Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (12): 2291-2302.doi: 10.3864/j.issn.0578-1752.2025.12.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Resistance Evaluation and Genetic Stability Analysis of Insect- Resistant and Glyphosate-Tolerant Transgenic Cotton Lines

WEN Jin1(), NING YanFang1,2, QIN Xin1, LIU Yuan1, ZHANG XiaoLing1, ZHU YongHong1, TIAN ShiMin1, MA YanBin1()   

  1. 1 Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, Shanxi
    2 College of Agronomy, Shanxi Agricultural University, Taigu 030800, Shanxi
  • Received:2024-12-21 Accepted:2025-03-19 Online:2025-06-19 Published:2025-06-19
  • Contact: MA YanBin

Abstract:

【Objective】Cotton bollworm (Helicoverpa armigera) and field weeds are major constraints to high-yield cotton production. Existing varieties with single traits (insect resistance or herbicide tolerance) fail to meet the demands of efficient cultivation. Developing transgenic cotton varieties with combined insect resistance and glyphosate tolerance will provide high-efficiency germplasm resources for stress-resistant cotton breeding.【Method】The insect-resistant fusion gene cry1Ac-vip3Da and glyphosate-tolerant gene g10-epsps were introduced into cotton R15 through Agrobacterium-mediated method, regenerated transgenic plants were screened via PCR, positive lines underwent multi-generation self-pollination to achieve homozygosity, and stable lines with superior resistance were selected. The expression of target genes in different tissues of transgenic lines was analyzed using qRT-PCR and ELISA. Bioactivity assays and glyphosate tolerance tests were conducted to evaluate the genetic stability of insect resistance and herbicide tolerance across generations (T4-T6). Agronomic traits of transgenic lines were comprehensively assessed. 【Result】Eight positive transgenic lines with dual resistance were identified through PCR screening, and CA-6, CA-7 and CA-17 lines exhibited higher resistance. qRT-PCR revealed high expression of cry1Ac-vip3Da and g10-epsps in all tissues of these lines, and expression levels varied significantly among tissues. ELISA analysis demonstrated significant differences in Cry1Ac-Vip3Da and G10-EPSPS protein content across tissues of the three transgenic lines, with the highest levels observed in leaves. Protein accumulation gradually decreased during the developmental stages (from the four-leaf stage to boll-opening stage), but remained stable across T4-T6 generations. Bioactivity assays and glyphosate tolerance tests demonstrated that three transgenic cotton lines (T4-T6 generations) exhibited corrected mortality rates of 65.12%-82.75%, tolerated glyphosate at over four times the recommended dosage, and showed no attenuation of resistance across generations. There were no significant differences in plant height, number of fruit branches, number of bells per plant, bell weight, lint percentage, seed cotton yield, and lint cotton yield between transgenic lines and R15.【Conclusion】The exogenous genes cry1Ac-vip3Da and g10-epsps were stably inherited across generations in transgenic lines CA-6, CA-7, and CA-17, conferring dual insect resistance and glyphosate tolerance without compromising agronomic performance.

Key words: cry1Ac-vip3Da, g10-epsps, transgenic cotton lines, insect resistance, glyphosate tolerance, stable genetics

Fig. 1

Diagram of the vector structure"

Table 1

Primers used in this study"

引物名称 Primer name 引物序列 Primer sequence (5′-3′) 用途 Usage
g10-epsps-F CTCTTCTTCCTGACGGACTC PCR


g10-epsps-R GACTTTCTGATGATGTGGTGTGC
cry1Ac-vip3Da-F CCATCTCACGCCATACTTCC
cry1Ac-vip3Da-R CACCTTGATTGTCCCTGGTC
Histone3-QF GGTGGTGTGAAGAAGCCTCAT qRT-PCR




Histone3-QR AATTTCACGAACAAGCCTCTGGAA
cry1Ac-vip3Da-QF GAGGTACGAGGTGACTGCCAA
cry1Ac-vip3Da-QR TCCTGTACTCAGCCTCACTGCT
g10-epsps-QF CTCCCTTATCGGTTTCTCTGAAG
g10-epsps-QR TGTAGTTCTTGGATGGCTGTGC

Fig. 2

PCR identification of transformants A: cry1Ac-vip3Da gene; B: g10-epsps gene; M: DL2000 DNA Marker; P+: Plasmid; CK-: R15; 1-8: Transformants"

