDECK P, ZANK T, GEIGENBERGER P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnology Journal, 2007, 5(3): 431-441.

doi: 10.1111/pbi.2007.5.issue-3
[8]
LIU F, XIA Y P, WU L, FU D H, HAYWARD A, LUO J L, YAN X H, XIONG X J, FU P, WU G, et al. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Gene, 2015, 557(2): 163-171.

doi: 10.1016/j.gene.2014.12.029 pmid: 25523093
[9]
ZHAO Y, CAO P, CUI Y F, LIU D X, LI J P, ZHAO Y B, YANG S Q, ZHANG B, ZHOU R N, SUN M H, et al. Enhanced production of seed oil with improved fatty acid composition by overexpressing NAD+-dependent glycerol-3-phosphate dehydrogenase in soybean. Journal of Integrative Plant Biology, 2021, 63(6): 1036-1053.

doi: 10.1111/jipb.v63.6
[10]
QUETTIER A L, SHAW E, EASTMOND P J. SUGAR-DEPENDENT6 encodes a mitochondrial flavin adenine dinucleotide-dependent glycerol-3-p dehydrogenase, which is required for glycerol catabolism and post germinative seedling growth in Arabidopsis. Plant Physiology, 2008, 148(1): 519-528.
[11]
赵思阳, 阮成江, 丁健, 卢顺光, 温秀凤, 胡建忠. 沙棘油脂合成关键基因GPD1DGAT的克隆及功能验证. 中南林业科技大学学报, 2023, 43(8): 149-158, 168.
ZHAO S Y, RUAN C J, DING J, LU S G, WEN X F, HU J Z. Cloning and functional validation of key genes GPD1 and DGAT involving in seed oil biosynthesis in sea buckthorn. Journal of Central South University of Forestry & Technology, 2023, 43(8): 149-158, 168. (in Chinese)
[12]
XU R H, WANG R L, LIU A Z. Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass and Bioenergy, 2011, 35(5): 1683-1692.

doi: 10.1016/j.biombioe.2011.01.001
[13]
WANG X J, LIU A Z. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha Inchi (Plukenetia volubilis L.). Lipids, 2014, 49(10): 1019-1031.

doi: 10.1007/s11745-014-3938-z
[14]
CHHIKARA S, ABDULLAH H M, AKBARI P, SCHNELL D, DHANKHER O P. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Plant Biotechnology Journal, 2018, 16(5): 1034-1045.

doi: 10.1111/pbi.2018.16.issue-5
[15]
ESKANDARI M, COBER E R, RAJCAN I. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean. Theoretical and Applied Genetics, 2013, 126(7): 1839-1850.

doi: 10.1007/s00122-013-2096-7 pmid: 23568222
[16]
HASLAM R P, SAYANOVA O, KIM H J, CAHOON E B, NAPIER J A. Synthetic redesign of plant lipid metabolism. The Plant Journal, 2016, 87(1): 76-86.

doi: 10.1111/tpj.13172 pmid: 27483205
[17]
刘景, 丁健, 阮成江, 杜维, 张莞晨, 韩平. 沙棘3-磷酸甘油脱氢酶基因生物信息学及表达分析. 分子植物育种, 2020, 18(2): 409-415.
LIU J, DING J, RUAN C J, DU W, ZHANG W C, HAN P. Gene expression and bioinformatics analysis of HrGPD1 in sea buchthorn (Hippophae L.). Molecular Plant Breeding, 2020, 18(2): 409-415. (in Chinese)
[18]
HERRERA-VALENCIA V A, MACARIO-GONZÁLEZ L A, CASAIS-MOLINA M L, BELTRAN-AGUILAR A G, PERAZA- ECHEVERRÍA S. In silico cloning and characterization of the glycerol-3-phosphate dehydrogenase (GPDH) gene family in the green microalga Chlamydomonas reinhardtii. Current Microbiology, 2012, 64(5): 477-485.
[19]
XUE L L, CHEN H H, JIANG J G. Implications of glycerol metabolism for lipid production. Progress in Lipid Research, 2017, 68: 12-25.

doi: 10.1016/j.plipres.2017.07.002
[20]
WANG C G, LI Y, LU J, DENG X, LI H, HU Z L. Effect of overexpression of LPAAT and GPD 1 on lipid synthesis and composition in green microalga Chlamydomonas reinhardtii. Journal of Applied Phycology, 2018, 30(3): 1711-1719.
[21]
WANG C, ZHOU Z, JIANG S, LI Q, CUI L, ZHOU Y. Identification of the glycerol-3-phosphate dehydrogenase (GPDH) gene family in wheat and its expression profiling analysis under different stress treatments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50(3): 12611.

doi: 10.15835/nbha50312611
[22]
SUN J, CUI H, WU B, WANG W, YANG Q, ZHANG Y, QIN T. Genome-wide identification of cotton (Gossypium spp.) glycerol- 3-phosphate dehydrogenase (GPDH) family members and the role of GhGPDH5 in response to drought stress. Plants, 2022, 11(5): 592.

