Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 101-113.doi: 10.3864/j.issn.0578-1752.2026.01.008

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Alginate Oligosaccharides on Alleviating Atrazine Phytotoxicity in Tobacco

YANG KeXin1(), ZHANG Yong2, LI YanXiu1, XIE SiYao1, XUE Bo2, YANG ShaoJie2, SONG DeWei2, MA Qiang2, ZOU Ping1, LI Yang1, MA SiQi1,*(), JING ChangLiang1,*()   

  1. 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong
    2 Shandong Weifang Tobacco Company, Weifang 261000, Shandong
  • Received:2025-08-27 Accepted:2025-10-16 Online:2026-01-01 Published:2026-01-07
  • Contact: MA SiQi, JING ChangLiang

Abstract:

【Objective】The objective of this study is to explore the function and pathway of alginate oligosaccharides in alleviating atrazine pesticide residues in tobacco, develop new uses of alginate oligosaccharides as biostimulants, verify its potential in the field of crop protection, and to enrich green agricultural techniques. 【Method】This experiment was carried out at Jimo Experimental Base of Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, from March to June 2025. A pot experiment was conducted using the atrazine-sensitive tobacco cultivar YunYan 87 as the test material. Three treatments were established: atrazine + water (T1), atrazine + alginate oligosaccharides (T2), and an untreated control (CK). Atrazine was applied at a concentration of 3.35×10-3 mg·kg-1, while alginate oligosaccharides were 200 mg·L-1. Agronomic traits were recorded at 7, 14, and 28 d after treatment, and inhibition rates were calculated. In addition, leaf and rhizosphere soil samples were collected at 28 d for transcriptome and rhizosphere microbial community analyses.【Result】The results showed that 200 mg·L-1 alginate oligosaccharides could alleviate the inhibition of atrazine on tobacco growth: treatment for 7, 14, 28 d, the leaf length, leaf width, root length and plant weight of atrazine + alginate oligosaccharides (T2) were higher or significantly higher than those of atrazine + water (T1) treatment group. Moreover, after treatment with alginate oligosaccharides (T2), the photosynthetic rate of leaves was increased and the inhibition of atrazine on tobacco root development was alleviated. Compared with the atrazine + water (T1) treatment group, 6 784 genes were up-regulated and 5 792 genes were down-regulated after alginate oligosaccharides (T2) treatment. KEGG analysis showed that 17 metabolic pathways were significantly enriched. Among them, the highest enrichment factor was the metabolic pathway of photosynthesis-antenna proteins. The results were highly consistent with the physiological and biochemical determination results. In terms of rhizosphere microorganisms, alginate oligosaccharides treatment increased the richness and diversity of soil rhizosphere microbial communities, the microbial community structure was changed. Among them, Pseudolabrys with growth-promoting function and Flavisolibacter with pesticide degradation function were significantly enriched.【Conclusion】As a biostimulant, alginate oligosaccharide can effectively alleviate the phytotoxicity caused by atrazine residues. Its potential mechanism of action is mainly reflected in the following three aspects: alleviating the inhibition of atrazine on the morphological structure of tobacco; enhancing plant photosynthesis efficiency by up-regulating the expression of photosynthesis-antenna protein pathway genes; regulating the rhizosphere microenvironment to induce the directional enrichment of beneficial microorganisms.

Key words: alginate oligosaccharides, tobacco, atrazine, pesticide residue

Table 1

Test treatment and numbering"

编号
Numbering
处理
Treatment
CK 清水Water
T1 莠去津Atrazine+清水Water
T2 莠去津Atrazine+褐藻寡糖Alginate oligosaccharides

Fig. 1

Comparison of agronomic traits under different treatments Different lowercase letters on the bars indicate significant differences (P<0.05). The error bar indicates standard error"

Table 2

Inhibition rate of leaf length and leaf width under different treatments (%)"

指标
Indicator
处理Treatment 7 d 14 d 28 d
叶长
Leaf length
T1 18.94 27.07 41.19
T2 10.07 14.27 23.34
叶宽
Leaf width
T1 12.64 52.51 40.00
T2 7.20 13.14 17.58

Fig. 2

Growth phenotype under different treatments"

Table 3

Effects of alginate oligosaccharides on photosynthetic parameters of tobacco"

