Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (12): 2346-2357.doi: 10.3864/j.issn.0578-1752.2025.12.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATIONTECHNOLOGY • Previous Articles     Next Articles

The Impact of Sowing Methods on the Seed Germination Environment and Cotton Emergence and Growth

DONG Ming(), QI Hong(), ZHANG Qian, WANG Yan, WANG ShuLin, FENG GuoYi, LIANG QingLong, GUO BaoSheng   

  1. Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semi-Arid Region, Ministry of Agriculture and Rural Affairs/Hebei Branch of National Cotton Improvement Center, Shijiazhuang 050051
  • Received:2025-01-09 Accepted:2025-04-24 Online:2025-06-19 Published:2025-06-19
  • Contact: QI Hong

Abstract:

【Objective】The current post-planting film-covering technology in the Yellow River Basin cotton-growing areas relies on manual seedling release and thinning, which hinders the development of full-scale mechanization. This study explored the adaptability of the dry sowing and wet emergence technology (used in northwestern inland cotton regions) to the Yellow River Basin. By comparing the effects of different sowing methods on seed germination environment, cotton emergence rate, and seedling growth, this study aimed to identify key environmental constraints and provide the theoretical support for optimizing mechanized planting techniques. 【Method】From 2023 to 2024, using the cotton cultivar Ji863 as the experimental material, four treatments were implemented: single-seed seeding without mulching (T1), single-seed post-planting film covering (T2), dry sowing and wet emergence with single-seed sowing (T3), and dry sowing and wet emergence with double-seed sowing (T4). The study was conducted in Quzhou County, Hebei Province, and the effects of these treatments on soil environment, cotton emergence, and growth of above-ground and root systems were evaluated. 【Result】Compared with T1, T2 and T3 significantly increased soil temperature at 5 cm, soil moisture content, emergence rate, plant height, above-ground dry matter weight, root length, root surface area, root volume, and root vigor, while significantly reduced soil compaction, emergence time, and root diameter. Compared with T2, in 2023 and 2024, T3 reduced the daily temperature range at 5 cm soil depth by 3.67 and 1.58 ℃ within 30 days after sowing, and reduced soil compaction by 9.36% and 27.06% within 10 days after sowing, respectively, which decreased emergence days in 2024 by 0.6 days, and increased root length, surface area, volume, and root activity in both years. Compared with T4, single-grain sowing in 2023 and 2024 significantly increased emergence time and decreased emergence rate but increased aboveground dry matter weight by 13.98% and 55.00%. The structural equation model showed that different sowing methods affected cotton seedling emergence rate by altering soil temperature at 5 cm depth, daily temperature range, soil moisture content, and soil compaction, while seedling dry matter weight was mainly affected by soil moisture content, plant height, and soil compaction. 【Conclusion】In the Yellow River Basin cotton areas, the dry-sowing and wet-emergence improved emergence speed and rate by reducing the diurnal temperature fluctuation at 5 cm and soil compaction, thereby promoting uniform and robust seedlings, and sowing one seed per hole was the optimal strategy.

Key words: cotton, sowing method, dry sowing with wet emergence, emergence rate, seedling growth

Fig. 1

Changes in 5 cm soil temperature and diurnal temperature range under different sowing methods"

Fig. 2

Impacts of different sowing methods on soil moisture content"

Fig. 3

Impacts of different sowing methods on soil compaction"

Table 1

Impact of different sowing methods on cotton emergence time and emergence rate"

年度
Year
处理
Treatment
出苗时间
Emergence Time (d)
出苗率
Emergence Rate (%)
2023 T1 10.5±0.92a 74.17±4.92c
T2 7.5±0.70b 88.17±2.48b
T3 7.2±0.40b 92.00±4.00b
T4 6.6±0.53c 98.00±2.45a
2024 T1 5.9±0.25a 81.67±6.06c
T2 4.8±0.20b 89.17±5.85b
T3 4.2±0.26c 91.67±4.08b
T4 3.3±0.20d 98.33±2.58a

Fig. 4

Impact of different sowing methods on cotton plant height (A) and above-ground dry matter weight (B)"

Table 2

Effects of different sowing methods on cotton root morphology and root vigor"

