Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (2): 413-436.doi: 10.3864/j.issn.0578-1752.2026.02.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Different Irrigation Amounts and Anti-transpirant Treatments on Wine Quality

ZHANG MengBo1(), TAN HongBing1, SHEN Tian2, XU MeiLong2, ZHOU XinMing1, FANG YuLin1, JU YanLun1,3()   

  1. 1 College of Enology, Northwest A&F University/Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shannxi
    2 Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002
    3 Xinjiang Research Institute of Agriculture in Arid Areas, Urumqi 830091
  • Received:2025-07-07 Accepted:2025-11-21 Online:2026-01-16 Published:2026-01-22
  • Contact: JU YanLun

Abstract:

【Background】 In China’s drought-prone grape-growing regions, high summer temperatures and scarce precipitation often lead to prolonged water deficits, exposing grapevines to heat stress. This results in accelerated fruit ripening, elevated sugar content, reduced acidity, and compromised wine flavor and quality. Under such water-scarce conditions, balancing irrigation water conservation with raw material quality improvement has become a critical challenge. 【Objective】 This study investigated the combined effects of regulated deficit irrigation (RDI) and anti-transpirant (AT) application on fundamental quality indicators of Cabernet Sauvignon grape berries and wine quality. The objective was to identify an optimal combination strategy that simultaneously could achieve water conservation and enhance wine quality. 【Method】 The experiment was conducted at Longyu Winery in Xixia District, Yinchuan City, Ningxia in 2024, using Cabernet Sauvignon grapes as materials. From early July (berry swelling stage), regulated deficit irrigation treatments (RDI-1: 40% ETc (evapotranspiration), RDI-2: 60% ETc, and RDI-3: 80% ETc) were implemented, and ATs were sprayed twice in August. Starting from late July, grapes were harvested every two weeks to measure basic physicochemical indicators. On September 12, the grapes were harvested and used to produce Cabernet Sauvignon dry red wine. After fermentation, the physicochemical indicators and various phenolic compound indicators of the wine were measured. 【Result】 The synergistic application of regulated deficit irrigation (RDI) and ATs significantly enhanced soluble solids and total acid content in grapes while markedly suppressing reducing sugar accumulation, which contributed to reduced alcohol content in wine. The RDI-2-AT group exhibited the lowest alcohol content (11.94% vol). The RDI-1 group showed the lowest total organic acid content (5.01 g·L-1), whereas the RDI-2-AT group demonstrated a 12.40% increase in tartaric acid content compared with the RDI-2 group. Total phenolics exhibited a gradient increase with intensified water deficit, but anti-transpirant-treated groups showed significant reductions (14.83%, 21.33%, 22.59%, and 32.45% lower than that under CK group). Specifically, the RDI-1-AT group had 26.89% lower phenolic acid monomers than the RDI-1 group. The RDI-3 group recorded the highest total monomeric phenolics (163.74 mg·L-1), 3.54% higher than that under CK group, while the RDI-2-AT group had the lowest value (115.4 mg·L-1), significantly below the CK group. For monomeric anthocyanins, the CK group had the lowest total value (23.38 mg·L-1), whereas the RDI-1 group had the highest value (34.82 mg·L-1). Both RDI-1-AT and RDI-3-AT groups showed significantly lower monomeric anthocyanin contents than their non-anti-transpirant counterparts (RDI-1 and RDI-3 groups). 【Conclusion】 The combined application of 60% ETc regulated deficit irrigation (RDI-2) and ATs (RDI-2-AT) could increase total acid and phenolic content in wine while reducing volatile acidity and alcohol content. This synergistic approach thereby enhanced the taste profile and stability, demonstrating the most significant improvement in wine quality.

