Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4732-4745.doi: 10.3864/j.issn.0578-1752.2025.22.013

• HORTICULTURE • Previous Articles     Next Articles

Functional Analysis of CaIAA8, An Interacting Protein of the Autophagy-Related Protein CaATG8c, in the Heat Tolerance of Pepper

LI NiFei(), YANG QiaoMin, YANG KeCheng, XING YuTeng, WANG MengYuan, ZANG TianBao, LU MingHui()   

  1. College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2025-05-13 Accepted:2025-07-07 Online:2025-11-16 Published:2025-11-21
  • Contact: LU MingHui

Abstract:

【Objective】Autophagy is a conserved protein degradation system in eukaryotic cells and plays an important role in plant stress tolerance. Previous studies showed that silencing the autophagy-related gene CaATG8c reduces heat tolerance in pepper. A candidate interacting protein of CaATG8c, the auxin responsive protein CaIAA8, was identified via yeast two-hybrid screening. This study aimed to analyze the sequence characteristics of CaIAA8, confirm its interaction with CaATG8c, and investigate its role in regulating heat tolerance in pepper, thereby providing insights into the molecular mechanisms of heat tolerance and supporting the breeding of heat-tolerant cultivars. 【Method】 Protein sequence alignment, phylogenetic analysis, and conserved motif identification of CaIAA8 were conducted using BLASTP (NCBI), IQ-TREE, and MEME, respectively. Protein physicochemical properties, signal peptide, transmembrane domain, and phosphorylation sites were predicted using ExPASy, SignalP-6.0, TMHMM-2.0, and NetPhos, respectively. Protein secondary and tertiary structures were predicted using SOPMA and SWISS-MODEL respectively. The interaction between CaATG8c and CaIAA8 was validated by yeast two-hybrid and luciferase complementation assays. Subcellular localization of CaIAA8 was examined by transient expression in tobacco leaves. The expression pattern of CaIAA8 gene in pepper was analyzed using real-time quantitative PCR (RT-qPCR), and its function in heat tolerance was further evaluated by virus-induced gene silencing (VIGS) and transient overexpression in pepper. 【Result】CaIAA8 encodes a 349-amino-acid protein with a molecular weight of 37.48 kDa and an isoelectric point of 7.52. It contains 65 predicted phosphorylation sites and is a basic, hydrophilic, and structurally unstable protein. CaIAA8 localizes primarily to the cytoplasm and co-localizes with chloroplasts. Its expression is highest in stems, followed by fruits and flowers, and lowest in leaves. Under 45 ℃ heat stress, CaIAA8 transcript level decreases. Silencing CaIAA8 enhances pepper heat tolerance, as evidenced by reduced leaf wilting, lower relative electrolyte leakage, decreased cell death and H2O2 accumulation, and increased expression levels of heat shock protein and heat shock transcription factor genes. In contrast, transient overexpression of CaIAA8 reduces pepper heat tolerance, leading to more severe heat-induced damage and elevated levels of cell death and H2O2. 【Conclusion】CaIAA8 physically interacts with CaATG8c and functions as a negative regulator of heat tolerance in pepper.

Key words: pepper, heat tolerance, autophagy, CaATG8c, auxin responsive protein, CaIAA8

Table 1

Sequence of PCR primers"

