Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4746-4756.doi: 10.3864/j.issn.0578-1752.2025.22.014

• HORTICULTURE • Previous Articles     Next Articles

Development and Application of A KASP Marker-Based Identification System for Tomato Varieties

SU XiaoMei(), YANG ZongHui, LIU ShuMei, ZHANG ZongJie, LÜ HongJun, HOU LiXia()   

  1. Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory of Huang Huai Protected Horticulture Engineering, Ministry of Agriculture and Rural Affairs/Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Jinan 250100
  • Received:2025-05-26 Accepted:2025-07-14 Online:2025-11-16 Published:2025-11-21
  • Contact: HOU LiXia

Abstract:

【Objective】To screen KASP core markers and establish a high-throughput molecular identification system for tomato, providing technical support for tomato variety authentication, purity testing, and plant variety protection. 【Method】Based on re-sequencing data of tomato inbred lines, high-quality SNP loci covering the whole genome were selected for KASP markers design. A total of 360 tomato varieties, collected from different breeding research institutions and private companies, were used to validate the designed KASP markers. According to genotyping data, a set of KASP core markers with high polymorphism information content (PIC), excellent stability, and relatively uniform distribution across chromosomes was screened. Cluster analysis and DNA fingerprinting of the collected tomato varieties were performed, and the core markers were applied to authenticate variety authenticity and assess seed purity. 【Result】Utilizing the SNPs obtained from re-sequencing data analysis of over 300 tomato materials, 600 SNP loci were selected for marker development, averaging 50 per chromosome. Among these, 517 were successfully converted into KASP markers, with a conversion success rate of 86.2%. Based on physical distances on chromosomes, 10-12 markers per chromosome were prioritized, totaling 128 markers, which were validated and refined using diverse tomato varieties. Ultimately, 68 core primer pairs were selected, averaging 4-8 per chromosome. Genotyping analysis of 360 tomato varieties using these 68 core markers revealed similarity coefficients ranging from 0.32 to 1.00 in cluster analysis. For four tomato types (fresh tomatoes, flavor tomatoes, cherry tomatoes and processing tomatoes), the core marker sets were streamlined to 48, 32, 36, and 36 markers, respectively, with PIC values all exceeding 0.35. These markers effectively distinguished different varieties. To validate marker applicability, two flavor tomato varieties were authenticated using core markers, revealing two differing loci, confirming their distinctness. Additionally, two polymorphic markers between parental lines were used to assess the purity of hybrid seeds of Pinfan 4031, yielding 100% purity, consistent with field evaluation results. 【Conclusion】The developed KASP markers are applicable for tomato genetic diversity analysis, DNA fingerprinting, variety authenticity testing, and hybrid seed purity evaluation.

Key words: tomato, KASP, core markers, fingerprint, variety identification

Fig. 1

The physical position of 68 KASP markers on the tomato reference genome (SL4.0) The red represents the centromere area"

Fig. 2

Representative results of KASP genotyping assay a: KASP marker that can be used, have good typing and a high PIC value; B: KASP marker that can be used in cherry tomatoes, have classification differences among different types of tomatoes (line A-E for cherry tomatoes and F-H for flavor tomatoes); c: KASP marker that cannot be used, have good typing but a low PIC value"

Fig. 3

The fingerprint of 360 tomato varieties based on 68 KASP markers B: Fresh tomato; K: Flavor tomato; P: Processing tomato; Y: Cherry tomato. The same as below. In the fingerprint map, different colors represent the homozygous type consistent with the reference genome (0, red), heterozygous type (1, light pink), variant homozygous type (2, blue), and unknown genotype (NA, gray), respectively"

Fig. 4

Cluster map of 360 tomato varieties based on UPGMA"

Fig. 5

The authenticity identification of two flavor tomato varieties based on a core set of 32 markers"

Fig. 6

Identification results of markers 3-12 (a) and 7-2 (b) on the parents and F1 hybrids of Pinfan 4031"