Fig. 3

The relative expression level of cry1Ac-vip3Da and g10-epsps in different tissues of T4 transgenic lines"

Fig. 4

The level of Cry1Ac-Vip3Da and G10-EPSPS protein in different tissues of CA-6, CA-7, CA-17"

Fig. 5

Analysis of insect resistance of transgenic cotton lines A: Insect bioassays for three generations of CA-6, CA-7, CA-17 transgenic lines; B: Corrcted mortalities rate of cotton bollworm larvae feeding on leaves of three generations different transgenic lines. The lower-case letters indicate significant difference (P<0.05)"

Fig. 6

Glyphosate resistant assay of transgenic cotton lines CA-6, CA-7 and CA-17"

Table 2

Leaf damage rate and survival rate of T4-T6 transgenic lines treated with glyphosate"

表型参数
Phenotypic parameters
R15 CA-6 CA-7 CA-17
T4 T5 T6 T4 T5 T6 T4 T5 T6
叶片受害率
Leaf damage rate (%)
100.00 10.14±0.35b 11.68±0.85a 10.93±0.84ab 3.76±0.28e 3.97±0.33e 3.56±0.56e 5.38±0.55d 6.54±0.63c 6.38±0.35cd
成活率
Survival rate (%)
0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Fig. 7

The relative contents of shikimic acid in cotton leaves with different glyphosate treatment"

Table 3

Comparison of agronomic traits between CA-6, CA-7, CA-17 and R15"

材料
Material
株高
Plant height
(cm)
果枝数
Fruit branches
单株铃数
Bolls number
铃重
Boll weight
(g)
籽棉产量
Seed cotton yield (kg·hm-2)
皮棉产量
Lint yield
(kg·hm-2)
衣分
Lint percentage
(%)
R15 98.33±9.01 13.56±2.13 25.8±1.8 5.60±0.34 4231.56 1760.33 41.60±2.12
CA-6 100.43±4.51 14.10±1.93 25.6±3.2 5.90±0.65 4236.26 1745.34 41.20±2.06
CA-7 99.27±4.95 14.00±2.21 28.4±2.1* 5.40±1.01 4396.89 1798.33 40.90±2.25
CA-17 96.17±5.92 13.30±1.49 24.1±1.9 5.70±0.74 4191.50 1680.79 40.10±2.40
[1]
HUANG G, HUANG J Q, CHEN X Y, ZHU Y X. Recent advances and future perspectives in cotton research. Annual Review of Plant Biology, 2021, 72: 437-462.

doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477
[2]
WEN X P, CHEN Z W, YANG Z R, WANG M J, JIN S X, WANG G D, ZHANG L, WANG L J, LI J Y, SAEED S, HE S P, WANG Z, WANG K, KONG Z S, LI F G, ZHANG X L, CHEN X Y, ZHU Y X. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Science China Life Sciences, 2023, 66(10): 2214-2256.
[3]
郭三堆, 王远, 孙国清, 金石桥, 周焘, 孟志刚, 张锐. 中国转基因棉花研发应用二十年. 中国农业科学, 2015, 48(17): 3372-3387. doi: 10.3864/j.issn.0578-1752.2015.17.005.
GUO S D, WANG Y, SUN G Q, JIN S Q, ZHOU T, MENG Z G, ZHANG R. Twenty years of research and application of transgenic cotton in China. Scientia Agricultura Sinica, 2015, 48(17): 3372-3387. doi: 10.3864/j.issn.0578-1752.2015.17.005. (in Chinese)
[4]
束长龙, 张风娇, 黄颖, 李艳秋, 张杰. Bt杀虫基因研究现状与趋势. 中国科学: 生命科学, 2016, 46(5): 548-555.
SHU C L, ZHANG F J, HUANG Y, LI Y Q, ZHANG J. Current status and research trends of bt insecticidal gene. Scientia Sinica (Vitae), 2016, 46(5): 548-555. (in Chinese)
[5]
郭三堆, 倪万潮, 徐琼芳. 编码杀虫蛋白融合基因和表达载体及其应用: 中国,ZL95119563.8.
GUO S D, NI W C, XU Q F. Encoding insecticidal protein fusion gene and expression vectors and its application: China, ZL95119563.8 . (in Chinese)
[6]
崔洪志, 郭三堆. 我国抗虫转基因棉花研究取得重大进展. 中国农业科学, 1996, 29(1): 93. doi: 10.3864/j.issn.0578-1752.1996-29-01-93.
CUI H Z, GUO S D. Important progress on study of insect-resistance of transgeneic cotton in China. Scientia Agricultura Sinica, 1996, 29(1): 93. doi: 10.3864/j.issn.0578-1752.1996-29-01-93. (in Chinese)
[7]
刘晨曦, 李云河, 高玉林, 宁长明, 吴孔明. 棉铃虫对转Bt基因抗虫棉花的抗性机制及治理. 中国科学: 生命科学, 2010, 40(10): 920-928.
LIU C X, LI Y H, GAO Y L, NING C M, WU K M. Resistance mechanism and control of Helicoverpa armigera to Bt transgenic cotton. Scientia Sinica (Vitae), 2010, 40(10): 920-928. (in Chinese)
[8]
TABASHNIK B E, DENNEHY T J, CARRIÈRE Y. Delayed resistance to transgenic cotton in pink bollworm. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43): 15389-15393.
[9]
刘志, 郭旺珍, 朱协飞, 朱祯, 张天真. 转Bt+GNA双价基因抗虫棉花的抗虫性表现特征. 高技术通讯, 2003, 13(1): 37-41.
LIU Z, GUO W Z, ZHU X F, ZHU Z, ZHANG T Z. Characteristics of resistance of transgenic Bt+GNA cotton line to both Helicoverpa armigera and Aphis gossypii glover. High Technology Letters, 2003, 13(1): 37-41. (in Chinese)
[10]
吴家和, 田颖川, 罗晓丽, 郭洪年, 石跃进, 陈晓英, 贾燕涛, 肖娟丽, 张献龙. 转两类抗虫基因棉花优良纯合品系的选育. 中国农业科学, 2003, 36(6): 651-656. doi: 10.3864/j.issn.0578-1752.030609.
WU J H, TIAN Y C, LUO X L, GUO H N, SHI Y J, CHEN X Y, JIA Y T, XIAO J L, ZHANG X L. Selection of homozygous cotton lines transformed with two types of insect-resistant genes. Scientia Agricultura Sinica, 2003, 36(6): 651-656. doi: 10.3864/j.issn.0578-1752.030609. (in Chinese)
[11]
张林水, 朱祯, 吴霞, 姜艳丽, 徐鸿林, 上官小霞, 李波, 李燕娥. 转三价抗虫基因彩色棉的获得. 西北植物学报, 2005, 25(6): 1126-1131.
ZHANG L S, ZHU Z, WU X, JIANG Y L, XU H L, SHANGGUAN X X, LI B, LI Y E. Acquisition of transgenic colour cotton with a trivalent insect-resistant gene. Acta Botanica Boreali-occidentalia Sinica, 2005, 25(6): 1126-1131. (in Chinese)
[12]
SHAD M, YASMEEN A, AZAM S, BAKHSH A, LATIF A, SHAHID N, DIN S U, SADAQAT S, RAO A Q, ALI SHAHID A. Enhancing the resilience of transgenic cotton for insect resistance. Molecular Biology Reports, 2022, 49(6): 5315-5323.
[13]
DIN S U, AZAM S, RAO A Q, SHAD M, AHMED M, GUL A, LATIF A, ALI M A, HUSNAIN T, SHAHID A A. Development of broad-spectrum and sustainable resistance in cotton against major insects through the combination of Bt and plant lectin genes. Plant Cell Reports, 2021, 40(4): 707-721.

doi: 10.1007/s00299-021-02669-6 pmid: 33634360
[14]
DILL G M. Glyphosate-resistant crops: History, status and future. Pest Management Science, 2005, 61(3): 219-224.

