Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3959-3969.doi: 10.3864/j.issn.0578-1752.2025.19.012

• HORTICULTURE • Previous Articles     Next Articles

Effects of Exogenous Zeatin on Photosynthetic Parameter, Antioxidant System and Expression of Genes Related to Zeatin Synthesis in Pepper Under Low-Temperature Combined with Low-Light Stress

ZHANG Jie(), HU ChenXi, QI JianBo, ZHANG YongTai, CHEN YiBo, ZHANG YongJi()   

  1. Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou 225007, Jiangsu
  • Received:2025-05-05 Accepted:2025-06-22 Online:2025-10-01 Published:2025-10-10
  • Contact: ZHANG YongJi

Abstract:

【Objective】The objective of this study is to explore the effects of exogenous zeatin (ZT) application at different concentrations on the tolerance and expression of ZT biosynthesis-related genes in pepper (Capsicum annuum) under low- temperature combined with low-light stress, and to reveal the mechanism of zeatin regulating the tolerance of pepper to low-temperature and low-light stress.【Method】The ‘Yangjiao No. 2’ pepper variety was used as the test material. After the seedlings had grown six true leaves, the leaves were sprayed four times with ZT solutions at concentrations of 0, 50, 100, 150, 200, and 250 μmol·L-1. Then, the seedlings were transferred to a low-temperature combined with low-light environment simulated by an artificial climate chamber (temperature: 10 ℃/5 ℃ (day/night), light intensity: 100 μmol·m-2·s-1, photoperiod: 12 h/12 h (day/night)) for 7 d. Growth indices, chlorophyll content, photosynthetic parameters, chlorophyll fluorescence parameters, osmoregulatory substance levels (soluble sugars, soluble proteins, and proline), electrical conductivity (EC), reactive oxygen species (ROS) content, antioxidant enzyme activities (POD, SOD, and CAT), expression of ZT biosynthesis-related genes and endogenous ZT content were measured.【Result】Exogenous ZT application significantly enhanced plant height, stem diameter, root length, and both aboveground and underground fresh weights under stress conditions. Additionally, ZT treatment significantly increased chlorophyll content, photosynthetic parameters and chlorophyll fluorescence parameters. It also elevated the levels of osmoregulatory substances and the activities of key antioxidant enzymes, while reducing ROS accumulation. Furthermore, exogenous ZT induced the upregulation of ZT biosynthesis-related genes, including CaCKX6, CaCYP375A1, CaZOX, and CaZOG, and increased the content of endogenous ZT in pepper, which improved the low-temperature combined with low-light tolerance. Among the tested concentrations, 150 μmol·L-1 ZT was identified as the most effective concentration.【Conclusion】Exogenous application of 150 μmol·L-1 ZT effectively enhanced osmoregulatory substance content, stabilized chlorophyll fluorescence parameters, increased antioxidant enzyme activity, induced the upregulation of ZT biosynthesis-related genes and the production of endogenous ZT, thereby improving the resistance of pepper to low-temperature combined with low-light and alleviating the adverse impacts of low-temperature combined with low-light stress in pepper.

Key words: exogenous zeatin, low-temperature combined with low-light, pepper (Capsicum annuum), photosynthetic parameter, antioxidant system, gene expression

Table 1

Primer sequences used in this study"

引物名称Primer name 引物序列Primer sequence (5′→3′) 用途Usage
RT-CaCKX6 F: TCCATCCGAAATCCGTTGC R: CTTGCGCCTGGCCTAGAAG 表达量分析Expression level analysis
RT-CaCYP375A1 F: ATGGCAGGATAAAGTTCGT R: CACTGTGATGTATGGCAAG 表达量分析Expression level analysis
RT-CaZOX F: CTACTAAGAAGAGGCAACC R: TATCAAGCCATCTCAAGCA 表达量分析Expression level analysis
RT-CaZOG F: TGGCTCATTCGTCCACAGG R: CAAGCAGCTATTGGCACCC 表达量分析Expression level analysis
Actin F: TGTCCATCTGCTCTCTGTTG R: CACCCCAAGCACAATAAGAC 内参基因Reference gene