doi: 10.3390/plants11050592
[23]
CASAIS-MOLINA M L, PERAZA-ECHEVERRIA S, ECHEVARRÍA- MACHADO I, HERRERA-VALENCIA V A. Expression of Chlamydomonas reinhardtii CrGPDH2 and CrGPDH3 cDNAs in yeast reveals that they encode functional glycerol-3-phosphate dehydrogenases involved in glycerol production and osmotic stress tolerance. Journal of Applied Phycology, 2016, 28(1): 219-226.

doi: 10.1007/s10811-015-0588-3
[24]
ZHAO Y, LIU M, HE L, LI X, WANG F, YAN B W, WEI J P, ZHAO C J, LI Z T, XU J Y. A cytosolic NAD+-dependent GPDH from maize (ZmGPDH1) is involved in conferring salt and osmotic stress tolerance. BMC Plant Biology, 2019, 19(1): 16.

doi: 10.1186/s12870-018-1597-6
[25]
YANG Y H, ZHAO J, LIU P, XING H J, LI C C, WEI G R, KANG Z S. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS ONE, 2013, 8(11): e81756.
[26]
弭宪杰, 徐荣华, 刘爱忠, 吴丁, 田波. 蓖麻三磷酸甘油脱氢酶基因(RcGPDH)的克隆及功能分析. 中国油料作物学报, 2011, 33(5): 451-458.
MI X J, XU R H, LIU A Z, WU D, TIAN B. Cloning and characterization of glycerol-3-phosphate dehydrogenase gene (RcGPDH) from Castor bean. Chinese Journal of Oil Crop Sciences, 2011, 33(5): 451-458. (in Chinese)
[27]
余霞, 余舜武, 李天菲, 张余, 陈守俊, 陈晨, 李佳, 胡颂平. 水稻OsGPDH1的克隆与功能鉴定. 核农学报, 2017, 31(5): 829-836.

doi: 10.11869/j.issn.100-8551.2017.05.0829
YU X, YU S W, LI T F, ZHAGN Y, CHEN S J, CHEN C, LI J, HU S P. Cloning and functional identification of OsGPDH1 in rice. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 829-836. (in Chinese)
[28]
ZHAO Y, LI X, WANG F, ZHAO X C, GAO Y Q, ZHAO C J, HE L, LI Z T, XU J Y. Glycerol-3-phosphate dehydrogenase (GPDH) gene family in Zea mays L.: Identification, subcellular localization, and transcriptional responses to abiotic stresses. PLoS ONE, 2018, 13(7): e0200357.

doi: 10.1371/journal.pone.0200357
[29]
ZHAO Y, LI X, ZHANG Z X, PAN W J, LI S N, XING Y, XIN W Y, ZHANG Z G, HU Z B, LIU C Y, et al. GmGPDH12, a mitochondrial FAD-GPDH from soybean, increases salt and osmotic stress resistance by modulating redox state and respiration. The Crop Journal, 2021, 9(1): 79-94.

doi: 10.1016/j.cj.2020.05.008
[30]
刘少锋, 汪慧慧, 邬克彬, 熊兴华. 甘蓝型油菜GPDH基因克隆及其生物信息学分析. 华北农学报, 2017, 32(2): 109-116.

doi: 10.7668/hbnxb.2017.02.017
LIU S F, WANG H H, WU K B, XIONG X H. Cloning and bioinformatics analysis of GPDH in rapeseed. Acta Agriculturae Boreali-Sinica, 2017, 32(2): 109-116. (in Chinese)
[31]
张超. 油菜甘油-3-磷酸脱氢酶基因的克隆及功能研究[D]. 南京: 南京农业大学, 2012.
ZHANG C. Cloning and functional research of giycerol-3-phosphate dehydrogenase gene from Brassica napus L.[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[32]
CHANDA B, XIA Y, MANDAL M K, YU K S, SEKINE K, GAO Q M, SELOTE D, HU Y L, STROMBERG A, NAVARRE D, et al. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics, 2011, 43(5): 421-427.

doi: 10.1038/ng.798 pmid: 21441932
[33]
WEI Y D, PERIAPPURAM C, DATLA R, SELVARAJ G, ZOU J T. Molecular and biochemical characterizations of a plastidic glycerol- 3-phosphate dehydrogenase from Arabidopsis§. Plant Physiology and Biochemistry, 2001, 39(10): 841-848.