doi: 10.1002/ps.1008 pmid: 15662720
[15]
燕树锋, 祝水金, 铁双贵. 转EPSPS-G6基因抗草甘膦棉花的获得及抗性鉴定. 基因组学与应用生物学, 2018, 37(9): 3944-3949.
YAN S F, ZHU S J, TIE S G. Acquirement and glyphosate resistance identification of transgenic cotton with EPSPS-G6 gene . Genomics and Applied Biology, 2018, 37(9): 3944-3949. (in Chinese)
[16]
陆国清, 王春玲, 郝宇琼, 郭惠明, 黄英金, 程红梅. 转G10eve基因棉花的获得及草甘膦抗性初探. 棉花学报, 2018, 30(1): 21-28.
LU G Q, WANG C L, HAO Y Q, GUO H M, HUANG Y J, CHENG H M. Generation and glyphosate resistance analysis of G10eve transgenic cotton. Cotton Science, 2018, 30(1): 21-28. (in Chinese)
[17]
LIANG C Z, SUN B, MENG Z G, MENG Z H, WANG Y, SUN G Q, ZHU T, LU W, ZHANG W, MALIK W, LIN M, ZHANG R, GUO S D. Co-expression of GR79 EPSPS and GAT yields herbicide-resistant cotton with low glyphosate residues. Plant Biotechnology Journal, 2017, 15(12): 1622-1629.

doi: 10.1111/pbi.12744 pmid: 28418615
[18]
王宛如, 曹跃芬, 盛况, 陈进红, 赵天伦, 祝水金. 转1174AALdico-2+CTP耐草甘膦优异棉花种质系的创制及其特性. 中国农业科学, 2023, 56(17): 3261-3276. doi:10.3864/j.issn.0578-1752.2023.17.003.
WANG W R, CAO Y F, SHENG K, CHEN J H, ZHAO T L, ZHU S J. The creation and characteristics of cotton germplasm lines transgenic 1174AALdico-2+CTP gene with excellent glyphosate tolerance . Scientia Agricultura Sinica, 2023, 56(17): 3261-3276. doi:10.3864/j.issn.0578-1752.2023.17.003. (in Chinese)
[19]
马燕斌, 李换丽, 文晋, 周仙婷, 秦欣, 王霞, 王新胜, 李燕娥. 转基因抗草甘膦棉花R1-3株系的分子特征鉴定. 中国农业科学, 2023, 56(17): 3277-3284. doi:10.3864/j.issn.0578-1752.2023.17.004.
MA Y B, LI H L, WEN J, ZHOU X T, QIN X, WANG X, WANG X S, LI Y E. Identification of molecular characterizations for transgenic cotton R1-3 line of glyphosate tolerance. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284. doi:10.3864/j.issn.0578-1752.2023.17.004. (in Chinese)
[20]
王旭静, 王艳青, 唐巧玲, 焦悦, 王志兴. 全球转基因作物研发与产业化应用. 现代农药, 2023, 22(1): 11-19.
WANG X J, WANG Y Q, TANG Q L, JIAO Y, WANG Z X. Development and application of transgenic crops in globe. Modern Agrochemicals, 2023, 22(1): 11-19. (in Chinese)
[21]
李浩辉, 刘彩月, 张海文, 王旭静, 唐巧玲, 王友华. 2022年度全球转基因作物产业化发展现状及趋势分析. 中国农业科技导报, 2023, 25(12): 6-16.
LI H H, LIU C Y, ZHANG H W, WANG X J, TANG Q L, WANG Y H. Global genetically modified crop industrialization trends in 2022. Journal of Agricultural Science and Technology, 2023, 25(12): 6-16. (in Chinese)
[22]
王旭静, 张欣, 刘培磊, 王志兴. 复合性状转基因植物的应用现状与安全评价. 中国生物工程杂志, 2016, 36(4): 18-23.
WANG X J, ZHANG X, LIU P L, WANG Z X. The application and safety assessment of stacked transgenic plant. China Biotechnology, 2016, 36(4): 18-23. (in Chinese)
[23]
MOBEEN A, MANSOOR S, ASIF M, NAQVI R Z, ASIF M, MUKHTAR Z. P07-45 Toxicity assessment of transgenic cotton containing double gene (Cry1Ac and Cry2Ab) and triple gene (Cry1Ac, Cry2Ab, and EPSPS) as plant incorporated protectants against insects and weed. Toxicology Letters, 2022, 368: S137.
[24]
SIDDIQUI H A, ASAD S, NAQVI R Z, ASIF M, LIU C C, LIU X, FAROOQ M, ABRO S, RIZWAN M, ARSHAD M, SARWAR M, AMIN I, MUKHTAR Z, MANSOOR S. Development and evaluation of triple gene transgenic cotton lines expressing three genes (Cry1Ac- Cry2Ab-EPSPS) for lepidopteran insect pests and herbicide tolerance. Scientific Reports, 2022, 12(1): 18422.
[25]
陈旭升, 赵亮, 狄佳春. 陆地棉抗虫与抗草甘膦基因的分子聚合及经济性状相关分析. 作物学报, 2024, 50(10): 2637-2642.