用途Purpose 名称Name 序列Sequence (5′-3′)
酵母双杂交
Y2H
T7 TAATACGACTCACTATAGG
3AD GAGATGGTGCACGATGCACAGT
AD-CaIAA8-F GCCATGGAGGCCAGTGAATTC
AD-CaIAA8-R CAGCTCGAGCTCGATGGATCC
BD-CaATG8c-F ATGGCCATGGAGGCCGAATTCATGGCGAAGAGTTCATTC
BD-CaATG8c-R CCGCTGCAGGTCGACGGATCCTTACACAAAGTTAAGGTCCC
荧光素酶互补成像
LCI
CLuc-F GTGTTTGTGGACGAAGTACC
CLuc-R CCATTTCACAGTTCGATAGCG
NLuc-F TGATGTGATATCTCCACTGACG
NLuc-R GGGCGTATCTCTTCATAGCC
Cluc-CaIAA8-F TACGCGTCCCGGGGCGGTACC
Cluc-CaIAA8-R ACGAAAGCTCTGCAGGTCGAC
NLuc-CaATG8c-F ACGAAAGCTCTGCAGGTCGACCTACTGATGCACGGAGGAATC
NLuc-CaATG8c-R CGCGTACGAGATCTGGTCGACCACAAAGTTAAGGTCCCCAAAT
亚细胞定位及基因过表达
Subcellular localization and
gene overexpression
pART27-CaIAA8-F GATGAACTATACAAAGAATTCA
pART27-CaIAA8-R CAGGACTCTAGATTAGGTACCC
基因表达分析
Analysis of gene expression
CaUbi3-F TGTCCATCTGCTCTCTGTTG
CaUbi3-R CACCCCAAGCACAATAAGAC
qCaIAA8-F AAAGGCTCAGGTTGTGGGTT
qCaIAA8-R AACATTTCCTTCCCAGGAGC
qCaHsfA2-F GTAGCATCAGTAGCCACAGC
qCaHsfA2-R CAAGCAACTCTTCCCAAATA
qCaHSP16.4-F ATGTCAAAGATGATCAGCTTATTG
qCaHSP16.4-R GGGTACTCAACACGGGACAC
qCaHSP25.9-F AGGAGACGACGCCTTAGTAG
qCaHSP25.9-R TCTGACCCTTCTTTCTCTTCC
qCaHSP70.1-F CAGGTGTGCTAGTTCAGGTGT
qCaHSP70.1-R TGACCTGAGGCACTCCTCTT
基因沉默
Gene-silencing
TRV2:CaIAA8-F GCTCTAGAATGTCTCCACCACT
TRV2:CaIAA8-R CGGGATCCCTCTTCAACCTTTGT

Fig. 1

Phylogenetic analysis of CaIAA8 A: Conserved motif analysis; B: Conserved domain analysis; C: Phylogenetic evolutionary tree"

Fig. 2

Sequence alignment within conserved domains of CaIAA8"

Fig. 3

Physicochemical properties of CaIAA8 protein A: Prediction of signal peptide; B: Prediction of structure prediction; C: Prediction of phosphorylation sites; D: Prediction of hydrophilicity and hydrophobicity; E: Prediction of secondary structure; F: Prediction of tertiary structure"

Fig. 4

Verification of the interaction between CaIAA8 and CaATG8c A: Yeast two-hybrid assay; B: Luciferase complementation imaging assay"

Fig. 5

Subcellular localization of CaIAA8"

Fig. 6

Expression pattern analysis of CaIAA8 gene A: Expression in different tissues and organs of pepper; B: Expression at different time points of heat stress. Different lowercase letters indicate the significant differences at P<0.05 level"

Fig. 7

Phenotype and silencing efficiency of CaIAA8 gene-silenced pepper plants A: Phenotype of pepper seedlings with CaIAA8 gene-silenced; B: Relative expression level of CaIAA8. *: The significant difference at P<0.05 levels. The same as below"

Fig. 8

Effects of CaIAA8-silencing on the heat tolerance of pepper A: Heat stress phenotypes; B: Relative conductivity determination; C: Tissue chemical staining, with DAB staining on the left and trypan blue staining on the right. ns: There is no significant difference; ****: The significant difference at P<0.0001 levels. The same as below"

Fig. 9

Effects of CaIAA8-silencing on the expression levels of marker genes for heat tolerance in pepper leaves under heat stress A: CaHsfA2; B: CaHSP16.4; C: CaHSP25.9; D: CaHSP70.1. **: The significant difference at P<0.01 levels; ***: The significant difference at P<0.001 levels. The same as below"

Fig. 10

Effects of transient overexpression of CaIAA8 gene on the heat tolerance of pepper A: Relative expression level of CaIAA8 ; B: Heat damage phenotypes; C: Tissue chemical staining, with trypan blue staining on the left and DAB staining on the right"

