Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2145-2161.doi: 10.3864/j.issn.0578-1752.2025.11.006

• PLANT PROTECTION • Previous Articles     Next Articles

Calcium Regulates Reactive Oxygen Species and Endophytic Bacteria to Enhance Rice Resistance to Sheath Blight

ZHAO ShouShuai(), DU MengXiang, GUO SiYu, ZHANG Shuo, ZHAO HongWei, ZHAO ChangJiang()   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University/Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, Heilongjiang
  • Received:2025-01-15 Accepted:2025-02-22 Online:2025-06-01 Published:2025-06-09
  • Contact: ZHAO ChangJiang

Abstract:

【Background】 Rice sheath blight, caused by Rhizoctonia solani, is a prevalent disease in rice-growing regions worldwide, posing significant challenges to the green ecological cultivation of rice due to the severe lack of resistant varieties.【Objective】 To elucidate the regulatory effect of exogenous calcium treatment on rice disease resistance and its regulatory mechanism.【Method】 Four-leaf stage indica and japonica rice seedlings were sprayed with a 5 mmol·L-1 calcium regulator at 150 mL and sprayed twice at a 24 h interval. The toothpick insertion method was used to inoculate R. solani in the second- and third-leaf sheaths of rice 48 h after the first spray. Leaves from the same part were taken for determination of reactive oxygen species (ROS)-related indicators, photosynthetic pigment content, and endophytic bacterial analysis.【Result】 Calcium addition treatment (CaCl2 and Ca(NO3)2) enhanced the resistance of the tested rice against R. solani while the chelating agent EGTA treatment weakened their resistance. Compared with the blank control, the calcium content of plants was increased with calcium addition treatment and decreased with calcium reduction treatment; pathogen inoculation resulted in lower calcium content in the plants compared to the corresponding control treatments. All calcium addition treatments caused an increase in the content of and H2O2 in rice seedlings, the change of ROS content caused by the calcium reduction treatment was more obvious than that of calcium addition treatment. Calcium addition treatment caused changes in rice ROS content consistent with the trend of lesion area changes, with a positive correlation between the two. Calcium addition treatment also maintained the enzyme activities of SOD, POD, CAT, APX, GPX and content of GSH at relatively high levels. The increase in CAT activity was particularly significant. In most cases, calcium reduction treatment significantly reduced the activity of related enzymes. Calcium addition treatment could reconstruct rice’s ROS homeostasis and enhance disease resistance and immune responses, including ROS production, antioxidant systems, and membrane damage indicators. Compared with the blank control, the positive correlation between the lesion area and H2O2 content in rice treated with calcium addition was enhanced, the negative correlation with CAT was enhanced, the negative correlation with ASA was enhanced, the negative correlation with APX was weakened, the correlation with GSH turned from the negative to positive, the positive correlation with MDA was weakened, and the correlation with conductivity turned from negative to positive. Calcium addition treatment reduced the microbial richness of endophytic bacterial community in inoculated rice leaves and limitedly increased the diversity of endophytic bacterial community. Although calcium addition treatment had a limited impact on the endophytic bacterial co-occurrence network in rice, the inoculation of R. solani significantly affected the endophytic bacterial network in rice. Furthermore, the network robustness after calcium addition treatment was significantly higher than that of the control group and the calcium reduction treatment group, both before and after inoculation; the network vulnerability after inoculation was significantly lower than that of the control group and the calcium reduction treatment group.【Conclusion】 Calcium addition treatment can significantly reduce the relative lesion area of tested rice, enhance the activities of SOD, POD, CAT and content of GSH, decrease the accumulation of ROS, reduce membrane damage, maintain the homeostasis of ROS and enhance the disease resistance of rice; simultaneously, calcium addition treatment reduces the richness of endophytic bacterial community, increases its diversity, enhances the proportion of beneficial bacterial genera, restructures the endophytic bacterial community with enhanced stability.