年度
Year
处理
Treatment
根系长度
Root length
(cm)
根系表面积
Root surface area (cm2)
根系体积
Root volume
(cm3)
根系平均直径
Average root diameter (mm)
根系活力
Root vigor
(mg·g-1·h-1)
2023 T1 459.11±41.59b 78.81±9.70c 1.08±0.18b 0.55±0.03ab 190.82±24.33c
T2 745.19±198.11b 138.03±22.33b 2.06±0.12ab 0.60±0.06a 219.33±4.97bc
T3 1508.74±444.48a 236.27±48.55a 3.01±0.34a 0.52±0.07ab 343.70±63.091a
T4 1460.31±356.35b 204.75±38.27bc 2.31±0.29b 0.44±0.02b 282.86±23.20ab
2024 T1 469.12±130.41b 109.43±10.15b 2.18±0.98b 0.78±0.00ab 203.78±6.26d
T2 601.85±402.40b 139.38±60.92b 2.92±0.83b 0.80±0.10a 237.65±17.88bc
T3 2740.48±1082.27a 425.89±63.50a 6.25±0.04a 0.55±0.03b 356.45±24.89a
T4 1113.03±134.14b 175.55±11.24b 2.74±0.38b 0.60±0.08ab 299.89±9.89b

Fig. 5

Structural equation model of the effects of sowing methods on cotton emergence rate (A) and seedling growth and development (B)"

Table 3

Direct and indirect effects of different sowing methods on cotton emergence rate, emergence days, and above-ground dry matter weight"

性状 Trait 直接效应 Direct effect 间接效应 Indirect effect 总效应 Total effect
ER ST 0.914 -0.046 0.868
SW -0.465 0.791 0.327
STR -0.252 0.000 -0.252
SC -0.512 -0.851 -1.371
ED ST -0.298 0.017 -0.281
SW 0.000 -0.867 -0.867
STR 0.092 0.000 0.092
SC 0.824 0.284 1.108
DW SW 1.075 -0.176 0.899
PH 0.281 0.000 0.281
SC 0.388 -0.059 0.329
[1]
桑春晓. 棉花种植及生产机械化发展研究. 安徽农业科学, 2018, 46(5): 227-230.
SANG C X. Study on mechanization of cotton planting and production. Journal of Anhui Agricultural Sciences, 2018, 46(5): 227-230. (in Chinese)
[2]
平英华, 刘先才, 王振伟. 基于农艺农机融合的华北棉区棉花生产全程机械化技术规范研究. 安徽农学通报, 2018, 24(16): 83-86, 130.
PING Y H, LIU X C, WANG Z W. Study on technical specifications of cotton production mechanization in North China cotton region based on agronomical integration. Anhui Agricultural Science Bulletin, 2018, 24(16): 83-86, 130. (in Chinese)
[3]
毛树春. 我国棉花种植技术的现代化问题: 兼论“十二五” 棉花栽培相关研究. 中国棉花, 2010, 37(3): 2-6.

doi: 10.11963/issn.1000-632X.20100301
MAO S C. Modernization of cotton planting technology in China: Also on the related research of cotton cultivation in the 12th Five-Year Plan. China Cotton, 2010, 37(3): 2-6. (in Chinese)
[4]
陈传强, 蒋帆, 张晓洁, 张桂芝, 李浩. 我国棉花生产全程机械化生产发展现状、问题与对策. 中国棉花, 2017, 44(12): 1-4.

doi: 10.11963/1000-632X.ccqccq.20171220
CHEN C Q, JIANG F, ZHANG X J, ZHANG G Z, LI H. The present situation, problems and countermeasures of mechanized production of cotton in China. China Cotton, 2017, 44(12): 1-4. (in Chinese)