Table 2

Effects of ZT at different concentrations on pepper growth indices under low-temperature combined with low-light stress"

指标Index CK T1 T2 T3 T4 T5 T6
株高Plant height (cm) 9.33±0.17a 8.12±0.13d 8.95±0.14b 9.26±0.09ab 9.32±0.18a 8.87±0.09b 8.36±0.05bc
茎粗Stem diameter (mm) 2.30±0.08a 2.07±0.04e 2.18±0.02c 2.27±0.02b 2.31±0.09a 2.20±0.02c 2.13±0.02de
根长Root length (cm) 19.85±1.12a 10.29±0.78e 15.29±0.84d 18.30±0.70b 19.87±1.19a 18.17±1.05b 15.62±1.49c
地上部分鲜重
Aboveground fresh weight (g)
5.19±0.28a 4.14±0.06g 4.40±0.14e 4.72±0.12c 4.99±0.15ab 4.67±0.08cd 4.22±0.08f
地下部分鲜重
Underground fresh weight (g)
2.42±0.05a 1.87±0.09e 2.25±0.08c 2.36±0.08b 2.43±0.08a 2.37±0.04b 2.11±0.07d

Fig. 1

Effects of ZT at different concentrations on chlorophyll content and photosynthetic parameters in pepper under low-temperature combined with low-light stress"

Fig. 2

Effects of ZT at different concentrations on chlorophyll fluorescence parameters in pepper under low-temperature combined with low-light stress"

Fig. 3

Effects of ZT at different concentrations on osmoregulatory substances and electrical conductivity in pepper under low-temperature combined with low-light stress"

Fig. 4

Effects of ZT at different concentrations on reactive oxygen species accumulation and antioxidant enzymes in pepper under low-temperature combined with low-light stress"

Fig. 5

Effects of ZT at different concentrations on the expression of ZT biosynthesis-related genes and endogenous ZT content under low-temperature combined with low-light stress"

[1]
BARRERO-GIL J, HUERTAS R, RAMBLA J L, GRANELL A, SALINAS J. Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant, Cell and Environment, 2016, 39(10): 2303-2318.
[2]
李海涛, 孟浩. 低温弱光对辣椒苗期生长发育及生理特性的影响. 农业科技与装备, 2007(6): 6-9.
LI H T, MENG H. Effects of low temperature and low light on growth and development, physiological characteristic of pepper seedlings. Agricultural Science & Technology and Equipment, 2007(6): 6-9. (in Chinese)
[3]
LI J, XIE J M, YU J H, LYV J, BAKPA E P, ZHANG X D, ZHANG J, TANG C N, DING D X, LI N H, GAO F, WANG C. Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum L.). Photosynthetica, 2021, 59(1): 24-36.
[4]
HU W H, WU Y, ZENG J Z, HE L, ZENG Q M. Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. Photosynthetica, 2010, 48(4): 537-544.
[5]
李林洁, 郭蔚尔, 常智慧. 玉米素对高羊茅和多年生黑麦草抗旱性影响的研究. 草原与草坪, 2017, 37(1): 61-66.
LI L J, GUO W E, CHANG Z H. Effect of zeatin on drought resistance of tall fescue and perennial ryegrass. Grassland and Turf, 2017, 37(1): 61-66. (in Chinese)
[6]
LIU Y, ZHANG M, MENG Z, WANG B, CHEN M. Research progress on the roles of cytokinin in plant response to stress. International Journal of Molecular Sciences, 2020, 21(18): 6574.
[7]
DING D, LI J, XIE J, LI N, BAKPA E P, HAN K, YANG Y, WANG C. Exogenous zeaxanthin alleviates low temperature combined with low light induced photosynthesis inhibition and oxidative stress in pepper (Capsicum annuum L.) plants. Current Issues in Molecular Biology, 2022, 44(6): 2453-2471.
[8]
LI J, DING D, LI N, XIE J, YU J, LYV J, BAKPA E P, ZHANG J, WANG C, ZHANG J. Melatonin enhances the low-temperature combined low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating photosynthesis, carotenoid, and hormone metabolism. Environmental and Experimental Botany, 2022, 199: 104868.
[9]
SHARMA A, ZHENG B. Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants, 2019, 8(7): 190.
[10]
ZHANG J, TANG C, XIE J, LI J, ZHANG X, WANG C. Exogenous strigolactones alleviate low-temperature stress in peppers seedlings by reducing the degree of photoinhibition. BMC Plant Biology, 2024, 24(1): 907.