Key words: calcium, rice, sheath blight, Rhizoctonia solani, reactive oxygen species (ROS), endophytic bacteria

Table 1

qRT-PCR specific primers"

引物(基因号)
Primer (Gene ID)
引物序列
Primer sequence (5′-3′)
OsCAT2-F (LOC_Os06g51150) GCACAGTTTGACAGGGAG
OsCAT2-R (LOC_Os06g51150) GGTCTGAACACCAGGAGC
OsCNGC9-F (LOC_Os09g38580) ACTCATGGTGGCCAGAAGAA
OsCNGC9-R (LOC_Os09g38580) TGCATTTGAGCAATGGCACT
OsAnn8-F (LOC_Os09g20330) CGATGTGCGACGCCAAGAC
OsAnn8-R (LOC_Os09g20330) TCGCCGTCCTTCCTCTTCAG
OsMCA1-F (LOC_Os03g06120) TTGATGTGTTGTTGCTGTGCG
OsMCA1-R (LOC_Os03g06120) ACTGAAATGAGGGTGGGCTAATC
OsActin-F (LOC_Os10g36650) CATGCTATCCCTCGTCTCGACCT
OsActin-R (LOC_Os10g36650) GCACTTCATGATGGAGTTGTAT

Fig. 1

Effect of calcium treatment on rice resistance to sheath blight"

Table 2

Relative lesion area of rice under calcium treatment"

处理
Treatment
相对病斑面积Relative lesion area
晶两优Jingliangyou 垦粳Kenjing
Con 0.32±0.01b 0.49±0.02b
CaCl2 0.17±0.01d 0.08±0.01d
Ca(NO3)2 0.26±0.01c 0.16±0.01c
EGTA 0.41±0.01a 0.61±0.02a

Fig. 2

Leaf staining maps of Jingliangyou and Kenjing BRS:接菌前Before inoculation of R. solani;ARS:接菌后After inoculation of R. solani。下同The same as below"

Table 3

Effects of calcium treatment on ROS-related indicators in the inoculated rice"

测定指标
Measurement indicator
处理
Treatment
晶两优Jingliangyou 垦粳Kenjing
BRS ARS BRS ARS
含量
content (nmol·g-1 FW)
Con 0.80±0.02c 1.55±0.02b** 0.22±0.01c 0.51±0.02b**
CaCl2 0.94±0.04b 1.21±0.01c** 0.27±0.01b 0.33±0.02d
Ca(NO3)2 1.02±0.03b 1.26±0.01c** 0.29±0.01b 0.42±0.02c**
EGTA 1.31±0.01a 1.67±0.06a** 0.43±0.03a 0.82±0.04a**
H2O2含量
H2O2 content (mmol·g-1 FW)
Con 0.74±0.01b 1.25±0.02b** 0.58±0.02c 1.25±0.01b**
CaCl2 0.77±0.01b 0.88±0.01d** 0.66±0.02b 0.86±0.02d**
Ca(NO3)2 0.77±0.01b 0.96±0.01c** 0.70±0.01b 0.94±0.02c**
EGTA 0.86±0.02a 1.61±0.02a** 1.04±0.03a 1.43±0.02a**
电解质渗透率
Electrolyte leakage rate (%)
Con 6.20±0.18b 12.15±0.18a** 3.88±0.19b 5.68±0.24b**
CaCl2 5.40±0.10c 7.61±0.12c** 3.02±0.16c 3.66±0.13d
Ca(NO3)2 5.28±0.15c 10.18±0.11b** 3.52±0.19bc 4.41±0.20c
EGTA 7.99±0.22a 11.69±0.15a** 4.57±0.19a 8.60±0.22a**
MDA含量
MDA content (µmol·g-1 FW)
Con 0.0091±0.0002b 0.0137±0.0001b** 0.0060±0.0001b 0.0090±0.0001b**
CaCl2 0.0089±0.0001b 0.0119±0.0002c** 0.0047±0.0001c 0.0056±0.0002d**
Ca(NO3)2 0.0093±0.0002b 0.0118±0.0002c** 0.0060±0.0001b 0.0069±0.0002c**
EGTA 0.0121±0.0002a 0.0161±0.0001a** 0.0091±0.0001a 0.0113±0.0002a**

Table 4

Effects of calcium treatment on calcium content and antioxidant enzyme activity in the inoculated rice"

