Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3077-3087.doi: 10.3864/j.issn.0578-1752.2023.16.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

COXⅡ Functional Analysis in Tobacco sua-CMS Line

WANG Jin1,2(), LIU YanFang1, LIU WenWen3, WANG YaQi1,2, SONG ShiYang1,2, ZHANG XingZi1,2, LI FengXia1()   

  1. 1 Institute of Tobbcco Research of Chinese Academy of Agricultural Sciences, Qingdao 266100, Shandong
    2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
    3 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, Shandong
  • Received:2023-02-16 Accepted:2023-05-26 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】Cytoplasmic male sterility (CMS) is controlled by the cytoplasmic genome, mainly the mitochondrial genome, which plays an important role in breeding and production of hybrids. Sterile lines and hybrids are the main types of tobacco cultivation in China, accounting for more than 80% of the total tobacco cultivation area. The sterile type of tobacco in China is sua-CMS, which is also the only sterile type of tobacco production, but the control gene and sterility mechanism of sua-CMS are not clear. COXⅡ is the second subunit of cytochrome oxidase (COX), encoded by the mitochondrial genome. Nucleotide base variants occur at the terminal of the COXⅡ in sua-CMS lines, which resulted in the replacement of the C-terminal of COXⅡ Thr257 by Ser. The function analysis of COXⅡ in sua-CMS tobacco provides a foundation for the elucidation of the molecular mechanism of sterility in tobacco.【Method】In this study, four sets of sua-CMS lines and fertile controls were used as materials, and RNA blot hybridization and qRT-PCR methods were used to analyze the transcript and gene expression of COXⅡ between sua-CMS lines and fertile controls, and Western blot and COX enzyme activity experiments analyzed COX protein expression and COX enzyme activity, and ATP content were measured. The COXⅡ of fertile tobacco was overexpressed in sua-CMS line, and the effects of COXⅡ overexpression on COXⅡ expression, COX enzyme activity, ATP content and stamens development of tobacco were studied.【Result】COXⅡ multi-sequence alignment showed that Thr257 at C-terminal was highly conserved between species. Expression analysis showed that the COXⅡ transcript in sua-CMS line was significantly lower than that of the fertile control, and quantitative expression of four sets of sua-CMS lines and fertile controls showed that the expression amount of COXⅡ in sua-CMS lines was only 0.3%-0.4% of the fertile controls, the COX protein abundances and enzyme activity were significantly lower than that of the fertile control, and the ATP content of sua-CMS line was 52% of that of the fertile control. When COXⅡ was overexpressed in sua-CMS line, the expression levels of COXⅡ in transgenic plants increased by up to 171 times, the COX enzyme activity increased by 70%, the ATP content increased by 90%. However, all indicators including COXⅡ expression levels, COX enzyme activity and ATP content in transgenic plants were lower than those of fertile tobacco. We also observed significant changes in anther morphology in transgenic plants, and the differentiation of the anther wall appeared, but there was no pollen grains in the anthers.【Conclusion】This study shows that the mutant COXⅡ of sua-CMS line affects COX function, which is a main reason of anther energy deficiency, and it is also an important factor affecting the development of anthers.

Key words: tobacco, cytoplasmic male sterility, COXⅡ, functional identification

Table 1

sua-CMS tobacco sterile lines and fertile controls"

材料分组
Material set
材料名称
Material name
类型
Type
育性
Fertility
MS中烟100 MS ZY100 sua-CMS不育系sua-CMS line 不育Sterile
中烟100 ZY100 保持系Maintainer line 可育Fertile
MS云烟87 MS YY87 sua-CMS不育系sua-CMS line 不育Sterile
云烟87 YY87 保持系Maintainer line 可育Fertile
MS中烟300 MS ZY300 sua-CMS不育系sua-CMS line 不育Sterile
中烟300 ZY300 保持系Maintainer line 可育Fertile
中烟202 ZY202 sua-CMS杂交种sua-CMS hybrid 不育Sterile
中烟98 ZY98 可育亲本Fertile parent 可育Fertile