doi: 10.11963/1000-632X.ccqccq.20171220
[5]
中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 2013.
Institute of Cotton Research of CAAS. Chinese Cotton Cultivation Science. Shanghai: Shanghai Scientific and Technical Publishes, 2013. (in Chinese)
[6]
赵存鹏, 赵贵元, 郭宝生, 耿军义. 棉花机械播种方式的现状及存在问题. 河北农机, 2017(4): 18.
ZHAO C P, ZHAO G Y, GUO B S, GENG J Y. Present situation and existing problems of cotton mechanical sowing methods. Hebei Agricultural Machinery, 2017(4): 18. (in Chinese)
[7]
DAI J L, DONG H Z. Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 2014, 155: 99-110.
[8]
毛作林, 李举文, 宋玉萍, 卜东升. 阿克苏盐碱地植棉干播湿出技术. 农村科技, 2020(6): 19-21.
MAO Z L, LI J W, SONG Y P, BU D S. Dry sowing and wet out technology of cotton planting in Aksu saline-alkali land. Rural Science & Technology, 2020(6): 19-21. (in Chinese)
[9]
DING Y, MA J Q, ZHANG J H, BAI Y G, CUI B F, HAO X P, FU G T, ZHENG M, DING B X. Response of photosynthesis, population physiological indexes, and yield of cotton in dry areas to the new technology of “dry sowing and wet emergence”. Frontiers in Plant Science, 2024, 15: 1487832.
[10]
MA J Q, DING Y, ZHANG J H, BAI Y G, CUI B F, HAO X P, ZHENG M, DING B X, YANG S G. Impact of "dry sowing and wet emergence" water regulation on physiological growth characteristics and water productivity of cotton fields in southern Xinjiang Province. Agronomy, 2024, 14(4): 734.
[11]
郑子漂, 徐海江, 努斯热提·吾斯曼, 魏鑫, 郭仁松, 张大伟, 赖成霞, 王亮, 林涛, 张娜, 霍建平. 新疆喀什植棉区“干播湿出”技术应用现状及建议. 中国棉花, 2022, 49(12): 1-3.
ZHENG Z P. XU H J, WUSIM N, WEI X, GUO R S, ZHANG D W, LAI C X, WANG L, LIN T, ZHANG N, HUO J P. Current application status and development suggestions of "dry sowing and wet emergence" mode in Kashgar (Kashi) cotton planting area, Xinjiang. China Cotton, 2022, 49(12): 1-3. (in Chinese)
[12]
王延琴, 杨伟华, 许红霞, 周大云, 冯新爱. 不同生态区及收获期对棉子播种品质的影响. 棉花学报, 2003(1): 42-46.
WANG Y Q, YANG W H, XU H X, ZHOU D Y, FENG X A. Sowing quality of cottonseed effected by different ecological area and harvesting date. Cotton Science, 2003(1): 42-46. (in Chinese)
[13]
杨明达, 张素瑜, 李帅, 郑东方, 杨慎骄, 关小康, 王同朝. 不同播种灌溉方式对夏玉米出苗、干物质积累及转运和产量的影响. 河南农业科学, 2024, 53(1): 22-31.
YANG M D, ZHANG S Y, LI S, ZHENG D F, YANG S J, GUAN X K, WANG T C. Effects of different sowing and irrigation methods on seedling emergence, dry matter accumulation, transport and yield of summer maize. Journal of Henan Agricultural Sciences, 2024, 53(1): 22-31. (in Chinese)
[14]
徐敏, 李憬霖, 叶福民, 朱鹤, 王子胜. 温湿度对棉花种子萌发的影响研究. 农学学报, 2022, 12(10): 10-14, 20.

doi: 10.11923/j.issn.2095-4050.cjas2021-0176
XU M, LI J L, YE F M, ZHU H, WANG Z S. Effects of temperature and humidity on cotton seed germination. Journal of Agriculture, 2022, 12(10): 10-14, 20. (in Chinese)

doi: 10.11923/j.issn.2095-4050.cjas2021-0176
[15]
娄善伟, 托合提·艾买提, 司地克江·艾外力, 马腾飞, 边洋, 帕尔哈提·买买提, 张鹏忠. 苗期地温对棉花前期生育进程的影响研究. 中国农学通报, 2018, 34(35): 13-16.