[1]
邹学校, 马艳青, 戴雄泽, 李雪峰, 杨莎. 辣椒在中国的传播与产业发展. 园艺学报, 2020, 47(9): 1715-1726.
ZOU X X, MA Y Q, DAI X Z, LI X F, YANG S. Spread and industry development of pepper in China. Acta Horticulturae Sinica, 2020, 47(9): 1715-1726. (in Chinese)
[2]
邹学校, 胡博文, 熊程, 戴雄泽, 刘峰, 欧立军, 杨博智, 刘周斌, 索欢, 徐昊, 等. 中国辣椒育种60年回顾与展望. 园艺学报, 2022, 49(10): 2099-2118.
ZOU X X, HU B W, XIONG C, DAI X Z, LIU F, OU L J, YANG B Z, LIU Z B, SUO H, XU H, et al. Review and prospects of pepper breeding for the past 60 years in China. Acta Horticulturae Sinica, 2022, 49(10): 2099-2118. (in Chinese)
[3]
OLATUNJI T L, AFOLAYAN A J. The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: A review. Food Science & Nutrition, 2018, 6(8): 2239-2251.
[4]
余楚英, 尹延旭, 王飞, 李宁, 高升华, Juntawong Niran, 吴君, 焦春海, 姚明华. 茄果类蔬菜热胁迫及耐热性研究进展. 中国蔬菜, 2021(4): 27-40.
YU C Y, YIN Y X, WANG F, LI N, GAO S H, NIRAN J, WU J, JIAO C H, YAO M H. Research progress on heat stress and heat tolerance in solanaceous vegetables. China Vegetables, 2021(4): 27-40. (in Chinese)
[5]
ZHU T T, YANG S L, DE SMET I. It is time to move: Heat-induced translocation events. Current Opinion in Plant Biology, 2023, 75: 102406.
[6]
GISBERT-MULLOR R, PADILLA Y G, CALATAYUD Á, LÓPEZ-GALARZA S. Rootstock-mediated physiological and fruit set responses in pepper under heat stress. Scientia Horticulturae, 2023, 309: 111699.
[7]
ZHAI Y F, GUO M, WANG H, LU J P, LIU J H, ZHANG C, GONG Z H, LU M H. Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L.. Frontiers in Plant Science, 2016, 7: 131.
[8]
郭仰东, 张磊, 李双桃, 曹芸运, 齐传东, 王晋芳. 蔬菜作物应答非生物逆境胁迫的分子生物学研究进展. 中国农业科学, 2018, 51(6): 1167-1181. doi: 10.3864/j.issn.0578-1752.2018.06.015.
GUO Y D, ZHANG L, LI S T, CAO Y Y, QI C D, WANG J F. Progresses in research on molecular biology of abiotic stress responses in vegetable crops. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181. doi: 10.3864/j.issn.0578-1752.2018.06.015. (in Chinese)
[9]
SALOMÉ P A. Some like it HOT: Protein translation and heat stress in plants. The Plant Cell, 2017, 29(9): 2075.
[10]
林思琪, 刘沁松. 细胞自噬在植物高温及干旱胁迫响应中的作用机制. 植物生理学报, 2021, 57(5): 1031-1038.
LIN S Q, LIU Q S. Role of autophagy in plant responses to heat and drought stress. Plant Physiology Journal, 2021, 57(5): 1031-1038. (in Chinese)
[11]
SUN J L, LI J Y, WANG M J, SONG Z T, LIU J X. Protein quality control in plant organelles: Current progress and future perspectives. Molecular Plant, 2021, 14(1): 95-114.
[12]
MARSHALL R S, VIERSTRA R D. Autophagy: The master of bulk and selective recycling. Annual Review of Plant Biology, 2018, 69: 173-208.
[13]
WANG P, SUN X, JIA X, WANG N, GONG X Q, MA F W. Characterization of an autophagy-related gene MdATG8i from apple. Frontiers in Plant Science, 2016, 7: 720.
[14]
KUZUOGLU-OZTURK D, CEBECI YALCINKAYA O, AKPINAR B A, MITOU G, KORKMAZ G, GOZUACIK D, BUDAK H. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta, 2012, 236(4): 1081-1092.
[15]
LI B, LIU G Y, WANG Y Q, WEI Y X, SHI H T. Overexpression of banana ATG8f modulates drought stress resistance in Arabidopsis. Biomolecules, 2019, 9(12): 814.
[16]