doi: 10.1186/s12870-024-05622-3 pmid: 39349999
[11]
ZHANG J, SOHAIL H, XU X, ZHANG Y, ZHANG Y, CHEN Y. Unveiling tolerance mechanisms in pepper to combined low- temperature and low-light stress: A physiological and transcriptomic approach. BMC Plant Biology, 2025, 25(1): 171.
[12]
BEHR M, MOTYKA V, WEIHMANN F, MALBECK J, DEISING H B, WIRSEL S G R. Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Molecular Plant-Microbe Interactions, 2012, 25(8): 1073-1082.
[13]
KOSOVÁ K, PRÁŠIL I T, VÍTÁMVÁS P, DOBREV P, MOTYKA V, FLOKOVÁ K, NOVÁK O, TUREČKOVÁ V, ROLČIK J, PEŠEK B, et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. Journal of Plant Physiology, 2012, 169(6): 567-576.

doi: 10.1016/j.jplph.2011.12.013 pmid: 22304971
[14]
JEON J, KIM N Y, KIM S, KANG N Y, NOVÁK O, KU S J, CHO C, LEE D J, LEE E J, STRNAD M, KIM J. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. Journal of Biological Chemistry, 2010, 285(30): 23371-23386.
[15]
NISHIYAMA R, WATANABE Y, FUJITA Y, LE D T, KOJIMA M, WERNER T, VANKOVA R, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K, KAKIMOTO T, SAKAKIBARA H, SCHMÜLLING T, TRAN L S. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. The Plant Cell, 2011, 23(6): 2169-2183.

doi: 10.1105/tpc.111.087395 pmid: 21719693
[16]
ANWAR A, BAI L, MIAO L, LIU Y, LI S, YU X, LI Y. 24-epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings. International Journal of Molecular Sciences, 2018, 19(9): 2497.
[17]
WANG N, ZHANG W, QIN M, LI S, QIAO M, LIU Z, XIANG F. Drought tolerance conferred in soybean (Glycine max L.) by GmMYB84, a novel R2R3-MYB transcription factor. Plant and Cell Physiology, 2017, 58(10): 1764-1776.
[18]
ZHANG H F, LIU S Y, MA J H, WANG X K, HAQ S U, MENG Y C, ZHANG Y M, CHEN R G. CaDHN4, a salt and cold stress-responsive dehydrin gene from pepper decreases abscisic acid sensitivity in Arabidopsis. International Journal of Molecular Sciences, 2020, 21(1): 26.
[19]
ZHOU X, TAN Z, ZHOU Y, GUO S, SANG T, WANG Y, SHU S. Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings. BMC Plant Biology, 2022, 22(1): 30.
[20]
GONG W Z, JIANG C D, WU Y S, CHEN H H, LIU W Y, YANG W Y. Tolerance vs. avoidance: Two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica, 2015, 53: 259-268.
[21]
TANG C, XIE J, LV J, LI J, ZHANG J, WANG C, LIANG G. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. Plant Physiology and Biochemistry, 2021, 162: 395-409.
[22]
POPOVA A V, STEFANOV M, MIHAILOVA G, BORISOVA P, GEORGIEVA K. Response of tomato plants, Ailsa craig and carotenoid mutant tangerine, to simultaneous treatment by low light and low temperature. Plants, 2024, 13(14): 1929.
[23]
LI J, XIE J, YU J, LYV J, ZHANG J, DING D, LI N, ZHANG J, BAKPA E P, YANG Y, NIU T, GAO F. Melatonin enhanced low-temperature combined with low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating root growth, antioxidant defense system, and osmotic adjustment. Frontiers in Plant Science, 2022, 13: 998293.
[24]
SCHÄFER M, BRÜTTING C, MEZA-CANALES I D, GROßKINSKY D K, VANKOVA R, BALDWIN I T, MELDAU S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. Journal of Experimental Botany, 2015, 66(16): 4873-4884.
[25]
马佳, 彭杰丽, 贾楠, 王旭, 王占武, 胡栋. 低温胁迫下链霉菌TOR3209对番茄叶绿素荧光特性和叶黄素循环的影响. 中国农业科学, 2024, 57(22): 4522-4540. doi: 10.3864/j.issn.0578-1752.2024.22.011.
MA J, PENG J L, JIA N, WANG X, WANG Z W, HU D. Effects of Streptomyces sp. TOR3209 on chlorophyll fluorescence characteristics and xanthophyll cycle in tomato plants under cold stress. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540. doi: 10.3864/j.issn.0578-1752.2024.22.011. (in Chinese)
[26]
LI S, RAO L. Response of growth and chlorophyll fluorescence parameters of mulberry seedlings to waterlogging stress. Scientific Reports, 2024, 14(1): 25078.