处理
Treatment
净光合速率
Pn (μmol·m-2·s-1)
胞间CO2浓度
Ci (μmol·mol-1)
蒸腾速率
Tr (μmol·m-2·s-1)
气孔导度
Gs (mol·m-2·s-1)
CK 0.77±0.12b 325.60±26.14a 443.00±54.59b 0.12±0.01a
T1 0.46±0.18b 301.43±9.01a 324.30±30.95b 0.11±0a
T2 1.57±0.21a 306.07±40.32a 846.20±95.07a 0.31±0.13a

Fig. 3

Root development phenotype under different treatments"

Table 4

Effects of alginate oligosaccharides on tobacco root parameters"

处理
Treatment
总根长
Total root length (cm)
总表面积
Total surface area (cm2)
平均直径
Average diameter (mm)
根系总体积
Root total volume (cm3)
CK 479.94±18.54a 123.08±8.42a 0.82±0.08a 2.56±0.41a
T1 121.40±18.31c 24.87±4.41c 0.65±0.03b 0.41±0.08b
T2 242.00±7.00b 46.54±2.24b 0.61±0.01b 0.71±0.05b

Fig. 4

Volcano map of differential genes"

Fig. 5

GO annotation analysis of differentially expressed genes"

Fig. 6

KEGG enrichment analysis of differentially expressed genes"

Fig. 7

Regulation of alginate oligosaccharides on photosynthesis-antenna protein genes"

Table 5

Microbial community richness and diversity under different treatments"

处理
Treatment
ACE指数
ACE index
Chao指数
Chao index
香农指数
Shannon index
覆盖率
Coverage (%)
T1 1405.95±219.31a 1394.35±213.42a 6.16±0.27a 99.87±0.12
T2 1838.62±171.67a 1818.77±163.93a 6.59±0.15a 99.79±0.09

Fig. 8

Species difference analysis of microbial community under alginate oligosaccharides treatment"

[1]
李雪, 孔祥清, 刘明, 金永玲, 郭永霞, 周园园, 孙明雨. 酿造用高粱土壤处理除草剂筛选. 植物保护, 2022, 48(2): 289-295.
LI X, KONG X Q, LIU M, JIN Y L, GUO Y X, ZHOU Y Y, SUN M Y. Selection of pre-emergence herbicides for brewing sorghum. Plant Protection, 2022, 48(2): 289-295. (in Chinese)
[2]
SUN C, XU Y F, HU N T, MA J, SUN S Q, CAO W X, KLOBUČAR G, HU C W, ZHAO Y J. To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere, 2020, 244: 125514.

doi: 10.1016/j.chemosphere.2019.125514
[3]
LIU Y F, FAN X X, ZHANG T, HE W Y, SONG F Q. Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China. Environmental Pollution, 2020, 262: 114264.

doi: 10.1016/j.envpol.2020.114264
[4]
马迪, 高熙韧, 孟真, 王燊, 于飞, 李春杰, 滕春红. 苹果酸改性生物炭对水体中莠去津的吸附性能. 农业环境科学学报, https://link.cnki.net/urlid/12.1347.S.20250408.1318.004.
MA D, GAO X R, MENG Z, WANG S, YU F, LI C J, TENG C H. Adsorption performance of malic acid-modified biochar on atrazine in water bodies. Journal of Agro-Environment Science, https://link.cnki.net/urlid/12.1347.S.20250408.1318.004. (in Chinese)
[5]
LIU L, XIANG Y, LIU J L, WU G B, REN Y G, CHEN Z B, ZHANG Y P. Microbial-driven soil remediation: Comparative analysis of seven microbial agents on alachlor degradation rates and tobacco phytotoxicity recovery. Environmental Technology & Innovation, 2025, 39: 104264.
[6]
FU W T, ZHENG X Y, CHEN X C, WANG W J, LIU A R, JI J, WANG G, GUAN C F. The potential roles of carotenoids in enhancing phytoremediation of bisphenol A contaminated soil by promoting plant physiology and modulating rhizobacterial community of tobacco. Chemosphere, 2023, 316: 137807.

doi: 10.1016/j.chemosphere.2023.137807
[7]
彭梁睿. 烟田高风险除草剂的降解特征及消减技术研究[D]. 北京: 中国农业科学院, 2022.
PENG L R. Study on degradation characteristics and subtractive technique of high-risk herbicides in tobacco field[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022. (in Chinese)
[8]
LIU S, CHEN Z L, SHEN Y, CHEN H, LI Z X, CAI L M, YANG H B, ZHU C S, SHEN J M, KANG J, YAN P W. Simultaneous regeneration of activated carbon and removal of adsorbed atrazine by ozonation process: From laboratory scale to pilot studies. Water Research, 2024, 251: 121113.