Key words: regulated deficit irrigation, anti-transpirant, alcohol content, phenolic substance, quality of wine

Fig. 1

Effects of RDI and anti-transpirant on °Brix (A), TRS (B), pH (C), and TAC (D) of grape RDI-1: 40% ETc; RDI-2: 60% ETc; RDI-3: 80% ETc; CK: Control; RDI-1-AT: 40% ETc+AT; RDI-2-AT: 60% ETc+AT; RDI-3-AT: 60% ETc+AT; AT: Control+AT. Different lowercase letters indicate significant differences (P<0.05). The same as below"

Table 1

Effects of RDI and anti-transpirant on pH, total acid, volatile acid, and alcohol content of wine"

基本理化指标
Basic physicochemical property
处理 Treatment
RDI-1 RDI-2 RDI-3 CK RDI-1-AT
pH 3.86±0.02a 3.88±0.01a 3.8±0.01b 3.79±0.01bc 3.88±0.01a
总酸 Total acid (g·L-1) 7.59±0.04f 8.56±0.03e 8.98±0.03abc 8.86±0.07ab 8.69±0.02de
挥发酸 Volatile acid (g·L-1) 0.74±0.01a 0.65±0.04b 0.7±0.01ab 0.68±0.01ab 0.69±0.01ab
酒精度 Alcohol content (% vol) 12.32±0.03c 12.76±0.02b 12.78±0.05b 12.59±0.04b 13.24±0.07a

Table 2

Effects of RDI and anti-transpirant on organic acid of wine"

有机酸种类
Type of organic acid
葡萄酒有机酸含量 Organic acid content of wine (g·L-1)
RDI-1 RDI-2 RDI-3 CK RDI-1-AT RDI-2-AT RDI-3-AT AT
柠檬酸 Citric acid 0.39±0.01ef 0.47±0.02de 0.45±0.01ef 0.39±0.00f 0.53±0.02cd 0.58±0.02bc 0.65±0.01ab 0.70±0.01a
酒石酸 Tartaric acid 2.07±0.016e 2.17±0.01de 2.40±0.04c 2.33±0.07cd 2.65±0.02ab 2.44±0.05c 2.64±0.02b 2.84±0.01a
苹果酸 Malic acid 1.37±0.01e 1.42±0.02de 1.49±0.03cd 1.53±0.00c 1.71±0.01b 1.71±0.00b 1.86±0.02a 1.92±0.01a
琥珀酸 Succinic acid 0.38±0.01d 0.39±0.00d 0.39±0.00d 0.41±0.01cd 0.45±0.01bc 0.48±0.01ab 0.47±0.01ab 0.52±0.01a
乳酸 Lactic acid 0.34±0.01c 0.40±0.04c 0.48±0.04c 0.72±0.05b 0.67±0.02b 0.82±0.03ab 0.83±0.00ab 0.89±0.00a
醋酸 Acetic acid 0.56±0.00cd 0.54±0.01de 0.57±0.01cd 0.72±0.01ab 0.46±0.03e 0.64±0.02bc 0.69±0.01ab 0.73±0.02a
总计 Total 5.10±0.01e 5.37±0.08e 5.78±0.08d 6.09±0.12d 6.47±0.04c 6.66±0.06c 7.14±0.01b 7.61±0.03a

Fig. 2

Effects of RDI and anti-transpirant flavan-3-ol (A), total anthocyanins (B), total tannins (C), flavonoids (D), and total phenols (E) of wine"

Fig. 3

Effects of RDI and anti-transpirant on monomeric phenol content in wine Different letters indicate significant differences at the 0.05 level among treatments of the same substance. The same as below"

Fig. 4

Effects of RDI and anti-transpirant on monomeric anthocyanin content in wine"

Fig. 5

Principal component analysis of wine monomeric phenolics"

[1]
白洁洁. 两种抗蒸腾剂产品对‘美乐’葡萄叶片逆境相关指标及果实品质的影响[D]. 银川: 宁夏大学, 2018.
BAI J J. Effects of two kinds of anti-transpirants on leaf stress related indexes and fruit quality of Merlot grape[D]. Yinchuan: Ningxia University, 2018. (in Chinese)
[2]
王翠梅, 孙义东, 孔维府. 中国酿酒葡萄栽培生产历史、现状和发展展望. 中国果菜, 2007, 27(6): 6-7.
WANG C M, SUN Y D, KONG W F. History, present situation and development prospect of wine grape cultivation in China. China Fruit & Vegetable, 2007, 27(6): 6-7. (in Chinese)
[3]
吕名礼, 孟祥侦, 李鸣, 朱登平, 左光燕, 李银华. 调亏灌溉技术在葡萄种植中的应用. 中外葡萄与葡萄酒, 2017(4): 77-79.
M L, MENG X Z, LI M, ZHU D P, ZUO G Y, LI Y H. Application of regulated deficit irrigation technology in grape cultivation. Sino-Overseas Grapevine & Wine, 2017(4): 77-79. (in Chinese)
[4]
SAVOI S, WONG D C J, DEGU A, HERRERA J C, BUCCHETTI B, PETERLUNGER E, FAIT A, MATTIVI F, CASTELLARIN S D. Multi-omics and integrated network analyses reveal new insights into the systems relationships between metabolites, structural genes, and transcriptional regulators in developing grape berries (Vitis vinifera L.) exposed to water deficit. Frontiers in Plant Science, 2017, 8: 1124.