ZHAI Y F, WANG H, LIANG M M, LU M H. Both silencing- and over-expression of pepper CaATG8c gene compromise plant tolerance to heat and salt stress. Environmental and Experimental Botany, 2017, 141: 10-18.
[17]
LEYSER O. The power of auxin in plants. Plant Physiology, 2010, 154(2): 501-505.
[18]
SALEHIN M, LI B H, TANG M, KATZ E, SONG L, ECKER J R, KLIEBENSTEIN D J, ESTELLE M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications, 2019, 10: 4021.
[19]
WANG M L, FENG G Y, YANG Z F, WU J H, LIU B Y, XU X H, NIE G, HUANG L K, ZHANG X Q. Genome-wide characterization of the Aux/IAA gene family in orchardgrass and a functional analysis of DgIAA21 in responding to drought stress. International Journal of Molecular Sciences, 2023, 24(22): 16184.
[20]
NGUYEN L T, SCHMIDT H A, VON HAESELER A, MINH B Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2015, 32(1): 268-274.
[21]
CHEN C J, WU Y, LI J W, WANG X, ZENG Z H, XU J, LIU Y L, FENG J T, CHEN H, HE Y H, XIA R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16(11): 1733-1742.
[22]
DUVAUD S, GABELLA C, LISACEK F, STOCKINGER H, IOANNIDIS V, DURINX C. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Research, 2021, 49(W1): W216-W227.
[23]
TEUFEL F, ALMAGRO ARMENTEROS J J, JOHANSEN A R, GÍSLASON M H, PIHL S I, TSIRIGOS K D, WINTHER O, BRUNAK S, VON HEIJNE G, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 2022, 40(7): 1023-1025.
[24]
KROGH A, LARSSON B, VON HEIJNE G, SONNHAMMER E L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 2001, 305(3): 567-580.
[25]
GEOURJON C, DELÉAGE G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 1995, 11(6): 681-684.
[26]
SCHWEDE T, KOPP J, GUEX N, PEITSCH M C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 2003, 31(13): 3381-3385.
[27]
CHEN H M, ZOU Y, SHANG Y L, LIN H Q, WANG Y J, CAI R, TANG X Y, ZHOU J M. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology, 2008, 146(2): 368-376.
[28]
WANG H, NIU H H, LIANG M M, ZHAI Y F, HUANG W, DING Q, DU Y, LU M H. A wall-associated kinase gene CaWAKL20 from pepper negatively modulates plant thermotolerance by reducing the expression of ABA-responsive genes. Frontiers in Plant Science, 2019, 10: 591.
[29]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
[30]
WAN H J, YUAN W, RUAN M Y, YE Q J, WANG R Q, LI Z M, ZHOU G Z, YAO Z P, ZHAO J, LIU S J, et al. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochemical and Biophysical Research Communications, 2011, 416(1/2): 24-30.
[31]
CONG L, WANG C, LI Z Q, CHEN L, YANG G X, WANG Y S, HE G Y. cDNA cloning and expression analysis of wheat (Triticum aestivum L.) phytoene and ζ-carotene desaturase genes. Molecular Biology Reports, 2010, 37(7): 3351-3361.
[32]
SENTHIL-KUMAR M, MYSORE K S. New dimensions for VIGS in plant functional genomics. Trends in Plant Science, 2011, 16(12): 656-665.
[33]
LIANG M M, LI H Y, YONG K, HUANG G H, GUO Y L, LU M H. Pepper autophagy related gene CaATG8e differentially regulates plant tolerance to heat and salt stress. Scientia Horticulturae, 2023, 308: 111559.
[34]