doi: 10.1016/j.watres.2024.121113
[9]
SHI Y B, WANG X B, LIU X F, LING C C, SHEN W J, ZHANG L Z. Visible light promoted Fe3S4 Fenton oxidation of atrazine. Applied Catalysis B: Environmental, 2020, 277: 119229.

doi: 10.1016/j.apcatb.2020.119229
[10]
ZHANG N, XIE F, GUO Q N, YANG H. Environmental disappearance of acetochlor and its bioavailability to weed: A general prototype for reduced herbicide application instruction. Chemosphere, 2021, 265: 129108.

doi: 10.1016/j.chemosphere.2020.129108
[11]
XU X M, CHEN W M, ZONG S Y, REN X, LIU D. Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability. Journal of Hazardous Materials, 2019, 377: 62-69.

doi: 10.1016/j.jhazmat.2019.05.029
[12]
HOFFMANN O L. Inhibition of auxin effects by 2,4,6- trtichlorophenoxyacetic acid. Plant Physiology, 1953, 28(4): 622-628.

doi: 10.1104/pp.28.4.622
[13]
朱晓明. 烟草莠去津和硝磺草酮药害缓解措施研究[D]. 北京: 中国农业科学院, 2020.
ZHU X M. Study on measures of mitigating tobacco atrazine and mesotrione phytotoxicity[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[14]
方丽, 李建波. 赤霉素、芸苔素对小麦上甲咪唑烟酸的解毒作用. 农业科技通讯, 2020(11): 87-91.
FANG L, LI J B. Detoxification effect of gibberellin and brassinolide on imazethapyr nicotinic acid in wheat. Bulletin of Agricultural Science and Technology, 2020(11): 87-91. (in Chinese)
[15]
黄嘉鑫. 褪黑素与水杨酸互作缓解甜玉米烟嘧磺隆药害的生理机制[D]. 沈阳: 沈阳农业大学, 2024.
HUANG J X. Physiological mechanism of interaction between melatonin and salicylic acid for mitigating nicosulfuron toxicity in sweet corn seedling[D]. Shenyang: Shenyang Agricultural University, 2024. (in Chinese)
[16]
陈雪婷, 程璐, 李嘉伦, 张益先, 王绍刚. 2%氨基寡糖素对噻吩磺隆、灭草松、氟磺胺草醚大豆药害的缓解效果. 现代化农业, 2024(8): 11-14.
CHEN X T, CHENG L, LI J L, ZHANG Y X, WANG S G. Alleviating effect of 2% amino-oligosaccharin on soybean phytotoxicity induced by thifensulfuron-methyl, bentazone and fomesafen. Modernizing Agriculture, 2024(8): 11-14. (in Chinese)
[17]
刘变娥, 遇璐, 丑靖宇. 壳寡糖浸种对玉米戊唑醇种衣剂低温药害的缓解效果. 农药, 2021, 60(1): 23-27.
LIU B E, YU L, CHOU J Y. Mitigation effects of chitooligosaccharide on phytotoxicity of seed coating agent of tebuconazole to corn under stress of low temperature. Agrochemicals, 2021, 60(1): 23-27. (in Chinese)
[18]
GUO Y L, HUANG G M, WEI Z X, FENG T Y, ZHANG K, ZHANG M C, LI Z H, ZHOU Y Y, DUAN L S. Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages. Agricultural Water Management, 2023, 279: 108185.

doi: 10.1016/j.agwat.2023.108185
[19]
杨锦. 褐藻降解菌株的筛选、鉴定及褐藻寡糖提高菜心抗旱性的机制[D]. 广州: 华南农业大学, 2021.
[46]
MÁTÉ R, KUTASI J, BATA-VIDÁCS I, KOSZTIK J, KUKOLYA J, TÓTH E, BÓKA K, TÁNCSICS A, KOVÁCS G, NAGY I, TÓTH Á. Flavobacterium hungaricum sp. nov. a novel soil inhabitant, cellulolytic bacterium isolated from plough field. Archives of Microbiology, 2022, 204(6): 301.

doi: 10.1007/s00203-022-02905-x
[45]
ZHOU X, ZHANG X, MA C, WU F, JIN X, DINI-ANDREOTE F, WEI Z. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. Chemosphere, 2022, 307(4): 136138.