doi: 10.3389/fpls.2017.01124
[5]
王超萍, 冯伟晴, 费腾, 谢兆森, 韩燕, 李秀杰, 刘利, 李勃. 不同灌溉处理对葡萄新梢生长与叶片生理特性的影响. 中外葡萄与葡萄酒, 2025(1): 24-30.
WANG C P, FENG W Q, FEI T, XIE Z S, HAN Y, LI X J, LIU L, LI B. Effects of different irrigation treatments on shoot growth and leaf physiological characteristics of grape. Sino-Overseas Grapevine & Wine, 2025(1): 24-30. (in Chinese)
[6]
杨嘉鹏, 董荣. 调亏灌溉技术对葡萄果实品质的影响. 农业工程, 2024, 14(4): 114-120.
YANG J P, DONG R. Effect of regulated deficit irrigation on grape fruit quality. Agricultural Engineering, 2024, 14(4): 114-120. (in Chinese)
[7]
于海燕, 文颖强. 调亏灌溉对‘阳光玫瑰’葡萄产量品质和水分利用率的影响. 陕西农业科学, 2024, 70(4): 49-54.
YU H Y, WEN Y Q. Effects of regulated deficit irrigation on yield, quality and water use efficiency of Sunshine Rose grape. Shaanxi Journal of Agricultural Sciences, 2024, 70(4): 49-54. (in Chinese)
[8]
张梅花, 刘静霞, 张芮, 成自勇. 不同生育期调亏灌溉对酿酒葡萄耗水及产量和品质的影响. 甘肃农业大学学报, 2019, 54(4): 53-59.
ZHANG M H, LIU J X, ZHANG R, CHENG Z Y. Effect of deficit irrigation on water consumption, yield and quality of wine grape at different growth stages. Journal of Gansu Agricultural University, 2019, 54(4): 53-59. (in Chinese)
[9]
TOMÁS M, MEDRANO H, ESCALONA J M, MARTORELL S, POU A, RIBAS-CARBÓ M, FLEXAS J. Environmental and Experimental Botany, Variability of water use efficiency in grapevines. 2014, 103: 148-157.
[10]
CIFRE J, BOTA J, ESCALONA J M, MEDRANO H, FLEXAS J. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). Agriculture, Ecosystems & Environment, 2005, 106(2/3): 159-170.

doi: 10.1016/j.agee.2004.10.005
[11]
房玉林, 孙伟, 万力, 惠竹梅, 刘旭, 张振文. 调亏灌溉对酿酒葡萄生长及果实品质的影响. 中国农业科学, 2013, 46(13): 2730-2738. doi:10.3864/j.issn.0578-1752.2013.13.011.
FANG Y L, SUN W, WAN L, XI Z M, LIU X, ZHANG Z W. Effects of regulated deficit irrigation (RDI) on wine grape growth and fruit quality. Scientia Agricultura Sinica, 2013, 46(13): 2730-2738. doi:10.3864/j.issn.0578-1752.2013.13.011. (in Chinese)
[12]
李婉平, 刘敏, 王皆行, 姚衡, 成正龙, 窦俊霞, 周晓明, 房玉林, 孙翔宇. 炎热气候条件下抗蒸腾剂对酿酒葡萄光合特性与葡萄酒品质的影响. 中国农业科学, 2019, 52(17): 3008-3019. doi:10.3864/j.issn.0578-1752.2019.17.009.
LI W P, LIU M, WANG J X, YAO H, CHENG Z L, DOU J X, ZHOU X M, FANG Y L, SUN X Y. Influence of anti-transpirant on photosynthesis characteristic and qualities of wines in hot climate. Scientia Agricultura Sinica, 2019, 52(17): 3008-3019. doi:10.3864/j.issn.0578-1752.2019.17.009. (in Chinese)
[13]
郭相平, 郭枫, 刘展鹏, 郝树荣. 水分胁迫及复水对玉米光合速率及可溶性糖的影响. 玉米科学, 2008, 16(6): 68-70.
GUO X P, GUO F, LIU Z P, HAO S R. Effects of water stress and rewatering on photosynthetic rate and soluble sugar of maize. Journal of Maize Sciences, 2008, 16(6): 68-70. (in Chinese)
[14]
黄伊琦, 梁冠威, 吴友炉, 李银, 易慧琳, 刘晓洲, 陈笙, 谭广文. 干旱胁迫下6种抗蒸腾剂对角茎野牡丹的荧光调节作用. 浙江农业科学, 2022, 63(4): 748-750, 810.