测定指标
Measurement indicator
处理
Treatment
晶两优Jingliangyou 垦粳Kenjing
BRS ARS BRS ARS
Ca含量
Ca content (μg·g-1)
Con 218.51±7.93b 113.55±5.43b** 92.89±6.35c 66.99±3.60b
CaCl2 242.76±8.96a 143.31±10.88a** 102.53±10.66b 86.28±2.63a
Ca(NO3)2 233.67±9.17a 136.14±8.02ab** 124.30±6.04a 72.50±4.54b**
EGTA 189.31±8.84c 160.11±7.90a 86.00±7.57d 71.68±4.51b
SOD活性
SOD activity (U·g-1 FW)
Con 108.80±1.37c 142.69±1.52c** 140.37±0.93b 166.67±1.26b**
CaCl2 146.07±0.90a 172.83±0.91a** 140.89±0.55b 174.28±1.70a**
Ca(NO3)2 149.17±1.02a 169.86±0.26a** 146.19±1.54a 174.02±0.68a**
EGTA 125.88±1.92b 163.17±1.10b** 136.29±0.63c 131.60±1.99c
POD活性
POD activity (U·mg-1 FW)
Con 24.58±0.18c 26.94±0.29b** 26.46±0.26c 30.13±0.48c**
CaCl2 27.91±0.36b 30.76±0.41a** 31.29±0.13a 34.57±0.30a**
Ca(NO3)2 29.10±0.20a 30.16±0.64a 28.50±0.03b 32.07±0.28b**
EGTA 22.98±0.20d 26.38±0.44b** 25.67±0.07d 30.88±0.15c**
CAT活性
CAT activity (U·g-1 FW)
Con 28.89±2.22b 46.67±3.33b 28.89±2.22b 71.11±2.22b**
CaCl2 42.22±2.22a 93.33±3.85a** 55.56±2.22a 100.00±3.85a**
Ca(NO3)2 37.78±2.22a 80.00±3.85a** 55.56±2.22a 95.56±2.22a**
EGTA 22.22±2.22b 33.33±6.67b 22.22±2.22b 68.89±2.22b**

Table 5

Effect of calcium treatment on ascorbic acid-glutathione circulatory system in the inoculated rice"

测定指标
Measurement indicator
处理
Treatment
晶两优Jingliangyou 垦粳Kenjing
BRS ARS BRS ARS
APX活性
APX activity (U·g-1 FW)
Con 70.00±3.21b 84.22±2.25a** 81.48±1.48b 106.67±2.57c**
CaCl2 78.89±1.92a 88.07±1.78a 79.26±3.70b 144.44±4.44a**
Ca(NO3)2 83.33±1.92a 89.56±1.90a 97.78±6.67a 133.33±2.57b**
EGTA 55.56±1.28c 42.22±1.28b** 46.67±2.57c 76.30±2.67d**
GPX活性
GPX activity (U·mg-1 FW)
Con 1.72±0.02b 2.20±0.01b** 2.27±0.01c 2.34±0.02b**
CaCl2 1.93±0.02a 2.38±0.002a** 2.32±0.005b 2.43±0.01a**
Ca(NO3)2 1.91±0.01a 2.15±0.02c** 2.36±0.02a 2.42±0.02a
EGTA 1.52±0.005c 2.06±0.02d** 2.24±0.01c 2.29±0.01c
ASA含量
ASA content (μg·g-1 FW)
Con 208.55±3.03a 195.83±4.91a 207.81±0.52a 207.18±0.61a
CaCl2 208.63±3.79a 196.35±3.08a 208.90±0.52a 207.41±0.69a
Ca(NO3)2 209.28±2.61a 196.19±3.67a 209.33±0.6a 208.88±0.58a
EGTA 187.11±3.67b 172.46±1.77b 206.08±0.45b 203.15±0.63b
GSH含量
GSH content (μmol·g-1 FW)
Con 308.14±4.14c 320.73±4.64c 349.52±3.18ab 370.06±3.60b
CaCl2 330.67±4.03b 373.08±5.78b** 360.12±3.44a 383.98±5.74b
Ca(NO3)2 351.21±5.78a 406.21±4.64a** 360.79±5.18a 419.10±10.35a**
EGTA 333.32±1.75b 296.87±2.89d** 338.68±3.44b 321.27±3.60c

Table 6

Effect of calcium treatment on gene expression of Jingliangyou"

基因
Gene
处理
Treatment
相对表达量Relative expression level
BRS ARS
CNGC9 Con 1.00±0.04a 0.71±0.05a
CaCl2 1.01±0.08a 0.62±0.06a
Ca(NO3)2 1.01±0.08a 0.24±0.03b**
EGTA 1.03±0.19a 0.74±0.03a
Ann8 Con 1.18±0.18a 0.18±0.02b**
CaCl2 1.06±0.22a 0.69±0.13a
Ca(NO3)2 1.08±0.27a 0.08±0.01b**
EGTA 1.04±0.21a 0.12±0.003b**
MCA1 Con 1.00±0.07a 0.44±0.05a*
CaCl2 1.05±0.21a 0.26±0.07a**
Ca(NO3)2 1.04±0.21a 0.32±0.02a**
EGTA 1.00±0.05a 0.48±0.02a*
CAT2 Con 1.04±0.19a 0.92±0.03c
CaCl2 1.11±0.35a 1.83±0.20b*
Ca(NO3)2 1.01±0.08a 2.30±0.03a**
EGTA 1.01±0.07a 0.58±0.03c