doi: 10.3724/SP.J.1006.2024.44028
CHEN X S, ZHAO L, DI J C. Molecular pyramiding of insect and glyphosate-resistant genes and correlation analysis on economic traits of the pyramided lines in upland cotton. Acta Agronomica Sinica, 2024, 50(10): 2637-2642. (in Chinese)
[26]
巩元勇, 郭书巧, 束红梅, 何林池, 倪万潮. 1株抗草甘膦棉花突变体草甘膦抗性的初步鉴定. 棉花学报, 2014, 26(1): 18-24.

doi: 10.11963/cs140103
GONG Y Y, GUO S Q, SHU H M, HE L C, NI W C. Preliminary identification of glyphosate resistance of a new cotton mutant. Cotton Science, 2014, 26(1): 18-24. (in Chinese)
[27]
NAIK V C, KUMBHARE S, KRANTHI S, SATIJA U, KRANTHI K R. Field-evolved resistance of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), to transgenic Bacillus thuringiensis (Bt) cotton expressing crystal 1Ac (Cry1Ac) and Cry2Ab in India. Pest Management Science, 2018, 74(11): 2544-2554.
[28]
TABASHNIK B E, CARRIÈRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnology, 2017, 35: 926-935.

doi: 10.1038/nbt.3974 pmid: 29020006
[29]
TABASHNIK B E, FABRICK J A, CARRIÈRE Y. Global patterns of insect resistance to transgenic bt crops: The first 25 years. Journal of Economic Entomology, 2023, 116(2): 297-309.
[30]
TABASHNIK B E, CARRIÈRE Y. Global patterns of resistance to bt crops highlighting pink bollworm in the United States, China, and India. Journal of Economic Entomology, 2019, 112(6): 2513-2523.

doi: 10.1093/jee/toz173 pmid: 31254345
[31]
CARRIÈRE Y, FABRICK J A, TABASHNIK B E. Can Pyramids and seed mixtures delay resistance to Bt crops ? Trends in Biotechnology, 2016, 34(4): 291-302.
[32]
邹俊杰, 徐妙云, 张兰, 郑红艳, 王磊. 转基因复合抗虫耐除草剂玉米BFL4-1的分子特征及功能评价. 中国农业科技导报, 2022, 24(1): 31-37.

doi: 10.13304/j.nykjdb.2020.0111
ZOU J J, XU M Y, ZHANG L, ZHENG H Y, WANG L. Molecular characteristics and functional evaluation of transgenic maize BFL4-1 with stacked insect and herbicide resistance traits. Journal of Agricultural Science and Technology, 2022, 24(1): 31-37. (in Chinese)

doi: 10.13304/j.nykjdb.2020.0111
[33]
张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究. 浙江农业学报, 2023, 35(8): 1823-1833.

doi: 10.3969/j.issn.1004-1524.20230491
ZHANG S Y, LIN C Y, YE Y X, SHEN Z C. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833. (in Chinese)

doi: 10.3969/j.issn.1004-1524.20230491
[34]
FANG Q X, CAO Y X, OO T H, ZHANG C, YANG M Y, TANG Y C, WANG M Z, ZHANG W, ZHANG L, ZHENG Y H, LI W B, MENG F L. Overexpression of cry1c* enhances resistance against to soybean pod borer (Leguminivora glycinivorella) in soybean. Plants, 2024, 13(5): 630.
[35]
王鹏, 葛晓阳, 李付广. 两种转基因抗虫棉L280和L282外源基因插入位点的分析. 中国棉花, 2020, 47(8): 10-15.