doi: 10.11924/j.issn.1000-6850.casb17100097
LOU S, AIMAITI T, AIWAILI S, MA T F, BIAN Y, MAIMAITI P, ZHANG P Z. Soil temperature at seedling stage: effect on early growth process of cotton. Chinese Agricultural Science Bulletin, 2018, 34(35): 13-16. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb17100097
[16]
张鹤云, 姚成, 吴爱琼. 不同温度对棉种发芽的影响. 中国棉花, 2001, 28(12): 14-15.
ZHANG H Y, YAO C, WU A Q. Effects of different temperatures on cotton seed germination. China Cotton, 2001, 28(12): 14-15. (in Chinese)
[17]
唐永齐, 张友良, 王凤新, 窦允清, 李躲, 冯绍元. 地膜对花生土壤水热环境和生长的影响. 灌溉排水学报, 2024, 43(1): 17-27.
TANG Y Q, ZHANG Y L, WANG F X, DOU Y Q, LI D, FENG S Y. Effects of different degradable film and ordinary plastic film on soil hydrothermal conditions and peanut growth. Journal of Irrigation and Drainage, 2024, 43(1): 17-27. (in Chinese)
[18]
张治, 田富强, 钟瑞森, 胡和平. 新疆膜下滴灌棉田生育期地温变化规律. 农业工程学报, 2011, 27(1): 44-51.
ZHANG Z, TIAN F Q, ZHONG R S, HU H P. Spatial and Temporal pattern of soil temperature in cotton field under mulched drip irrigation condition in Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 44-51. (in Chinese)
[19]
徐爽, 阚雨晨. 不同肥力水平的土壤紧实度与含水量的相关度分析. 中国农学通报, 2022, 38(36): 94-100.

doi: 10.11924/j.issn.1000-6850.casb2021-1223
XU S, KAN Y C. Correlation of soil compactness and water content under different fertility levels. Chinese Agricultural Science Bulletin, 2022, 38(36): 94-100. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2021-1223
[20]
李少昆, 王克如, 冯聚凯, 谢瑞芝, 高世菊. 玉米秸秆还田与不同耕作方式下影响小麦出苗的因素. 作物学报, 2006, 32(3): 463-465, 478.
LI S K, WANG K R, FENG J K, XIE R Z, GAO S J. Factors affecting seeding emergence in winter wheat under different tillage patterns with maize stalk mulching returned to the field. Acta Agronomica Sinica, 2006, 32(3): 463-465, 478. (in Chinese)
[21]
VAZ C M P, MANIERI J M, DE MARIA I C, TULLER M. Modeling and correction of soil penetration resistance for varying soil water content. Geoderma, 2011, 166(1): 92-101.
[22]
袁席天, 白云岗, 孙三民, 刘洪波, 郑明, 肖军. 干播湿出模式下不同出苗水对棉花生理性状及产量的影响. 节水灌溉, 2022(9): 46-51.
YUAN X T, BAI Y G, SUN S M, LIU H B, ZHENG M, XIAO J. Effects of different seedling emergence water on physiological characters and yield of cotton under dry sowing and wet emergence mode. Water Saving Irrigation, 2022(9): 46-51. (in Chinese)
[23]
王延琴, 杨伟华, 许红霞, 周大云, 冯新爱, 匡猛. 水分胁迫对棉花种子萌发的影响. 棉花学报, 2009, 21(1): 73-76.

doi: 10.11963/cs090114
WANG Y Q, YANG W H, XU H X, ZHOU D Y, FENG X A, KUANG M. Effect of water stress on germination of cotton seeds. Cotton Science, 2009, 21(1): 73-76. (in Chinese)
[24]
李瑞春, 李憬霖, 徐敏, 叶福民, 朱鹤, 王子胜. 温湿度对棉花种子萌发过程中生理生化反应影响的研究. 种子, 2020, 39(12): 20-24.
LI R C, LI J L, XU M, YE F M, ZHU H, WANG Z S. Effects of temperature and humidity on physiological and biochemical indicators during cotton seed germination. Seed, 2020, 39(12): 20-24. (in Chinese)
[25]
肖让, 姚宝林. 干播湿出膜下滴灌棉花现蕾初期地温变化规律. 西北农业学报, 2013, 22(5): 49-54.
XIAO R, YAO B L. Soil temperature variation in cotton budding pre-stage with drip irrigation under mulch with dry seeding and wet emergence method. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(5): 49-54. (in Chinese)
[26]
董合忠. 棉花重要生物学和栽培特性及其在丰产简化栽培中的应用. 中国棉花, 2013, 40(9): 1-4.