阎本涛, 焦可心, 赵悦, 杨巧敏, 陈涛, 逯明辉. 辣椒囊泡形成相关基因CaSec16耐热功能分析. 园艺学报, 2023, 50(11): 2387-2400.
YAN B T, JIAO K X, ZHAO Y, YANG Q M, CHEN T, LU M H. Analysis of heat-tolerant function of pepper vesicle formation related gene CaSec16. Acta Horticulturae Sinica, 2023, 50(11): 2387-2400. (in Chinese)
[35]
丁丁, 王红宝, 郑伶杰, 左永梅, 韩民利, 吴新海, 郭艳超. 不同品种茶菊对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报, 2021, 57(3): 692-702.
DING D, WANG H B, ZHENG L J, ZUO Y M, HAN M L, WU X H, GUO Y C. Physiological response and comprehensive evaluation of different tea Chrysanthemun varieties under NaCl stress. Plant Physiology Journal, 2021, 57(3): 692-702. (in Chinese)
[36]
LU J P, GUO M, ZHAI Y F, GONG Z H, LU M H. Differential responses to the combined stress of heat and Phytophthora capsici infection between resistant and susceptible germplasms of pepper (Capsicum annuum L.). Journal of Plant Growth Regulation, 2017, 36(1): 161-173.
[37]
张淮霞. 辣椒SBP-box基因在其响应疫霉菌侵染中的功能鉴定及调控机理的研究[D]. 杨凌: 西北农林科技大学, 2020.
ZHANG H X. Functional identification and regulation mechanism of pepper SBP-box gene in response to Phytophthora capsici infection[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[38]
SHANI E, SALEHIN M, ZHANG Y Q, SANCHEZ S E, DOHERTY C, WANG R H, MANGADO C C, SONG L, TAL I, PISANTY O, et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Current Biology, 2017, 27(3): 437-444.
[39]
ZHOU J, WANG J, CHENG Y, CHI Y J, FAN B F, YU J Q, CHEN Z X. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genetics, 2013, 9(1): e1003196.
[40]
HUSSAIN S, KIM S H, BAHK S, ALI A, NGUYEN X C, YUN D J, CHUNG W S. The auxin signaling repressor IAA8 promotes seed germination through down-regulation of ABI3 transcription in Arabidopsis. Frontiers in Plant Science, 2020, 11: 111.
[41]
KIM S H, HUSSAIN S, PHAM H T T, KADAM U S, BAHK S, RAMADANY Z, LEE J, SONG Y H, LEE K O, HONG J C, et al. Phosphorylation of auxin signaling repressor IAA 8 by heat-responsive MPKs causes defective flower development. Plant Physiology, 2024, 196(4): 2825-2840.
[42]
BAKERY A, VRAGGALAS S, SHALHA B, CHAUHAN H, BENHAMED M, FRAGKOSTEFANAKIS S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. New Phytologist, 2024, 244(1): 51-64.
[43]
QIU R H, YAO P, YANG J, HOU J Q, XIAO H Z, WU Y Q, TU D Y, MA X C, ZHAO Y T, LI L J. OsIAA 7 enhances heat stress tolerance by inhibiting the activity of OsARF6 in rice. International Journal of Biological Macromolecules, 2025, 288: 138746.
[44]
CHEN Z H, ZHOU W, GUO X Y, LING S, LI W, WANG X, YAO J L. Heat stress responsive Aux/IAA protein, OsIAA 29 regulates grain filling through OsARF17 mediated auxin signaling pathway. Rice, 2024, 17(1): 16.
[1] WANG MengYuan, WEI QianRui, LI HaiYan, YANG QiaoMin, YU Jun, HUANG Wei, LU MingHui. Functional Analysis of MADS-box Transcription Factor Gene CaAGL61 in Heat Tolerance of Pepper [J]. Scientia Agricultura Sinica, 2025, 58(8): 1604-1616.
[2] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[3] LI Rui, LIANG Yue, BAI Yang, ZHANG GuiYue, WANG NanNan, QIAO SongLin, ZHANG GaiPing. Research Progress on the Roles and Mechanisms of Autophagy Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection [J]. Scientia Agricultura Sinica, 2025, 58(4): 792-801.