doi: 10.1038/s41598-024-76455-1 pmid: 39443566
[27]
LI N, PU K, DING D, YANG Y, NIU T, LI J, XIE J. Foliar spraying of glycine betaine alleviated growth inhibition, photoinhibition, and oxidative stress in pepper (Capsicum annuum L.) seedlings under low temperatures combined with low light. Plants, 2023, 12(13): 2563.
[28]
丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响. 浙江农业学报, 2022, 34(9): 1935-1944.

doi: 10.3969/j.issn.1004-1524.2022.09.12
DING D X, LI N H, LI J, TANG C N, WANG C, NIU T H, YANG Y, YANG H T, XIE J M. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. (in Chinese)
[29]
IRSHAD A, UR REHMAN R N, KAREEM H A, YANG P, HU T. Addressing the challenge of cold stress resilience with the synergistic effect of Rhizobium inoculation and exogenous melatonin application in Medicago truncatula. Ecotoxicology and Environmental Safety, 2021, 226: 112816.
[30]
JIANG M, JIANG J, LI S, LI M, TAN Y, SONG S, SHU Q, HUANG J. Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation. Journal of Hazardous Materials, 2020, 384: 121319.
[31]
LI W, WU H, HUA J, ZHU C, GUO S. Arbuscular mycorrhizal fungi enhanced resistance to low-temperature weak-light stress in snapdragon (Antirrhinum majus L.) through physiological and transcriptomic responses. Frontiers in Plant Science, 2024, 15: 1330032.
[32]
LIANG L, ZE M, YANG J, XU Q, DU C, HU X, DONG M, ZOU L, QI T. Physiological and transcriptomic response reveals new insight into manganese tolerance of Celosia argentea Linn. Journal of Hazardous Materials, 2024, 465: 133079.
[33]
KHANDAL H, GUPTA S K, DWIVEDI V, MANDAL D, SHARMA N K, VISHWAKARMA N K, PAL L, CHOUDHARY M, FRANCIS A, MALAKAR P, et al. Root-specific expression of chickpea cytokinin oxidase/dehydrogenase 6 leads to enhanced root growth, drought tolerance and yield without compromising nodulation. Plant Biotechnology Journal, 2020, 18(11): 2225-2240.
[34]
ZHOU J, LI Z, XIAO G, ZHAI M, PAN X, HUANG R, ZHANG H. CYP71D8L is a key regulator involved in growth and stress responses by mediating gibberellin homeostasis in rice. Journal of Experimental Botany, 2020, 71(3): 1160-1170.