doi: 10.16178/j.issn.0528-9017.20212817
HUANG Y Q, LIANG G W, WU Y L, LI Y, YI H L, LIU X Z, CHEN S, TAN G W. Study on the fluorescence regulation of six antitranspiration agents on Tibouchina granulosa under drought stress. Journal of Zhejiang Agricultural Sciences, 2022, 63(4): 748-750, 810. (in Chinese)
[15]
冯建灿, 张玉洁, 张秋娟, 李淑玲, 胡湛. 干旱胁迫与抗蒸腾剂对喜树几项生理指标及喜树碱含量的影响. 河南农业大学学报, 2002, 36(2): 138-142, 154.
FENG J C, ZHANG Y J, ZHANG Q J, LI S L, HU Z. The effects of drought stress and anti-transpiration agent treatment on some physiological indexes of Camptotheca acuminata and its camptothecin content. Journal of Henan Agricultural University, 2002, 36(2): 138-142, 154. (in Chinese)
[16]
张小雨, 张喜英. 抗蒸腾剂研究及其在农业中的应用. 中国生态农业学报, 2014, 22(8): 938-944.
ZHANG X Y, ZHANG X Y. Anti-transpirant studies and applications in agriculture. Chinese Journal of Eco-Agriculture, 2014, 22(8): 938-944. (in Chinese)
[17]
朴春红, 宝音巴特, 郭占全, 胡文河. 抗蒸腾剂对玉米主要叶片光合特性及生理特性的影响. 分子植物育种, 2017, 15(10): 4289-4293.
PIAO C H, BAOYIN BATE, GUO Z Q, HU W H. Effect of anti-transpirant on major leaf physiological and photosynthetic characteristics. Molecular Plant Breeding, 2017, 15(10): 4289-4293. (in Chinese)
[18]
李茂松, 李森, 张述义, 池宝亮. 灌浆期喷施新型FA抗蒸腾剂对冬小麦的生理调节作用研究. 中国农业科学, 2005, 38(4): 703-708.
LI M S, LI S, ZHANG S Y, CHI B L. Physiological effect of new FA anti-transpirant on winter wheat at ear filling stage. Scientia Agricultura Sinica, 2005, 38(4): 703-708. (in Chinese)
[19]
阴鹏. 反射型抗蒸腾剂喷洒浓度对大豆水分利用效率的影响研究[D]. 西安: 西安理工大学, 2021.
YIN P. Effect of spraying concentration of reflective anti-transpirant on water use efficiency of soybean[D]. Xi’an: Xi’an University of Technology, 2021. (in Chinese)
[20]
石岩, 刘冰雁, 曲柏宏. 抗蒸腾剂和光合产物积累对苹果梨叶片净光合速率日变化的影响. 延边大学农学学报, 2013, 35(2): 98-102.
SHI Y, LIU B Y, QU B H. Effect of net photosynthesis rate through spraying anti-transpiran and photoassimilation accumulation of Pingguoli leaves. Journal of Agricultural Science Yanbian University, 2013, 35(2): 98-102. (in Chinese)
[21]
PEREIRA S L, ALLEN G R, SMITH M, RAES D. Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 2015, 147: 4-20.