doi: 10.11963/issn.1000-632X.20130901
DONG H Z. Major biological characteristics of cotton and their application in extensive high-yielding cultivation. China Cotton, 2013, 40(9): 1-4. (in Chinese)

doi: 10.11963/issn.1000-632X.20130901
[27]
张玉芹, 杨恒山, 李从锋, 赵明, 罗方, 张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响. 作物学报, 2020, 46(6): 902-913.

doi: 10.3724/SP.J.1006.2020.93053
ZHANG Y Q, YANG H S, LI C F, ZHAO M, LUO F, ZHANG R F. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain. Acta Agronomica Sinica, 2020, 46(6): 902-913. (in Chinese)
[28]
洪彦彬, 周桂元, 李少雄, 刘海燕, 陈小平, 温世杰, 梁炫强. 花生根部特征与地上部分性状的相关性分析. 热带作物学报, 2009, 30(5): 657-660.
HONG Y B, ZHOU G Y, LI S X, LIU H Y, CHEN X P, WEN S J, LIANG X Q. Correlation analysis of root and aboveground traits in peanut (Arachis hypogaea L.). Chinese Journal of Tropical Crops, 2009, 30(5): 657-660. (in Chinese)
[29]
梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征. 作物学报, 2024, 50(8): 2053-2066.

doi: 10.3724/SP.J.1006.2024.33071
LIANG L, ZHOU B Y, GAO Z H, WANG R, WANG X B, ZHAO M, LI C F. Root and shoot growth of different maize varieties in response to soil compaction stress. Acta Agronomica Sinica, 2024, 50(8): 2053-2066. (in Chinese)

doi: 10.3724/SP.J.1006.2024.33071
[30]
张合理, 罗宏海, 李璐, 张亚黎, 张旺锋. 膜下滴灌高产棉花根、冠生物量累积特性研究. 棉花学报, 2015, 27(5): 427-434.

doi: 10.11963/issn.1002-7807.201505006
ZHANG H L, LUO H H, LI L, ZHANG Y L, ZHANG W F. Characteristics of root and shoot biomass accumulation in high-yield cotton fields with mulch-drip irrigation. Cotton Science, 2015, 27(5): 427-434. (in Chinese)
[31]
MCKENZIE D C, GREENHALGH S E, KOPPI A J, MACLEOD D A, MCBRATNEY A B. Cotton root growth in a compacted Vertisol (Grey Vertosol). II. Correlation with image analysis parameters. Soil Research, 2001, 39(5): 1169.
[32]
PANDEY B K, HUANG G Q, BHOSALE R, HARTMAN S, STURROCK C J, JOSE L, MARTIN O C, KARADY M, VOESENEK L A C J, LJUNG K, LYNCH J P, BROWN K M, WHALLEY W R, MOONEY S J, ZHANG D B, BENNETT M J. Plant roots sense soil compaction through restricted ethylene diffusion. Science, 2021, 371(6526): 276-280.

doi: 10.1126/science.abf3013 pmid: 33446554
[33]
HUANG G Q, KILIC A, KARADY M, ZHANG J, MEHRA P, SONG X Y, STURROCK C J, ZHU W W, QIN H, HARTMAN S, SCHNEIDER H M, BHOSALE R, DODD I C, SHARP R E, HUANG R F, MOONEY S J, LIANG W Q, BENNETT M J, ZHANG D B, PANDEY B K. Ethylene inhibits rice root elongation in compacted soil via ABA-and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(30): e2201072119.
[34]
BUSSCHER W J, BAUER P J. Soil strength, cotton root growth and lint yield in a southeastern USA coastal loamy sand. Soil and Tillage Research, 2003, 74(2): 151-159.
[35]
董合忠, 杨国正, 田立文, 郑曙峰. 棉花轻简化栽培. 北京: 科学出版社, 2016.
DONG H Z, YANG G Z, TIAN L W, ZHENG S F. Light and Simplified Cultivation of Cotton. Beijing: Science Press, 2016. (in Chinese)
[36]
董合忠, 杨国正, 李亚兵, 田立文, 代建龙, 孔祥强. 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017, 43(5): 631-639.
DONG H Z, YANG G Z, LI Y B, TIAN L W, DAI J L, KONG X Q. Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms. Acta Agronomica Sinica, 2017, 43(5): 631-639. (in Chinese)
[37]
王一琪, 张文太, 田长彦, 买文选. 新疆南疆棉花“干播湿出”种植技术应用现状、面临的问题及解决策略. 中国农学通报, 2024, 40(3): 62-65.