doi: 10.1016/j.chemosphere.2022.136138
[44]
MA L Y, WANG Y, GE J, SHENG H J, FENG F Y, LI Y, LI M, YU X Y. Mechanism of the effect of Pseudomonas sp. AT 2 on the growth of rice under atrazine stress. Chinese Journal of Pesticide Science, 2024, 26(1): 140-148. (in Chinese)
马丽雅, 王亚, 葛静, 生弘杰, 冯发运, 李勇, 李梅, 余向阳. 降解菌Pseudomonas sp. AT2对莠去津胁迫下水稻生长的影响机制. 农药学学报, 2024, 26(1): 140-148.
[43]
PAN S W, LEI Z H, WU Y X, YANG L J, HE M P, CAO S X. The role of root exudates in degradation of OCPs in rhizosphere soils. Journal of Yunnan University (Natural Sciences Edition), 2017, 39(4): 669-676. (in Chinese)
潘声旺, 雷志华, 吴云霄, 杨丽娟, 何茂萍, 曹生宪. 根系分泌物在有机氯农药残留降解过程中的作用. 云南大学学报(自然科学版), 2017, 39(4): 669-676.
[42]
MAHARANA B, MAHALLE S, BHENDE R, DAFALE N A. Repercussions of prolonged pesticide use on natural soil microbiome dynamics using metagenomics approach. Applied Biochemistry and Biotechnology, 2025, 197(1): 73-93.

doi: 10.1007/s12010-024-05033-y
[41]
TRIVEDI P, LEACH J E, TRINGE S G, SA T, SINGH B K. Plant-microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 2020, 18(11): 607-621.

doi: 10.1038/s41579-020-0412-1
[40]
LI J X, LI Y, TENG X T, LI C H, LI H, LU H. Transcriptome analysis of gene expression patterns of Populus tomentosa in response to oxidative stress. Botanical Research, 2018, 7(2): 10. (in Chinese)
李嘉鑫, 李盈, 滕晓瞳, 李聪慧, 李慧, 陆海. 转录组分析毛白杨响应氧化胁迫的基因表达模式变化. 植物学研究, 2018, 7(2): 10.
[39]
GAN L, LAN C Z, RUAN M H, LIU X F, HUANG W Q, DAI Y L, YANG X J. Transcriptome analysis of resistant and susceptible inbred line of maize (Zea mays) in response to early infection of Cochliobolus heterostrophus. Journal of Agricultural Biotechnology, 2023, 31(3): 460-474. (in Chinese)
甘林, 兰成忠, 阮妙鸿, 刘晓菲, 黄伟群, 代玉立, 杨秀娟. 抗感玉米自交系对小斑病菌早期侵染反应的转录组分析. 农业生物技术学报, 2023, 31(3): 460-474.
[38]
LI L. The functional mechanism of rice heat shock transcription factor OsHsf18 on regulating plant resistance against biotic and abiotic stresses[D]. Changsha: Hunan Agricultural University, 2018. (in Chinese)
李丽. 水稻热激转录因子OsHsf18调控植物抗生物胁迫与非生物胁迫的功能机制研究[D]. 长沙: 湖南农业大学, 2018.
[37]
AKBAR A, HAN B, KHAN A, FENG C, ULLAH A, KHAN A S, HE L, YANG X. A transcriptomic study reveals salt stress alleviation in cotton plants upon salt tolerant PGPR inoculation. Environmental and Experimental Botany, 2022, 200: 104928.

doi: 10.1016/j.envexpbot.2022.104928
[36]
LIU Y K, LIU L X, QI J H, DANG P Y, XIA T S. Cadmium activates ZmMPK3-1 and ZmMPK6-1 via induction of reactive oxygen species in maize roots. Biochemical and Biophysical Research Communications, 2019, 516(3): 747-752.

doi: 10.1016/j.bbrc.2019.06.116
[35]
LIN H H, KING Y C, LI Y C, LIN C C, CHEN Y C, LIN J S, JENG S T. The p38-like MAP kinase modulated H2O2 accumulation in wounding signaling pathways of sweet potato. Plant Science, 2019, 280: 305-313.