[1]
李君明, 项朝阳, 王孝宣, 国艳梅, 黄泽军, 刘磊, 李鑫, 杜永臣. “十三五”我国番茄产业现状及展望. 中国蔬菜, 2021(2): 13-20.
LI J M, XIANG C Y, WANG X X, GUO Y M, HUANG Z J, LIU L, LI X, DU Y C. Current situation of tomato industry in China during ’the thirteenth Five-Year Plan’ period and future prospect. China Vegetables, 2021(2): 13-20. (in Chinese)
[2]
ZHANG J, REN J, YANG J J, FU S Z, ZHANG X F, XIA C X, ZHAO H, YANG K, WEN C L. Evaluation of SNP fingerprinting for variety identification of tomato by DUS testing. Agriculture Communications, 2023, 1(1): 100006.
[3]
金庆敏, 林毓娥, 王瑞, 钟玉娟, 吴廷全. 基于SSR分子标记的‘粤秀3号’黄瓜杂交种子纯度及真实性鉴定. 广东农业科学, 2023, 50(9): 49-58.
JIN Q M, LIN Y E, WANG R, ZHONG Y J, WU T Q. Purity and authenticity identification of ’Yuexiu No.3’ cucumber hybrid seeds based on SSR molecular markers. Guangdong Agricultural Sciences, 2023, 50(9): 49-58. (in Chinese)
[4]
尤园园, 王帅, 方莹莹, 齐诚, 李淑培, 张映, 陈钰辉, 刘伟, 刘富中, 舒金帅. 茄子全基因组InDel变异特征及分子标记开发和应用. 园艺学报, 2024, 51(3): 520-532.
YOU Y Y, WANG S, FANG Y Y, QI C, LI S P, ZHANG Y, CHEN Y H, LIU W, LIU F Z, SHU J S. Variation characteristics of insertion-deletion (InDel) and molecular markers development and application in eggplant based on whole genome re-sequencing data. Acta Horticulturae Sinica, 2024, 51(3): 520-532. (in Chinese)
[5]
苏国钊, 李嫒嫒, 刘中华, 陈宇华, 张秀杰, 马莹雪, 杨旭红, 邓超, 徐振江. 苦瓜品种SSR分子标记鉴定技术体系构建与应用. 中国农业科学, 2024, 57(11): 2227-2242. doi: 10.3864/j.issn.0578-1752.2024.11.014.
SU G Z, LI A A, LIU Z H, CHEN Y H, ZHANG X J, MA Y X, YANG X H, DENG C, XU Z J. Construction and application of SSR marker identification system for bitter gourd varieties. Scientia Agricultura Sinica, 2024, 57(11): 2227-2242. doi: 10.3864/j.issn.0578-1752.2024.11.014. (in Chinese)
[6]
田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 等. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发. 作物学报, 2024, 50(5): 1115-1123.
TIAN H L, YANG Y, FAN Y M, YI H M, WANG R, JIN S Q, JIN F, ZHANG Y L, LIU Y W, WANG F G, et al. Development of an optimal core SNP loci set for maize variety genuineness identification. Acta Agronomica Sinica, 2024, 50(5): 1115-1123. (in Chinese)
[7]
NY/T 2471-2013. 番茄品种鉴定技术规程InDel分子标记法. 北京: 中华人民共和国农业农村部, 2013.
NY/T 2471-2013. Identification of Tomato Varieties-InDel Marker Method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2013. (in Chinese)
[8]
NY/T 2472-2013. 西瓜品种鉴定技术规程SSR分子标记法. 北京: 中华人民共和国农业农村部, 2013.
NY/T 2472-2013. Identification of Watermelon Varieties-SSR Marker Method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2013. (in Chinese)
[9]
NY/T 2473-2013. 结球甘蓝技术规程SSR分子标记法. 北京: 中华人民共和国农业农村部, 2013.
NY/T 2473-2013. Protocol for Identification of Cabbage Varieties- SSR Marker Method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2013. (in Chinese)
[10]
NY/T 2474-2013. 黄瓜品种鉴定技术规程SSR分子标记法. 北京: 中华人民共和国农业农村部, 2013.
NY/T 2474-2013. Protocol for the Identification of Cucumber Varieties-SSR Marker Method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2013. (in Chinese)
[11]
NY/T 2475-2013. 辣椒品种鉴定技术规程SSR分子标记法. 北京: 中华人民共和国农业农村部, 2013.
NY/T 2475-2013. Identification of Pepper Varieties-SSR Marker Method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2013. (in Chinese)
[12]
NY/T 2476-2013. 大白菜品种鉴定技术规程SSR分子标记法. 北京: 中华人民共和国农业农村部, 2013.