Table 2

The primer sequences in this study"

引物
Primer
正向引物
F-Primer (5′-3′)
反向引物
R-Primer (5′-3′)
N-COXⅡ ATGATTGTTCTAGAATGGCTATTC TTAAGCTTCCCCGGTTTGTG
N-Actin CTATTCTCCGCTTTGGACTTGGCA AGGACCTCAGGACAACGGAAACG
Actin CAAGGAAATCACCGCTTTGG AAGGGATGCGAGGATGGA
qCOXⅡ TGTGATGCTGTACCTGGTCG TAAGCTTCCCCGGTTTGTGG
AP3 TATGACCATGATTACGAATTCCAGTAACTGTGGCCAACTTAGTTTTG GACGTAGTGAAAGCATATTCTTCTCTCTTTG
MTS CAAAGAGAGAAGAATATGCTTTCACTACGT CCGAATACTCATAAGACCCTCTTTAGCACC
COXⅡ GGTGCTAAAGAGGGTCTTATGAGTATTCGG ATTCTGGTGTGTGCGCAATG
P ATTCTGGTGTGTGCGCAATG

Fig. 1

COXⅡ multiple sequence alignment"

Fig. 2

Analysis of COXⅡ gene expression A: RNA gel-blotting of COXII in floral buds of sua-CMS line and fertile control; B: Quantitative expression of COXII in floral buds of four sets of sua-CMS tobacco and fertile control; C: Quantitative expression of COXII in smal buds of four sets of sua-CMS tobacco and fertile control; D: Expression analysis of COXII in different organs and buds at different developmental stages"

Fig. 3

COX protein expression and enzyme activity of sterile line and maintainer line at different stages of bud A: Western blotting analysis of COX of MS ZY100 and ZY100; B: Analysis of enzymatic activity of complex Ⅳ in floral bud and small bud of different fertility; C: Analysis of ATP content in floral bud and small bud of different fertility. *significants P<0.05, ***significants P<0.001"

Fig. 4

Construction of COXⅡ overexpression vector A: A schematic diagram of the chimeric gene AP3::MTS-COXII; B: Fragment amplification in vector construction"

Fig. 5

Analysis of COXⅡ expression of transgenic materials"

Fig. 6

COX enzyme activity and ATP content of transgenic plants A: COX enzyme activity of transgenic plants; B: ATP content of transgenic plants"

Fig. 7

Anthers development of transgenic plants A: Anther morphology of MS ZY100; B: Anther structure of MS ZY100; C: Pollen fluorescence staining of ZY100; D: Anther morphology of OE-4; E: Anther structure of OE-4; F: Pollen fluorescence staining of OE-4"

[1]
CHEN L T, LIU Y G. Male sterility and fertility restoration in crops. Annual Review of Plant Biology, 2014, 65: 579-606.

doi: 10.1146/annurev-arplant-050213-040119 pmid: 24313845
[2]
YANG F, ZHANG J J, LIU Q E, LIU H, ZHOU Y H, YANG W Y, MA W J. Improvement and re-evolution of tetraploid wheat for global environmental challenge and diversity consumption demand. International Journal of Molecular Sciences, 2022, 23(4): 2206.

doi: 10.3390/ijms23042206
[3]
TANG H W, ZHENG X M, LI C L, XIE X R, CHEN Y L, CHEN L T, ZHAO X C, ZHENG H Q, ZHOU J J, YE S, GUO J X, LIU Y G. Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Research, 2017, 27(1): 130-146.

doi: 10.1038/cr.2016.115 pmid: 27725674
[4]
HOWAD W, KEMPKEN F. Cell type-specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(20): 11090-11095.
[5]
AKAGI H, SAKAMOTO M, SHINJYO C, SHIMADA H, FUJIMURA T. A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Current Genetics, 1994, 25(1): 52-58.