doi: 10.1016/j.agwat.2014.07.031
[22]
MILANOVIĆ V, CARDINALI F, FERROCINO I, BOBAN A, FRANCIOSA I, GAJDOŠ KLJUSURIĆ J, MUCALO A, OSIMANI A, AQUILANTI L, GAROFALO C, BUDIĆ-LETO I. Croatian white grape variety Maraština: First taste of its indigenous mycobiota. Food Research International, 2022, 162: 111917.

doi: 10.1016/j.foodres.2022.111917
[23]
李华, 王华, 袁春龙, 王树生. 葡萄酒工艺学. 北京: 科学出版社, 2007.
LI H, WANG H, YUAN C L, WANG S S. Oenology. Beijing: Science Press. 2007. (in Chinese)
[24]
CHENG X H, MA T T, WANG P P, LIANG Y Y, ZHANG J X, ZHANG A, CHEN Q Y, LI W P, GE Q, SUN X Y, FANG Y L. Foliar nitrogen application from veraison to preharvest improved flavonoids, fatty acids and aliphatic volatiles composition in grapes and wines. Food Research International, 2020, 137: 109566.

doi: 10.1016/j.foodres.2020.109566
[25]
张星星, 郭安鹊, 韩富亮, 张予林. UPLC快速测定葡萄酒中酚类物质的方法. 食品科学, 2016, 37(10): 128-133.

doi: 10.7506/spkx1002-6630-201610022
ZHANG X X, GUO A Q, HAN F L, ZHANG Y L. Fast determination of phenolics and polyphenolics in wine by ultra performance liquid chromatography. Food Science, 2016, 37(10): 128-133. (in Chinese)

doi: 10.7506/spkx1002-6630-201610022
[26]
VO G T, LIU Z Y, CHOU O, ZHONG B M, BARROW C J, DUNSHEA F R, SULERIA H A R. Screening of phenolic compounds in Australian grown grapes and their potential antioxidant activities. Food Bioscience, 2022, 47: 101644.

doi: 10.1016/j.fbio.2022.101644
[27]
WANG S B, WU H X, XU W T, MA X W, LI L, ZHAN R L. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of mango (Mangifera indica Linn.). IOP Conference Series: Materials Science and Engineering, 2019, 569(2): 022036.
[28]
李继东, 毕会涛, 王一涵, 王哲, 武应霞, 尚霄丽, 冯建灿. 薄膜型抗蒸腾剂对常温贮藏红富士苹果品质与生理的影响. 河南农业大学学报, 2010, 44(3): 286-289.
LI J D, BI H T, WANG Y H, WANG Z, WU Y X, SHANG X L, FENG J C. Study on the effect of film-forming anti-transpirant on the quality and physiology of apple under normal temperature storage. Journal of Henan Agricultural University, 2010, 44(3): 286-289. (in Chinese)
[29]
PASCUAL I, ANTOLÍN M C, GOICOECHEA N, IRIGOYEN J J, MORALES F. Grape berry transpiration influences ripening and must composition in cv. Tempranillo (Vitis vinifera L.). Physiologia Plantarum, 2022, 174(4): e13741.

doi: 10.1111/ppl.v174.4
[30]
ABDALLAH A M, BURKEY K O, MASHAHEET A M. Reduction of plant water consumption through anti-transpirants foliar application in tomato plants (Solanum lycopersicum L). Scientia Horticulturae, 2018, 235: 373-381.

doi: 10.1016/j.scienta.2018.03.005
[31]
DI VAIO C, MARALLO N, DI LORENZO R, PISCIOTTA A. Anti-transpirant effects on vine physiology, berry and wine composition of cv. aglianico (Vitis vinifera L.) grown in south Italy. Agronomy, 2019, 9(5): 244.
[32]
周晓明, 卢春生, 樊丁宇, 谢辉, 薛素琳. 新疆不同葡萄品种果实成熟期酸成分分析. 果树学报, 2012, 29(2): 188-192.
ZHOU X M, LU C S, FAN D Y, XIE H, XUE S L. Analysis on acid composition of different grape varieties during fruit maturation in Xinjiang. Journal of Fruit Science, 2012, 29(2): 188-192. (in Chinese)
[33]
SANTESTEBAN L G, MIRANDA C, ROYO J B. Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. Tempranillo. Agricultural Water Management, 2011, 98(7): 1171-1179.
[34]
SWEETMAN C, DELUC L G, CRAMER G R, FORD C M, SOOLE K L. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 2009, 70(11/12): 1329-1344.