NY/T 2476-2013. Identification of Heading Chinese Cabbage Varieties-SSR Marker Method. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2013. (in Chinese)
[13]
GB/T 38551-2020植物品种鉴定—MNP标记法. 北京: 国家市场监督管理总局; 国家标准化管理委员会, 2020.
GB/T 38551-2020 Identification of Plant Varieties-MNP Marker Method. Beijing: State Administration for Market Regulation; Standardization Administration of China, 2020. (in Chinese)
[14]
SEMAGN K, BABU R, HEARNE S, OLSEN M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2014, 33(1): 1-14.
[15]
李志远, 于海龙, 方智远, 杨丽梅, 刘玉梅, 庄木, 吕红豪, 张扬勇. 甘蓝SNP标记开发及主要品种的DNA指纹图谱构建. 中国农业科学, 2018, 51(14): 2771-2788. doi: 10.3864/j.issn.0578-1752.2018.14.014.
LI Z Y, YU H L, FANG Z Y, YANG L M, LIU Y M, ZHUANG M, H H, ZHANG Y Y. Development of SNP markers in cabbage and construction of DNA fingerprinting of main varieties. Scientia Agricultura Sinica, 2018, 51(14): 2771-2788. doi: 10.3864/j.issn.0578-1752.2018.14.014. (in Chinese)
[16]
SHEN Y S, WANG J S, SHAW R K, YU H F, SHENG X G, ZHAO Z Q, LI S J, GU H H. Development of GBTS and KASP panels for genetic diversity, population structure, and fingerprinting of a large collection of broccoli (Brassica oleracea L. var. Italica) in China. Frontiers in Plant Science, 2021, 12: 655254.
[17]
刘欣, 程瑞, 徐兵划, 白甜, 许文钊, 张朝阳, 罗德旭, 赵建锋, 张兴平, 孙玉东. 基于KASP技术的SNP标记用于西瓜品种指纹图谱构建和种子纯度检测. 江苏农业学报, 2022, 38(5): 1348-1356.
LIU X, CHENG R, XU B H, BAI T, XU W Z, ZHANG C Y, LUO D X, ZHAO J F, ZHANG X P, SUN Y D. Application of SNP markers based on KASP technology in fingerprint construction and seed purity detection of watermelon varieties. Jiangsu Journal of Agricultural Sciences, 2022, 38(5): 1348-1356. (in Chinese)
[18]
张涛, 常立春, 郭春贵, 张立国, 武剑, 梁建丽, 高杰, 王晓武. 辣椒高多态性KASP标记的开发. 中国蔬菜, 2023(11): 34-46.
ZHANG T, CHANG L C, GUO C G, ZHANG L G, WU J, LIANG J L, GAO J, WANG X W. Development of KASP markers for pepper high polymorphism. China Vegetables, 2023(11): 34-46. (in Chinese)
[19]
肖玉珍, 张瑞青, 张跃星, 代雪, 张勇, 王中元, 于蓉, 侯尹婕, 张显, 魏春华. 甜瓜KASP标记开发及指纹图谱构建. 中国瓜菜, 2024, 37(9): 9-17.
XIAO Y Z, ZHANG R Q, ZHANG Y X, DAI X, ZHANG Y, WANG Z Y, YU R, HOU Y J, ZHANG X, WEI C H. Development of melon KASP markers and construction of fingerprints. China Cucurbits and Vegetables, 2024, 37(9): 9-17. (in Chinese)
[20]
吴新义, 刘娜, 汪宝根, 龚亚明, 李国景. 利用核心SNP标记构建豆类蔬菜品种指纹图谱. 浙江农业科学, 2025, 66(2): 363-369.
WU X Y, LIU N, WANG B G, GONG Y M, LI G J. Construction of DNA fingerprinting of vegetable legumes using core-SNP markers. Journal of Zhejiang Agricultural Sciences, 2025, 66(2): 363-369. (in Chinese)
[21]
李宗俊, 王先裕, 刘梦姣, 崔馨月, 赵雄, 陈鹏, 欧青青. 利用KASP分子标记技术辅助筛选多抗番茄材料. 中国蔬菜, 2019(8): 42-46.
LI Z J, WANG X Y, LIU M J, CUI X Y, ZHAO X, CHEN P, OU Q Q. Auxiliary screening of polymeric multi-resistance tomato materials using KASP molecular marker technology. China Vegetables, 2019(8): 42-46. (in Chinese)
[22]
王鹏, 田哲娟, 康忱, 李亚栋, 王洪乐, 杨超沙, 邙光伟, 康亮, 范庆杰, 吴志明. 番茄5个抗病基因KASP分型技术体系的建立与应用. 园艺学报, 2021, 48(11): 2211-2226.
WANG P, TIAN Z J, KANG C, LI Y D, WANG H L, YANG C S, MANG G W, KANG L, FAN Q J, WU Z M. Establishment and application of a tomato KASP genotyping system based on five disease resistance genes. Acta Horticulturae Sinica, 2021, 48(11): 2211-2226. (in Chinese)
[23]
史茜茜, 逯晓楠, 李仁, 李森, 孙帅, 崔霞. 番茄重要性状功能基因的分子标记检测及应用. 中国蔬菜, 2024(11): 27-38.