pmid: 7915966
[6]
PRING D, TANG H, HOWAD W, KEMPKEN F. A unique two-gene gametophytic male sterility system in sorghum involving a possible role of RNA editing in fertility restoration. Journal of Heredity, 1999, 90(3): 386-393.

pmid: 10355123
[7]
IWABUCHI M, KYOZUKA J, SHIMAMOTO K. Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. The EMBO Journal, 1993, 12(4): 1437-1446.

doi: 10.1002/embj.1993.12.issue-4
[8]
NOWAK C, KÜCK U. RNA editing of the mitochondrial atp9 transcript from wheat. Nucleic Acids Research. 1990, 18(23): 7164.

pmid: 1702206
[9]
HERNOULD M, SUHARSONO S, LITVAK S, ARAYA A, MOURAS A. Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(6): 2370-2374.
[10]
GALLAGHER L J, BETZ S K, CHASE C D. Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize. Current Genetics, 2002, 42(3): 179-184.

doi: 10.1007/s00294-002-0344-5 pmid: 12491012
[11]
WEI L, YAN Z X, DING Y. Mitochondrial RNA editing of F0-ATPase subunit 9 gene (atp9) transcripts of Yunnan purple rice cytoplasmic male sterile line and its maintainer line. Acta Physiologiae Plantarum, 2008, 30(5): 657-662.

doi: 10.1007/s11738-008-0162-6
[12]
DUCOS E, TOUZET P, BOUTRY M. The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. The Plant Journal, 2001, 26(2): 171-180.

doi: 10.1046/j.1365-313x.2001.01017.x
[13]
SABAR M, DE PAEPE R, DE KOUCHKOVSKY Y. Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiology, 2000, 124(3): 1239-1250.

doi: 10.1104/pp.124.3.1239
[14]
PICCOLI C, SCRIMA R, BOFFOLI D, CAPITANIO N. Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. The Biochemical Journal, 2006, 396(3): 573-583.

doi: 10.1042/BJ20060077
[15]
VILLANI G, ATTARDI G. In vivo measurements of respiration control by cytochrome c oxidase and in situ analysis of oxidative phosphorylation. Methods in Cell Biology, 2001, 65: 119-131.
[16]
HELLING S, HÜTTEMANN M, RAMZAN R, KIM S H, LEE I, MÜLLER T, LANGENFELD E, MEYER H E, KADENBACH B, VOGT S, MARCUS K. Multiple phosphorylations of cytochrome c oxidase and their functions. Proteomics, 2012, 12(7): 950-959.

doi: 10.1002/pmic.201100618 pmid: 22522801
[17]
WANGGOU S Y, JIANG X J, LI Q Y, ZHANG L H, LIU D Y, LI G F, FENG X L, LIU W D, ZHU B, HUANG W, SHI J A, YUAN X R, REN C P. HESRG: A novel biomarker for intracranial germinoma and embryonal carcinoma. Journal of Neuro-Oncology, 2012, 106(2): 251-259.

doi: 10.1007/s11060-011-0673-7 pmid: 21861197
[18]
KADENBACH B, ARNOLD S, LEE I, HÜTTEMANN M. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochimica et Biophysica Acta, 2004, 1655: 400-408.

doi: 10.1016/j.bbabio.2003.06.005 pmid: 15100056
[19]
PANG L J, QIU T, CAO X, WAN M. Apoptotic role of TGF-β mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction. Experimental Cell Research, 2011, 317(11): 1608-1620.

doi: 10.1016/j.yexcr.2011.02.004 pmid: 21324314
[20]
HUA P Y, SUN M, ZHANG G X, ZHANG Y F, SONG G, LIU Z Y, LI X, ZHANG X Y, LI B J. Costunolide induces apoptosis through generation of ROS and activation of P53 in human esophageal cancer eca-109 cells. Journal of Biochemical and Molecular Toxicology, 2016, 30(9): 462-469.

doi: 10.1002/jbt.21810 pmid: 27078502
[21]
LEADSHAM J E, SANDERS G, GIANNAKI S, BASTOW E L, HUTTON R, NAEIMI W R, BREITENBACH M, GOURLAY C W. Loss of cytochrome c oxidase promotes RAS-dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast. Cell Metabolism, 2013, 18(2):279-286.