doi: 10.1016/S0981-9428(01)01308-0
[34]
SHEN W Y, WEI Y D, DAUK M, TAN Y F, TAYLOR D C, SELVARAJ G, ZOU J T. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. The Plant Cell, 2006, 18(2): 422-441.
[35]
FANG W Q, HONG Y H, ZHOU T S, WEI Y D, LIN L L, WANG Z H, ZHU X H. Uncoupling of nutrient metabolism and cellular redox by cytosolic routing of the mitochondrial G-3-P dehydrogenase Gpd 2 causes loss of conidiation and pathogenicity in Pyricularia oryzae. Journal of Integrative Agriculture, 2025, 24(2): 638-654.
[36]
GRAEF G, LAVALLEE B J, TENOPIR P, TAT M, SCHWEIGER B, KINNEY A J, VAN GERPEN J H, CLEMENTE T E. A high-oleic- acid and low-palmitic-acid soybean: Agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnology Journal, 2009, 7(5): 411-421.

doi: 10.1111/pbi.2009.7.issue-5
[37]
高宇. 油莎豆块茎富油关键基因挖掘及其功能分析[D]. 太谷: 山西农业大学, 2023.
GAO Y. Mining of key genes responsible for oil biosynthesis and their mining of key genes responsible for oil biosynthesis and their functional analysis in oil-rich tubers of Cyperus esculentus[D]. Taigu: Shanxi Agricultural University, 2023. (in Chinese)
[1] RUAN QiaoJun, MAO MiaoMiao, ZHANG YuanYuan, LIN XiaoRong, CHEN ZhongZheng. Screening of Transcription Factors for Key Enzyme Gene CsAlaDC Involved in Ethylamine Synthesis in Yinghong 9 (Camellia sinensis) [J]. Scientia Agricultura Sinica, 2025, 58(12): 2427-2438.
[2] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
[3] HU WenShi, LI YinShui, ZHAO ManLi, ZHANG ShanShan, GU ChiMing, DAI Jing, LI XiaoYong, YANG Lu, QIN Lu, LIAO Xing. Characteristics of Oilseed Rape Cultivar with Different Oil Content in Nutrient Dynamitic Accumulation Rates and Utilization Efficiency [J]. Scientia Agricultura Sinica, 2023, 56(24): 4895-4905.
[4] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[5] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[6] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[7] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[8] XIAO LuoDan, TANG Lei, WANG WeiDong, GAO YueFang, HUANG YiFan, MENG Yang, YANG YaJun, XIAO Bin. Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant [J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476.
[9] SHI Yu-qian, ZHAO Yan. Growth and Lipid Accumulation Promotion of Chlorella by Endophytic Pantoea sp. from Rice Seeds [J]. Scientia Agricultura Sinica, 2016, 49(8): 1429-1442.
[10] ZHANG Ting, WANG Zhen-yu, LI Zheng, LIN Zu-song, LI Xiang, TIAN Jian-wen, ZHANG De-quan. In?uence of Barley-Based Diets on Physico-Chemical Characteristics and Fatty Acid Composition of Dry-Cured Ham Produced with Dahe Black Pig’s Hind Leg [J]. Scientia Agricultura Sinica, 2016, 49(2): 331-338.
[11] GAO Xi-xi, ZHANG Shu-wen, LU Jing, LIU Lu, PANG Xiao-yang, YUE Xi-qing, Lü Jia-ping. Chemical Compositions and Physicochemical Properties of Milk Fat and Fractions Obtained by Short-Path Distillation [J]. Scientia Agricultura Sinica, 2016, 49(11): 2183-2193.
[12] XU Jian-Feng-1, LONG Yan-2, WU Jian-Guo-3, ZHAO Zhi-Gang-4, XU Hai-Ming-1, WEN Juan-1, MENG Jin-Ling-2, SHI Chun-Hai-1. QTL Mapping Based on Embryo and Maternal Genetic Systems for Oil and Protein Contents in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2014, 47(8): 1471-1480.
[13] HOU Meng-1, QI Zhao-Ming-1, HAN Xue-2, XIN Da-Wei-1, JIANG Hong-Wei-2, LIU Chun-Yan-2, WU Qiong-1, SUI Li-Li-4, HU Guo-Hua-2, 3 , CHEN Qing-Shan-1, 3 . QTL Mapping and Interaction Analysis of Seed Protein Content and Oil Content in Soybean [J]. Scientia Agricultura Sinica, 2014, 47(13): 2680-2689.
[14] SUN Zhong-Yong, CHENG Shuang, WANG Ji-Bian, HUANG Ji-Xiang, CHEN Fei, NI Xi-Yuan, ZHAO Jian-Yi. Validation of QTL for Oil Content in a Population of Worldwide Rapeseed Cultivars by Association Analysis [J]. Scientia Agricultura Sinica, 2012, 45(19): 3921-3931.
[15] WEI Wen-Liang, ZHANG Yan-Xin, 吕Hai-Xia , WANG Lin-Hai, LI Dong-Hua, ZHANG Xiu-Rong. Population Structure and Association Analysis of Oil Content in a Diverse Set of Chinese Sesame (Sesamum indicum L.) Germplasm [J]. Scientia Agricultura Sinica, 2012, 45(10): 1895-1903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!