doi: 10.1016/j.plantsci.2018.12.011
[34]
ZHANG X F, WANG B B, XU Y, ZHANG W K, ZHAO H, ZHANG K, QIAO Y K, LI G L. The transcriptome analysis of wild soybean under drought stress simulated by PEG. Soybean Science, 2018, 37(5): 681-689. (in Chinese)
张小芳, 王冰冰, 徐燕, 张炜坤, 赵恢, 张锴, 乔亚科, 李桂兰. PEG模拟干旱胁迫下野生大豆转录组分析. 大豆科学, 2018, 37(5): 681-689.
[33]
LI X Y, ZHOU J W, YAN Z Y, CHEN X. Sequencing and analysis of transcriptome to reveal regulation of gene expression in Salvia miltiorrhiza under moderate drought stress. Chinese Traditional and Herbal Drugs, 2020, 51(6): 1600-1608. (in Chinese)
李晓艳, 周敬雯, 严铸云, 陈新. 基于转录组测序揭示适度干旱胁迫对丹参基因表达的调控. 中草药, 2020, 51(6): 1600-1608.
[32]
HUA S, ZHANG Y, YU H, LIN B, DING H, ZHANG D, REN Y, FANG Z. Paclobutrazol application effects on plant height, seed yield and carbohydrate metabolism in canola. International Journal of Agriculture and Biology, 2014, 16(3): 471-479.
[31]
NI B R, PALLARDY S G. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms. Plant Physiology, 1992, 99(4): 1502-1508.

doi: 10.1104/pp.99.4.1502 pmid: 16669065
[30]
ZHANG Y, YIN H, ZHAO X, WANG W, DU Y, HE A, SUN K. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydrate Polymers, 2014, 113: 446-454.

doi: 10.1016/j.carbpol.2014.06.079
[29]
XU X, IWAMOTO Y, KITAMURA Y, ODA T, MURAMATSU T. Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants. Bioscience, Biotechnology, and Biochemistry, 2003, 67(9): 2022-2025.