doi: 10.1016/j.cmet.2013.07.005 pmid: 23931758
[22]
XIANG F, MA S, LV Y L, ZHANG D X, SONG H P, HUANG Y S. Tumor necrosis factor receptor-associated protein 1 regulates hypoxia-induced apoptosis through a mitochondria-dependent pathway mediated by cytochrome c oxidase subunit II. Burns & Trauma, 2019, 7(1): 16.
[23]
ZHANG M, ZHANG D, REN J J, PU S, WU H, MA Z Q. Target verification of allyl isothiocyanate on the core subunits of cytochrome c oxidase in Sitophilus zeamais by RNAi. Pest Management Science, 2021, 77(3): 1292-1302.

doi: 10.1002/ps.v77.3
[24]
ROSSMANITH W, FREILINGER M, ROKA J, RAFFELSBERGER T, MOSER-THEIR K, PRAYER D, BERNERT G, BITTNER R. Isolated cytochrome c oxidase deficiency as a cause of MELAS. BMJ Case Reports, 2009, 45(2):117-121.
[25]
UUSIMAA J, FINNILÄ S, VAINIONPÄÄ L, KÄRPPÄ M, HERVA R, RANTALA H, HASSINEN I E, MAJAMAA K. A mutation in mitochondrial DNA-encoded cytochrome c oxidase II gene in a child with Alpers-Huttenlocher-like disease. Pediatrics, 2003, 111(3): e262-e268.

doi: 10.1542/peds.111.3.e262 pmid: 12612282
[26]
REDDY P L, SHETTY V T, DUTT D, YORK A, DAR S, MUNDLE S D, ALLAMPALLAM K, ALVI S, GALILI N, SABERWAL G S, ANTHWAL S, SHAIKH M, SULEMAN S, KAMAL S Y, RAZA A. Increased incidence of mitochondrial cytochrome c-oxidase gene mutations in patients with myelodysplastic syndromes. British Journal of Haematology, 2002, 116(3): 564-575.

doi: 10.1046/j.0007-1048.2001.03323.x pmid: 11849212
[27]
WONG L J, DAI P, TAN D, LIPSON M, GRIX A, SIFRY-PLATT M, GROPMAN A, CHEN T J. Severe lactic acidosis caused by a novel frame-shift mutation in mitochondrial-encoded cytochrome c oxidase subunit II. American Journal of Medical Genetics, 2001, 102(1): 95-99.

pmid: 11471180
[28]
ARDAKANI Z S, HEIDARI M M, KHATAMI M, SANI M B. Association of pathogenic missense and nonsense mutations in mitochondrial COII gene with familial adenomatous polyposis (FAP). International Journal of Molecular and Cellular Medicine, 2020, 9(4): 255-265.
[29]
朱腾义, 范东东, 赵婷, 刘齐元, 王建革, 朱肖文, 程元强. 烟草线粒体基因COXⅡ的SNP检测及其与CMS的相关性分析. 核农学报, 2010, 24(4): 720-727.

doi: 10.11869/hnxb.2010.04.0720
ZHU T Y, FAN D D, ZHAO T, LIU Q Y, WANG J G, ZHU X W, CHENG Y Q. SNP detection in tobacco mitochondrial gene COXII and its association with CMS. Journal of Nuclear Agricultural Sciences, 2010, 24(4): 720-727. (in Chinese)
[30]
张长静. 烟草胞质雄性不育系线粒体基因及小孢子发育期基因表达差异研究[D]. 北京: 中国农业科学院, 2012.
ZHANG C J. Studies on mitochondrial genes and differential gene expression in microspore development of tobacco cytoplasmic male sterile lines[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[31]
郑业强. 烟草sua-CMS和tab1-CMS的鉴定和RNA编辑研究[D]. 北京: 中国农业科学院, 2019.
ZHENG Y Q. Identification and RNA editing studies of tobacco sua-CMS and tab1-CMS in Nicotiana tabacum[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[32]
LIU Z W, LIU Y F, SUN Y H, YANG A G, LI F X. Comparative transcriptome analysis reveals the potential mechanism of abortion in tobacco sua-cytoplasmic male sterility. International Journal of Molecular Sciences, 2020, 21(7): 2445.