doi: 10.11924/j.issn.1000-6850.2023-0152
WANG Y Q, ZHANG W T, TIAN C Y, MAI W X. Application, problems and solution strategies of "dry sowing and wet emergence" planting technology of cotton in southern Xinjiang. Chinese Agricultural Science Bulletin, 2024, 40(3): 62-65. (in Chinese)
[38]
WANG D W, WANG Z H, LV T B, ZONG R, ZHU Y, ZHANG J Z, WANG T Y. Effects of drip tape modes on soil hydrothermal conditions and cotton yield (Gossypium hirsutum L.) under machine-harvest patterns. PeerJ, 2021, 9: e12004.
[1] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[2] WANG WeiMeng, WEI YunXiao, TANG YunNi, LIU MiaoMiao, CHEN QuanJia, DENG XiaoJuan, ZHANG Rui. Establishment and Rooting Optimization of Agrobacterium rhizogenes Transformation System in Cotton [J]. Scientia Agricultura Sinica, 2025, 58(8): 1479-1493.
[3] ZHAO YuXuan, MIAO JiYuan, HU Wei, ZHOU ZhiGuo. Effects of Low Temperature at Seedling Stage on Cotton Floral Bud Differentiation and Cotton Plant Yield [J]. Scientia Agricultura Sinica, 2025, 58(7): 1311-1320.
[4] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[5] WEN Jin, NING YanFang, QIN Xin, LIU Yuan, ZHANG XiaoLing, ZHU YongHong, TIAN ShiMin, MA YanBin. Resistance Evaluation and Genetic Stability Analysis of Insect- Resistant and Glyphosate-Tolerant Transgenic Cotton Lines [J]. Scientia Agricultura Sinica, 2025, 58(12): 2291-2302.
[6] ZHANG YanJun, DAI JianLong, DONG HeZhong. On Multi-Objective Collaborative Cultivation in Cotton Production [J]. Scientia Agricultura Sinica, 2025, 58(10): 1908-1916.
[7] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[8] LEI JianFeng, YOU YangZi, ZHANG JinEn, DAI PeiHong, YU Li, DU ZhengYang, LI Yue, LIU XiaoDong. Screening of High-Efficient sgRNA for Targeted Knockout of GhAGL16 Gene in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(6): 1023-1033.
[9] LI KaiLi, WEI YunXiao, CHONG ZhiLi, MENG ZhiGang, WANG Yuan, LIANG ChengZhen, CHEN QuanJia, ZHANG Rui. Red and Blue Light Promotes Cotton Callus Induction and Proliferation [J]. Scientia Agricultura Sinica, 2024, 57(4): 638-649.
[10] ZHANG YongLi, ZHANG Ning, XU Jiao, XU DouDou, CHENG Fang, ZHANG ChengLong, WU BiBo, GONG YangCang, HE YunXin, WEI ShangZhi, TU XiaoJu, LIU AiYu, ZHOU ZhongHua. Effects of Different Strip Intercropping Patterns on the Growth and Productivity in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(22): 4444-4458.
[11] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
[12] YANG LiDa, PENG XinYue, ZHU WenXue, ZHAO Jing, YUAN XiaoTing, LIN Ping, LUO Kai, LI YiLing, LUO ChunMing, LI YuZe, YANG WenYu, YONG TaiWen. Effects of Straw Returning and Irrigation Methods on Seedling Emergence and Growth in Soybean and Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(17): 3366-3383.
[13] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[14] ZHAO WeiSong, GUO QingGang, CUI NaQi, LU XiuYun, LI SheZeng, MA Ping. Effects of Exogenous Addition of L-Proline on the Occurrence of Cotton Verticillium Wilt and Its Soil Microbial Community in Rhizosphere [J]. Scientia Agricultura Sinica, 2024, 57(11): 2143-2160.
[15] LOU Hui, ZHU JinCheng, HAN ZeGang, ZHANG Wei. Identification and Functional Analysis of the 5-Oxoprolinase Genes in Fusarium oxysporum [J]. Scientia Agricultura Sinica, 2024, 57(10): 1915-1929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!