pmid: 14519996
[28]
FENG C S, LIANG Z Y, ZHANG X X, DU H Q, LOU Z G, LIU L. Screening and evaluation of the tolerance of atrazine to alfalfa germplasms resources during germination period. Seed, 2023, 42(10): 8-15. (in Chinese)
冯长松, 梁志妍, 张晓霞, 杜红旗, 娄治国, 刘磊. 萌发期耐莠去津苜蓿种质资源筛选及评价. 种子, 2023, 42(10): 8-15.
[27]
ZHAO X Y, PENG L R, LI C B, CHEN J G, MU T T, XIAO Z P, ZHANG L, ZHANG J G, GAO J Y. Study on the residual degradation of atrazine and damage threshold of tobacco in typical yellow soil tobacco fields. Journal of Anhui Agricultural Sciences, 2024, 52(5): 85-87, 131. (in Chinese)
赵旭影, 彭梁睿, 李彩斌, 陈建国, 母婷婷, 肖志鹏, 张龙, 张继光, 郜军艺. 典型黄壤烟田莠去津残留降解及烟草致害阈值研究. 安徽农业科学, 2024, 52(5): 85-87, 131.
[26]
LI Y Q, LI Y, XU L L, GUO J Z, ZHOU S T, WANG L Y. Effects of different microbial fertilizer treatments on the rhizospheric microbial community structure of Andrographis paniculata. Soil and Fertilizer Sciences in China, 2025(4): 63-74. (in Chinese)
李永芹, 李艳, 许乐乐, 郭锦忠, 周思彤, 王锂韫. 不同微生物肥料处理对穿心莲根际微生物群落结构的影响. 中国土壤与肥料, 2025(4): 63-74.
[25]
LI Y, WU Y H, GUAN E S, WANG D H, WANG X L, SUN Y G, SHI Y, WANG C D, ZHANG Y. Adaptive mechanisms of plant type and leaf photosynthetic function of tobacco in field to close planting. Jiangsu Agricultural Sciences, 2022, 50(10): 58-66. (in Chinese)
李杨, 吴元华, 管恩森, 王大海, 王晓琳, 孙延国, 石屹, 王程栋, 张彦. 田间烟草株型和叶片光合功能对密植的适应机制. 江苏农业科学, 2022, 50(10): 58-66.
[24]
State Tobacco Monopoly Bureau of the People’s Republic of China. Grade and investigation method of herbicide phytotoxicity in tobacco: YC/T 526—2015[S]. Beijing: Standards Press of China, (2015-02-15) [2025-08-27]. (in Chinese)
国家烟草专卖局. 烟草除草剂药害分级及调查方法: YC/T 526— 2015[S]. 北京: 中国标准出版社, (2015-02-15) [2025-08-27].
[23]
State Tobacco Monopoly Bureau of the People’s Republic of China. Investigating and measuring methods of agronomical character of tobacco: YC/T 142—2010[S]. Beijing: Standards Press of China, (2010-05-20) [2025-08-27]. (in Chinese)
国家烟草专卖局. 烟草农艺性状调查测量方法: YC/T 142— 2010[S]. 北京: 中国标准出版社, (2010-05-20) [2025-08-27].
[22]
HAO W B, LI L C, HAN Y, TANG M, FENG X J, ZHANG G B, WAN S Q. Study of critical concentration and symptoms in tobacco phytotoxicity caused by six soil residual herbicides. Guangdong Agricultural Sciences, 2013, 40(9): 80-82, 89. (in Chinese)
郝文波, 李丽春, 韩云, 唐明, 冯秀杰, 张国宾, 万树青. 6种长效除草剂土壤残留致烟草药害症状及其致害临界值. 广东农业科学, 2013, 40(9): 80-82, 89.
[21]
HU J, PENG S H, ZHANG Y Q, WEI J Q, MAO J L, QIU J, HU Y L, HOU L J, YE Q. Effects of algal oligosaccharides on soil-nutrients, wheat-growth and rhizosphere microbial diversity. Molecular Plant Breeding, https://link.cnki.net/urlid/46.1068.S.20240220.1347.009. (in Chinese)
胡静, 彭守华, 张玉琴, 尉继强, 毛积磊, 邱杰, 胡怡林, 侯丽娟, 叶全. 褐藻寡糖对土壤养分、小麦生长以及根际微生物多样性的影响. 分子植物育种, https://link.cnki.net/urlid/46.1068.S.20240220.1347.009.
[20]
SUN L, CHEN C L, ZHONG Z H, YANG J C, LIU K, LAN X Y, REN C G, QIN S, ZHAO H, LIU Z Y. Effects of brown algae oligosaccharides on seed germination and salt resistance of Suaeda heteroptera. Molecular Plant Breeding, 2023, 21(8): 2746-2753. (in Chinese)
孙林, 陈春琳, 钟志海, 杨剑超, 刘凯, 兰翔宇, 任承钢, 秦松, 赵辉, 刘正一. 褐藻寡糖对翅碱蓬种子萌发及抗盐胁迫能力的影响. 分子植物育种, 2023, 21(8): 2746-2753.
[19]
YANG J. Screening and identification of brown-algae-degrading bacterium and the mechanism of alginate oligosaccharide on enhancing drought-resistance of Chinese flowering cabbage[D]. Guangzhou: South China Agricultural University, 2021. (in Chinese)
[1] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[2] CHEN JuanNi, CHEN PinLu, LI Yu, XIE MengXiao, LI XinBei, DING Wei. Mechanism of Tobacco Resistance to Bacterial Wilt Induced by Magnesium Oxide Nanoparticles [J]. Scientia Agricultura Sinica, 2025, 58(16): 3327-3344.
[3] ZHAO LinLin, HE YuXi, PENG JieLi, WANG Xu, MA Jia, ZHANG XiuMin, HU Dong. Streptomyces TOR3209 and Its Volatile Organic Compounds Enhance Tobacco Resistance to Fusarium equiseti [J]. Scientia Agricultura Sinica, 2025, 58(11): 2162-2175.
[4] PENG ZhiXin, ZHANG XiFen, HAN XiaoBin, SI GuoDong, XU KangWen, ZHANG ChengSheng. Effect of Fatty Acid Natural Product 2E, 4E-Decadienoic Acid on Tobacco Rhizosphere Microbial Communities [J]. Scientia Agricultura Sinica, 2024, 57(18): 3601-3611.
[5] GAO XiaoXiao, TU LiQin, YANG Liu, LIU YaNan, GAO DanNa, SUN Feng, LI Shuo, ZHANG SongBai, JI YingHua. Construction of an Infectious Clone of Tobacco Mild Green Mosaic Virus Isolate Infecting Pepper from Jiangsu Based on Genomic Clone [J]. Scientia Agricultura Sinica, 2023, 56(8): 1494-1502.
[6] WANG Jin, LIU YanFang, LIU WenWen, WANG YaQi, SONG ShiYang, ZHANG XingZi, LI FengXia. COXⅡ Functional Analysis in Tobacco sua-CMS Line [J]. Scientia Agricultura Sinica, 2023, 56(16): 3077-3087.
[7] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[10] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[11] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[12] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[13] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[14] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[15] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!