doi: 10.3390/ijms21072445
[33]
ZHENG Y Q, LIU Z W, SUN Y H, LIU G S, YANG A G, LI F X. Characterization of genes specific to sua-CMS in Nicotiana tabacum. Plant Cell Reports, 2018, 37(9): 1245-1255.

doi: 10.1007/s00299-018-2309-2
[34]
MARIENFELD J R, NEWTON K J. The maize NCS2 abnormal growth mutant has a chimeric nad4-nad7 mitochondrial gene and is associated with reduced complex I function. Genetics, 1994, 138(3): 855-863.

doi: 10.1093/genetics/138.3.855 pmid: 7851780
[35]
COVELLO P, GRAY M. On the evolution of RNA editing. Trends in Genetics, 1993, 9(8): 265-268.

pmid: 8379005
[36]
KORTH K L, KASPI C I, SIEDOW J N, LEVINGS C S. URF13, a maize mitochondrial pore-forming protein, is oligomeric and has a mixed orientation in Escherichia coli plasma membranes. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(23): 10865-10869.
[37]
JI J J, HUANG W, YIN C C, GONG Z H. Mitochondrial cytochrome c oxidase and F1Fo-ATPase dysfunction in peppers (Capsicum annuum L.) with cytoplasmic male sterility and its association with orf507 and Ψatp6-2 genes. International Journal of Molecular Sciences, 2013, 14(1): 1050-1068.

doi: 10.3390/ijms14011050
[38]
YANG J H, LIU X Y, YANG X D, ZHANG M F. Mitochondrially- targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC Plant Biology, 2010, 10: 231.

doi: 10.1186/1471-2229-10-231
[39]
BEGCY K, NOSENKO T, ZHOU L Z, FRAGNER L, WECKWERTH W, DRESSELHAUS T. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiology, 2019, 181(2): 683-700.

doi: 10.1104/pp.19.00707 pmid: 31378720
[1] GAO XiaoXiao, TU LiQin, YANG Liu, LIU YaNan, GAO DanNa, SUN Feng, LI Shuo, ZHANG SongBai, JI YingHua. Construction of an Infectious Clone of Tobacco Mild Green Mosaic Virus Isolate Infecting Pepper from Jiangsu Based on Genomic Clone [J]. Scientia Agricultura Sinica, 2023, 56(8): 1494-1502.
[2] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[3] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[4] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[5] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[6] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[9] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[10] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[11] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
[12] XUE YaDong,YANG Lu,YANG HuiLi,LI Bing,LIN YaNan,ZHANG HuaiSheng,GUO ZhanYong,TANG JiHua. Comparative Transcriptome Analysis Among the Three Line of Cytoplasmic Male Sterility in Maize [J]. Scientia Agricultura Sinica, 2019, 52(8): 1308-1323.
[13] WANG XueDe. Overview of the Study and Application of Cytoplasmic Male Sterility in Cotton [J]. Scientia Agricultura Sinica, 2019, 52(8): 1341-1354.
[14] SONG Yang,LIU HongDi,WANG HaiBo,ZHANG HongJun,LIU FengZhi. Molecular Cloning and Functional Characterization of VcNAC072 Reveals Its Involvement in Anthocyanin Accumulation in Blueberry [J]. Scientia Agricultura Sinica, 2019, 52(3): 503-511.
[15] LI Rui, AN JianPing, YOU ChunXiang, WANG XiaoFei, HAO YuJin. Molecular Cloning and Functional Characterization of Purple Acid Phosphatase Related Gene MdPAP10 of Apple [J]. Scientia Agricultura Sinica, 2018, 51(6): 1182-1191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!