doi: 10.11963/1000-632X.wplfg.202007
WANG P, GE X Y, LI F G. Analysis on the insertion sites of exogenous genes of two transgenic insect-resistant cotton L280 and L282. China Cotton, 2020, 47(8): 10-15. (in Chinese)
[36]
KATTA S, TALAKAYALA A, REDDY M K, ADDEPALLY U, GARLADINNE M. Development of transgenic cotton (Narasimha) using triple gene Cry2Ab-Cry1F-Cry1Ac construct conferring resistance to lepidopteran pest. Journal of Biosciences, 2020, 45(1): 31.
[37]
BEN HAMADOU-CHARFI D, BOUKEDI H, ABDELKEFI- MESRATI L, TOUNSI S, JAOUA S. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. Journal of Invertebrate Pathology, 2013, 114(2): 139-143.
[38]
WELCH K L, UNNITHAN G C, DEGAIN B A, WEI J Z, ZHANG J, LI X C, TABASHNIK B E, CARRIÈRE Y. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. Journal of Invertebrate Pathology, 2015, 132: 149-156.
[39]
BECKIE H J. Herbicide-resistant weed management: Focus on glyphosate. Pest Management Science, 2011, 67(9): 1037-1048.

doi: 10.1002/ps.2195 pmid: 21548004
[40]
HEAP I. Global perspective of herbicide-resistant weeds. Pest Management Science, 2014, 70(9): 1306-1315.

doi: 10.1002/ps.3696 pmid: 24302673
[41]
COLLIER R, THOMSON J G, THILMONY R. A versatile and robust Agrobacterium-based gene stacking system generates high-quality transgenic Arabidopsis plants. The Plant Journal, 2018, 95(4): 573-583.
[42]
WANG Y Q, LIANG C Z, WU S J, ZHANG X Y, TANG J Y, JIAN G L, JIAO G L, LI F G, CHU C C. Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins. Molecular Plant, 2016, 9(10): 1436-1439.
[43]
夏兰芹, 王远, 郭三堆. 外源基因在转基因植物中的表达与稳定性. 生物技术通报, 2000, 16(3): 8-12.
XIA L Q, WANG Y, GUO S D. The stability of the expression of foreign genes in transgenic plants. Biotechnology Information, 2000, 16(3): 8-12. (in Chinese)
[44]
张安红, 王志安, 肖娟丽, 刘圆, 罗晓丽. 转新型抗虫基因Vip3A棉花新种质的创制. 西北植物学报, 2020, 40(8): 1287-1293.
ZHANG A H, WANG Z A, XIAO J L, LIU Y, LUO X L. Development of cotton germplasm introduced with novel insect resistant gene Vip3A. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(8): 1287-1293. (in Chinese)
[45]
梁成真, 臧有义, 孟志刚, 王远, MUBASHIR Abbas, 何海焱, 周琪, 魏云晓, 张锐, 郭三堆. 耐除草剂棉花GGK2的遗传稳定性分析及性状鉴定. 中国农业科学, 2023, 56(17): 3251-3261. doi:10.3864/j.issn.0578-1752.2023.17.002.
LIANG C Z, ZANG Y Y, MENG Z G, WANG Y, MUBASHIR A, HE H Y, ZHOU Q, WEI Y X, ZHANG R, GUO S D. Identification of target traits and genetic stability of transgenic cotton GGK2. Scientia Agricultura Sinica, 2023, 56(17): 3251-3261. doi:10.3864/j.issn.0578-1752.2023.17.002. (in Chinese)
[46]
SUFYAN TAHIR M, LATIF A, BASHIR S, SHAD M, KHAN M A U, GUL A, SHAHID N, HUSNAIN T, RAO A Q, ALI SHAHID A. Transformation and evaluation of Broad-Spectrum insect and weedicide resistant genes in Gossypium arboreum (Desi Cotton). GM Crops & Food, 2021, 12(1): 292-302.
[1] SUN Yue, LIU Xiu-xia, LI Li-li, GUAN Yun-yun, ZHANG Ju-ren. Production of Transgenic Maize Germplasm with Multi-Traits of Insect-resistance, Glyphosate-Resistance and Drought-Tolerance [J]. Scientia Agricultura Sinica, 2015, 48(2): 215-228.
[2] KOU Jiang-Tao, SHI Shang-Li, HU Gui-Xin, ZHOU Wan-Hai, YAO Tuo. Photosynthetic Physiology of Odontothrips Damaged Medicago sativa [J]. Scientia Agricultura Sinica, 2013, 46(12): 2459-2470.
[3] ,,,,,. Inheritance Analysis and Mapping QTLs Related to Cotton Worm Resistance in Soybeans [J]. Scientia Agricultura Sinica, 2005, 38(07): 1369-1372 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!