SHI Q Q, LU X N, LI R, LI S, SUN S, CUI X. Detection and application of molecular markers for functional genes of important traits in tomato. China Vegetables, 2024(11): 27-38. (in Chinese)
[24]
LIN T, ZHU G T, ZHANG J H, XU X Y, YU Q H, ZHENG Z, ZHANG Z H, LUN Y Y, LI S, WANG X X, et al. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46(11): 1220-1226.
[25]
YANG J J, WANG Y Y, SHEN H L, YANG W C. In silico identification and experimental validation of insertion-deletion polymorphisms in tomato genome. DNA Research, 2014, 21(4): 429-438.
[26]
PHAN N T, KIM M K, SIM S C. Genetic variations of F1 tomato cultivars revealed by a core set of SSR and InDel markers. Scientia Horticulturae, 2016, 212: 155-161.
[27]
JIN L, ZHAO L P, WANG Y L, ZHOU R, SONG L X, XU L P, CUI X, LI R, YU W G, ZHAO T M. Genetic diversity of 324 cultivated tomato germplasm resources using agronomic traits and InDel markers. Euphytica, 2019, 215(4): 69.
[28]
张辉, 李鑫, 王志敏, 胡俊玲, 鲁晓晓, 潘峰, 潘春阳, 苏文悦, 徐毛毛, 张敏, 等. 基于核心InDel标记樱桃番茄种质资源的遗传多样性分析与应用. 中国蔬菜, 2023(10): 26-36.
ZHANG H, LI X, WANG Z M, HU J L, LU X X, PAN F, PAN C Y, SU W Y, XU M M, ZHANG M, et al. Genetic diversity analysis and application of cherry tomato germplasm based on core InDel markers. China Vegetables, 2023(10): 26-36. (in Chinese)
[29]
SIM S C, VAN DEYNZE A, STOFFEL K, DOUCHES D S, ZARKA D, GANAL M W, CHETELAT R T, HUTTON S F, SCOTT J W, GARDNER R G, et al. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE, 2012, 7(9): e45520.
[30]
刘丽华, 庞斌双, 刘阳娜, 李宏博, 王娜, 王拯, 赵昌平. 基于SNP标记的小麦高通量身份鉴定模式. 麦类作物学报, 2018, 38(5): 529-534.
LIU L H, PANG B S, LIU Y N, LI H B, WANG N, WANG Z, ZHAO C P. High-throughput identification mode for wheat varieties based on SNP markers. Journal of Triticeae Crops, 2018, 38(5): 529-534. (in Chinese)
[31]
LI P R, SU T B, YU S C, WANG H P, WANG W H, YU Y J, ZHANG D S, ZHAO X Y, WEN C L, ZHANG F L. Identification and development of a core set of informative genic SNP markers for assaying genetic diversity in Chinese cabbage. Horticulture, Environment, and Biotechnology, 2019, 60(3): 411-425.
[32]
肖熙鸥, 聂珩, 林文秋, 吴彩玉. 茄子全基因组SNP标记的开发. 园艺学报, 2025, 52(1): 88-100.
XIAO X O, NIE H, LIN W Q, WU C Y. Development of whole- genome SNP markers of eggplant. Acta Horticulturae Sinica, 2025, 52(1): 88-100. (in Chinese)
[33]
YANG G L, CHEN S P, CHEN L K, SUN K, HUANG C H, ZHOU D H, HUANG Y T, WANG J F, LIU Y Z, WANG H, et al. Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice, 2019, 12(1): 21.
[34]
朱小品, 徐婷婷, 孟珊, 杨雪, 杨欣, 朱银, 狄佳春, 郭春滨, 王宁, 颜伟. 基于核心KASP标记的江苏粳稻品种DNA指纹图谱构建. 江苏农业学报, 2024, 40(9): 1569-1585.
ZHU X P, XU T T, MENG S, YANG X, YANG X, ZHU Y, DI J C, GUO C B, WANG N, YAN W. Construction of DNA fingerprint for Japonica rice varieties in Jiangsu based on core KASP markers. Jiangsu Journal of Agricultural Sciences, 2024, 40(9): 1569-1585. (in Chinese)
[35]
VÍQUEZ-ZAMORA M, VOSMAN B, VAN DE GEEST H, BOVY A, VISSER R G F, FINKERS R, VAN HEUSDEN A W. Tomato breeding in the genomics era: Insights from a SNP array. BMC Genomics, 2013, 14: 354.
[36]
LIU J P, VAN ECK J, CONG B, TANKSLEY S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. PNAS2002, 99(20): 13302-13306.
[37]
郭广君, 朱雪梅, 潘宝贵, 刁卫平, 刘金兵, 高长洲, 王述彬. SSR分子标记检测‘苏椒1614’杂交种纯度. 分子植物育种, 2023, 21(11): 3653-3659.