doi: 10.1016/j.phytochem.2009.08.006
[35]
张世杰. 甘肃省嘉峪关地区酿酒葡萄成熟度多酚参数的确定研究[D]. 杨凌: 西北农林科技大学, 2014.
ZHANG S J. Research of grape polyphenols maturity parameters based on Gansu Jiayuguan region[D]. Yangling: Northwest A & F University, 2014. (in Chinese)
[36]
李凯, 商佳胤, 黄建全, 张娜, 王丹, 田淑芬. 调亏灌溉对玫瑰香葡萄与葡萄酒酚类物质的影响. 华北农学报, 2015, 30(S1): 500-506.

doi: 10.7668/hbnxb.2015.S1.090
LI K, SHANG J Y, HUANG J Q, ZHANG N, WANG D, TIAN S F. Effects of regulated deficit irrigation on phenolic composition of Muscat hamburg grape and wine. Acta Agriculturae Boreali-Sinica, 2015, 30(S1): 500-506. (in Chinese)

doi: 10.7668/hbnxb.2015.S1.090
[37]
杨腊. 刺葡萄果实和葡萄酒品质分析及缩合单宁涩感研究[D]. 杨凌: 西北农林科技大学, 2019.
YANG L. Quality analysis and astringency of condensed tannin of spine grape and wine[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[38]
张振文, 宁鹏飞, 张军贤, 艾丽丽, 王丽娜, 张小转, 惠竹梅. 葡萄酒缩合单宁测定方法的比较研究. 食品科学, 2012, 33(20): 233-237.
ZHANG Z W, NING P F, ZHANG J X, AI L L, WANG L N, ZHANG X Z, XI Z M. Comparison of two methods for the determination of condensed tannins in wine. Food Science, 2012, 33(20): 233-237. (in Chinese)
[39]
GAWEL R. Red wine astringency: A review. Australian Journal of Grape and Wine Research, 1998, 4(2): 74-95.
[40]
李婉平. 炎热气候条件下抗蒸腾剂对酿酒葡萄与葡萄酒质量的影响分析[D]. 杨凌: 西北农林科技大学, 2019.
LI W P. Analysis of the effect of anti-trianspirant on wine grape and wine quality in hot climate[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[41]
鞠延仑, 王童孟, 赵现方, 刘敏, 闵卓, 张军翔, 房玉林. 调亏灌溉对赤霞珠果实发育和籽中酚类的影响. 中外葡萄与葡萄酒, 2017(4): 18-24.
JU Y L, WANG T M, ZHAO X F, LIU M, MIN Z, ZHANG J X, FANG Y L. Effects of regulated deficit irrigation on fruit development and seed phenolic compounds of Cabernet Sauvignon. Sino-Overseas Grapevine & Wine, 2017(4): 18-24. (in Chinese)
[42]
胡宏远, 王振平. 干旱胁迫对赤霞珠葡萄叶片水分及叶绿素荧光参数的影响. 干旱区资源与环境, 2017, 31(4): 124-130.
HU H Y, WANG Z P. Effects of drought stress on leaf water content and chlorophyll fluorescence parameters of Cabernet Sauvignon. Journal of Arid Land Resources and Environment, 2017, 31(4): 124-130. (in Chinese)
[43]
刘桂林, 杜鸿云, 王艳, 娄丽娜. 美国红栌叶片呈色差异的研究. 西北林学院学报, 2008, 23(4): 42-44, 51.
LIU G L, DU H Y, WANG Y, LOU L N. Comparison of physiological characteristice between the leaves with different colors of Cotinus coggygria Royal Purple. Journal of Northwest Forestry University, 2008, 23(4): 42-44, 51. (in Chinese)
[44]
聂庆娟, 史宝胜, 孟朝, 刘冬云, 娄丽娜. 不同叶色红栌叶片中色素含量、酶活性及内含物差异的研究. 植物研究, 2008, 28(5): 599-602.