[4] LIU Jing, WANG Hong, ZHANG Lei, XIAO JiuJun, WU JianGao, GONG MingChong. Inversion of Nitrogen Content in Chili Pepper Leaves Based on Hyperspectral Analysis [J]. Scientia Agricultura Sinica, 2025, 58(2): 252-265.
[5] ZHANG Jie, HU ChenXi, QI JianBo, ZHANG YongTai, CHEN YiBo, ZHANG YongJi. Effects of Exogenous Zeatin on Photosynthetic Parameter, Antioxidant System and Expression of Genes Related to Zeatin Synthesis in Pepper Under Low-Temperature Combined with Low-Light Stress [J]. Scientia Agricultura Sinica, 2025, 58(19): 3959-3969.
[6] XU JiaXin, HUA Nan, WANG YongQiang, XU Hao, LIU Zhen, ZHAO XiaoRui, LI Yue, CHEN QiWei, YE Lin. Response Surface Methodology Optimization of Water, Fertilizer, and Pesticide Coupling on Chili Pepper Growth, Photosynthetic Characteristics, and Root Rot [J]. Scientia Agricultura Sinica, 2025, 58(14): 2869-2884.
[7] WU HuiQin, WANG Jing, YANG Yi, LIU XueQing, ZHANG KaiXuan, WANG LuYao, LU JiaWei, ZHAI Yuan, CHENG Yan. Analysis and Evaluation of Fruit Texture Quality of 96 Pepper Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(14): 2854-2868.
[8] WANG LinYuan, XUAN JingYan, DU Yu, CHEN Tong, NIU RuiYan. Co-Exposure of DON and PRRSV Induces Autophagy in PAM-KNU Cells Through the PI3K/AKT/mTOR Signaling Pathway [J]. Scientia Agricultura Sinica, 2025, 58(13): 2693-2706.
[9] XU YuanYuan, HUANG LiQing, LU XingRong, FENG Chao, SHANG JiangHua. Effects of β-mercaptoethanol on Rapamycin Induced Autophagy, Apoptosis and Steroid Hormone Synthesis in Buffalo Granulosa Cells [J]. Scientia Agricultura Sinica, 2025, 58(11): 2265-2274.
[10] CAO XiongJun, WANG Bo, HAN JiaYu, LIAO YongFeng, XIE ShuYu, BAI Yang, HUANG XiaoYun, LU Li, HUANG QiuMi, JIANG ChunFen, PAN FengPing, BAI XianJin. Research and Practice on High Photosynthetic Efficiency Breeding of Grapes in Hot Climate Regions [J]. Scientia Agricultura Sinica, 2025, 58(10): 1994-2007.
[11] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[12] SU XiaoYu, TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen. Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838.
[13] LU Lu, LI YiNuo, ZHANG XiuGuo, GAO DanMei, WU FengZhi. Effects of Wheat and Broad Bean Catch Crop and Their Decomposed Liquids on the Growth and Blight of Continuous Cropping Pepper Seedlings [J]. Scientia Agricultura Sinica, 2024, 57(22): 4541-4552.
[14] HE Yong, FAN XiaoZhu, CHEN XinYue, DUAN ShuJing, HU TingTing, XIE RuXue, WANG YuQing, CHEN Jing. Screening and Verification of Pepper Host Factors Interacting with the 126 kDa Protein of Pepper Mild Mottle Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(15): 2986-2996.
[15] GAO ChengAn, WAN HongJian, YE QingJing, CHENG Yuan, LIU ChenXu, HE Yong. Identification and Comparative Analysis of Processed/Fresh-Eating Chili Pepper Fruits at Different Maturation Stages by Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(12): 2424-2438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!