GUO G J, ZHU X M, PAN B G, DIAO W P, LIU J B, GAO C Z, WANG S B. Identification hybrid purity of ‘Sujiao1614’ by using SSR molecular markers. Molecular Plant Breeding, 2023, 21(11): 3653-3659. (in Chinese)
[1] ZHANG Min, LI Xin, ZHANG Yong, ZHONG DePing, LU XiaoXiao, HE ShuMin, CHEN DongHong, LI Ye, LI RongXia, HUANG ZeJun, WANG XiaoXuan, GUO YanMei, DU YongChen, LIU HongHai, LI JunMing, LIU Lei. Genetic and Interaction Analysis of High Soluble Solid Content Loci in Processing Tomato [J]. Scientia Agricultura Sinica, 2025, 58(9): 1816-1829.
[2] ZHANG YaFeng, DONG WeiJin, LI QiYun, LU Yang, ZHANG ZhengKun, SUI Li. Effect of Interaction Between Beauveria bassiana and Potassium on Tomato Fruit Quality [J]. Scientia Agricultura Sinica, 2025, 58(6): 1131-1144.
[3] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[4] GUO MengZe, ZHANG Lei, SUN PingPing, JIANG Biao, YAN JinQiang, LI ZhengNan. Molecular Characterization and Evolutionary Dynamics of Tomato Leaf Curl New Delhi Virus Isolate from Wax Gourd (Benincasa hispida) in Guangdong [J]. Scientia Agricultura Sinica, 2025, 58(19): 3890-3904.
[5] MA Jia, PENG JieLi, WANG Xu, JIA Nan, LI MengKai, HU Dong. Effects of Streptomyces sp. TOR3209 on Chlorophyll Synthesis and Polyamine Content in Tomato Plants Under Low Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(15): 3064-3080.
[6] LI XiaoYan, DU YaDan, HU XiaoTao, LU YiNing, GU XiaoBo. The Influence of Nitrogen Application Under Aerated Drip Irrigation on the Hydraulic Characteristics and Photosynthetic Capacity of Tomato [J]. Scientia Agricultura Sinica, 2025, 58(11): 2225-2238.
[7] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[8] SUN ZhaoAn, ZHANG YiWen, JIANG LiHua, LI ZhaoJun, GUO Xin, CAO Hui, MENG FanQiao. Effects of Tomato Grafting and Nitrogen Fertilization on Fertilizer Nitrogen Fate and Nitrogen Balance [J]. Scientia Agricultura Sinica, 2024, 57(4): 755-764.
[9] PEI ShuYao, CAO HongXia, ZHANG ZeYu, ZHAO FangYang, LI ZhiJun. Physiological Response of Potted Tomatoes to NaCl and Na2SO4 Brackish Water Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(3): 570-583.
[10] XU Le, ZHANG DeQuan, GU MingHui, YANG Qi, LI ShaoBo, CHEN PengYu, LI Xin, CHEN Li. Analysis of Discriminate Volatilome of Lamb Under Various Chinese- Style Cooking [J]. Scientia Agricultura Sinica, 2024, 57(24): 4964-4977.
[11] MA Jia, PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong. Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress [J]. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540.
[12] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[13] XIN Lang, SONG JiaWen, FU YuanYuan, TANG MaoSong, JING LingKun, WANG XingPeng. Effects of Saline-Fresh Water Rotation Irrigation on Photosynthetic Characteristics and Leaf Ultrastructure of Tomato Plants in Greenhouse [J]. Scientia Agricultura Sinica, 2024, 57(19): 3784-3798.
[14] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[15] HU XueJie, LIU LuPing, WANG FengMin, HAN YuHua, SUN BinCheng, MA QiBin, HUANG ZhiPing, FENG Yan, CHEN Qiang, YANG ChunYan, ZHANG MengChen, ZHANG Kai, QIN Jun. Construction of ms1 Basic Recurrent Populations Adapted to Different Ecological Regions Using Maturity Genes E1 and E2 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(17): 3305-3317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!