doi: 10.1093/jxb/erz491 pmid: 31679005
[35]
SONG J, JIANG L, JAMESON P E. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biology, 2012, 12: 78.

doi: 10.1186/1471-2229-12-78 pmid: 22672647
[36]
YANG B, PAN F, YASMEEN F, SHAN L, PAN J, ZHANG M, WENG X, WANG M, LI M, WANG Q, CHENG K. Integrated multi-omic analysis reveals the cytokinin and sucrose metabolism- mediated regulation of flavone glycoside biosynthesis by MeJA exposure in Ficus pandurata Hance. Food Research International, 2023, 174: 113680.
[1] ZHANG TianYu, LI Bai, ZANG JinPing, CAO HongZhe, DONG JinGao, XING JiHong, ZHANG Kang. Genome-Wide Identification and Expression Analysis of HMG Family Genes in Botrytis cinerea [J]. Scientia Agricultura Sinica, 2025, 58(4): 704-718.
[2] ZHANG LinLin, GONG Rui, CUI YanLing, ZHONG XiongHui, LI Ye, LI RanHong, QIAN ZongWei. Effect Analysis of SmWRKY30 in Eggplant Resistance to Ralstonia solanacearum by Virus Induced Gene Silencing (VIGS) [J]. Scientia Agricultura Sinica, 2025, 58(3): 548-563.
[3] LI RuoHong, MA Wen, ZHAO ShiQiang, MAO PeiSheng. Antioxidant Physiology and Hormonal Response Pattern of Embryonic Root Mitochondria During Imbibition of Aging Seeds of Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(19): 4014-4025.
[4] XU JiaXin, HUA Nan, WANG YongQiang, XU Hao, LIU Zhen, ZHAO XiaoRui, LI Yue, CHEN QiWei, YE Lin. Response Surface Methodology Optimization of Water, Fertilizer, and Pesticide Coupling on Chili Pepper Growth, Photosynthetic Characteristics, and Root Rot [J]. Scientia Agricultura Sinica, 2025, 58(14): 2869-2884.
[5] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[6] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[7] SU XiaoYu, TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen. Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838.
[8] ZHAO Meng, BI HuanGai, MENG LingHao, JIANG TingTing, ZHANG XiaoWei, AI XiZhen. The Regulatory Mechanism of Cold Circulation Induction Stress Memory in Chilling Tolerance in Cucumber [J]. Scientia Agricultura Sinica, 2024, 57(24): 4933-4944.
[9] YANG HaoRong, JIA Fan, HU Xu, MU Rong, LIU WeiNa, LIU ChangYun, WANG ShanZhi, SUN XianChao, MA GuanHua, CHEN GuoKang. BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(19): 3799-3809.
[10] HE Yong, FAN XiaoZhu, CHEN XinYue, DUAN ShuJing, HU TingTing, XIE RuXue, WANG YuQing, CHEN Jing. Screening and Verification of Pepper Host Factors Interacting with the 126 kDa Protein of Pepper Mild Mottle Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(15): 2986-2996.
[11] HU DanDan, LUO RunQi, LIANG RuiYing, WANG Lei, LIANG Lin, SI HongBin, DING JiaBo, TANG XinMing. Research Progress of ApiAP2 Transcription Factors in Regulating the Growth and Development of Toxoplasma gondii [J]. Scientia Agricultura Sinica, 2024, 57(13): 2687-2697.
[12] WEI XiaoDong, SONG XueMei, WANG Ning, ZHAO QingYong, ZHU Zhen, CHEN Tao, ZHAO Ling, WANG CaiLin, ZHANG YaDong. Distribution Characteristics of Photosynthetic Products of Nanjing Series of Super Rice During Filling Stage [J]. Scientia Agricultura Sinica, 2024, 57(12): 2309-2321.
[13] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[14] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[15] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!