doi: 10.7525/j.issn.1673-5102.2008.05.020
NIE Q J, SHI B S, MENG Z, LIU D Y, LOU L N. The enzyme activities, pigment and inclusion contents in different leaves color of Cotinus coggygria ‘Royal Purple’ in autumn. Bulletin of Botanical Research, 2008, 28(5): 599-602. (in Chinese)
[45]
韩伟伟, 韩宁, 姜凯凯, 杨沫, 赵新节. 成膜型抗蒸腾剂对‘赤霞珠’葡萄成熟进程的影响. 园艺学报, 2018, 45(3): 447-456.

doi: 10.16420/j.issn.0513-353x.2017-0575
HAN W W, HAN N, JIANG K K, YANG M, ZHAO X J. The influence of the film-forming anti-transpirant on the ripening process of Vitis vinifera ‘Cabernet Sauvignon’. Acta Horticulturae Sinica, 2018, 45(3): 447-456. (in Chinese)
[46]
CABODEVILLA A, MORALES F, PASCUAL I. Bunch transpiration is involved in the hastening of grape berry ripening under elevated temperature and low relative humidity conditions. Plant Physiology and Biochemistry, 2024, 206: 108258.

doi: 10.1016/j.plaphy.2023.108258
[47]
JAAKOLA L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18(9): 477-483.

doi: 10.1016/j.tplants.2013.06.003 pmid: 23870661
[48]
王超群. 调亏灌溉与遮光处理对焉耆盆地梅鹿辄葡萄果实及葡萄酒品质的影响[D]. 乌鲁木齐: 新疆农业大学, 2019.
WANG C Q. Effects of regulated deficit irrigation and shading treatment on fruit and wine quality of merlot grape in Yanqi basin[D]. Urumqi: Xinjiang Agricultural University, 2019. (in Chinese)
[49]
白洁洁, 杨文莉, 王振平. 抗蒸腾剂对‘美乐’葡萄叶片生理指标及果实品质的影响. 中外葡萄与葡萄酒, 2018(5): 12-16, 21.
BAI J J, YANG W L, WANG Z P. Effects of transpiration resistant agent on leaf physiological indexes and berry quality of ‘Merlot’ grapevine. Sino-Overseas Grapevine & Wine, 2018(5): 12-16, 21. (in Chinese)
[1] CHU TianShuo, CHEN XiaoAn, ZHU JinJin, WANG Ce, LOU Wei. Effects of Regulated Deficit Irrigation on Growth, Yield and Quality of Gannan Navel Orange During Critical Fertility Period [J]. Scientia Agricultura Sinica, 2025, 58(24): 5247-5258.
[2] MuKang LUO,XuChao JIA,RuiFen ZHANG,Lei LIU,LiHong DONG,JianWei CHI,YaJuan BAI,MingWei ZHANG. Phenolic Content, Bioavailability and Antioxidant Activity of Carambola [J]. Scientia Agricultura Sinica, 2020, 53(7): 1459-1472.
[3] LI WanPing,LIU Min,WANG JieXing,YAO Heng,CHENG ZhengLong,DOU JunXia,ZHOU XiaoMing,FANG YuLin,SUN XiangYu. Influence of Anti-transpirant on Photosynthesis Characteristic and Qualities of Wines in Hot Climate [J]. Scientia Agricultura Sinica, 2019, 52(17): 3008-3019.
[4] LI Ya-Shan-1, LI Hua-1, 2 , 3 , WANG Hua-1, 2 , 3 , Nan Li-Jun-1 . Effects of Different Irrigation Treatments on the Growth and Fruit Quality of Himrod in Protected Cultivation [J]. Scientia Agricultura Sinica, 2014, 47(9): 1784-1792.
[5] FANG Yu-Lin, SUN Wei, WAN Li, HUI Zhu-Mei, LIU Xu, ZHANG Zhen-Wen. Effects of Regulated Deficit Irrigation (RDI) on Wine Grape Growth and Fruit Quality [J]. Scientia Agricultura Sinica, 2013, 46(13): 2730-2738.
[6] ZHAO Tian-hong,JIN Dong-yan,WANG Yan,CAO Ying
. Effects of Phenolic Compounds and Antioxidant Ability in Soybean Leaves Under O3 Stress
[J]. Scientia Agricultura Sinica, 2011, 44(4): 708-715 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!