Table 7

Effect of calcium treatment on photosynthetic pigment content in the inoculated rice"

测定指标
Measurement indicator
处理
Treatment
晶两优Jingliangyou 垦粳Kenjing
BRS ARS BRS ARS
叶绿素a+b含量
Chlorophyll a+b content (mg·g-1 FW)
Con 4.08±0.08a 2.99±0.09b** 3.00±0.13b 2.34±0.07b**
CaCl2 4.15±0.11a 3.61±0.08a** 3.47±0.08a 2.56±0.09b**
Ca(NO3)2 4.24±0.05a 3.52±0.16a** 3.02±0.09b 2.82±0.07a
EGTA 3.00±0.12b 2.34±0.09c** 2.47±0.11c 1.96±0.06c**
类胡萝卜素含量
Carotenoid content (mg·g-1 FW)
Con 0.32±0.01b 0.20±0.02b** 0.23±0.01b 0.19±0.01a
CaCl2 0.39±0.01a 0.28±0.01a** 0.32±0.01a 0.20±0.01a**
Ca(NO3)2 0.36±0.01a 0.26±0.01a** 0.25±0.01b 0.20±0.01a**
EGTA 0.27±0.02c 0.17±0.02b** 0.18±0.01c 0.15±0.003b

Fig. 3

Effect of calcium treatment on the α-diversity of endophytic bacteria in the inoculated rice leaves"

Fig. 4

Effects of calcium treatment on core genera and network stability of endophytic bacteria in the inoculated rice leaves"

Fig. 5

Effects of calcium treatment on correlation between core genera of endophytic bacteria and environmental factors in the inoculated rice leaves The size of each node is proportional to the number of connections (i.e., degree)"

[1]
LIU Z, ZHU Y, SHI H, QIU J, DING X, KOU Y. Recent progress in rice broad-spectrum disease resistance. The International Journal of Molecular Sciences, 2021, 22(21): 11658.
[2]
YUAN M, JIANG Z, BI G, NOMURA K, LIU M, WANG Y, CAI B, ZHOU J M, HE S Y, XIN X F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592(7852): 105-109.
[3]
NGOU B P M, DING P, JONES J D G. Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 2022, 34(5): 1447-1478.

doi: 10.1093/plcell/koac041 pmid: 35167697
[4]
KADOTA Y, LIEBRAND T W H, GOTO Y, SKLENAR J, DERBYSHIRE P, MENKE F L H, TORRES M A, MOLINA A, ZIPFEL C, COAKER G, SHIRASU K. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytologist, 2019, 221(4): 2160-2175.

doi: 10.1111/nph.15523 pmid: 30300945
[5]
KÖSTER P, DEFALCO T A, ZIPFEL C. Ca2+ signals in plant immunity. The EMBO Journal, 2022, 41(12): e110741.
[6]
MOEDER W, PHAN V, YOSHIOKA K. Ca2+ to the rescue-Ca2+ channels and signaling in plant immunity. Plant Science, 2019, 279: 19-26.
[7]
BI G, SU M, LI N, LIANG Y, DANG S, XU J, HU M, WANG J, ZOU M, DENG Y, et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell, 2021, 184(13): 3528-3541.e12.

doi: 10.1016/j.cell.2021.05.003 pmid: 33984278
[8]
JACOB P, KIM N H, WU F, EL-KASMI F, CHI Y, WALTON W G, FURZER O J, LIETZAN A D, SUNIL S, KEMPTHORN K, REDINBO M R, PEI Z M, WAN L, DANGL J L. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science, 2021, 373(6553): 420-425.
[9]
ZHAO Z X, XU Y J, LEI Y, LI Q, ZHAO J Q, LI Y, FAN J, XIAO S, WANG W M. ANNEXIN 8 negatively regulates RPW8.1-mediated cell death and disease resistance in Arabidopsis. Journal of Integrative Plant Biology, 2021, 63(2): 378-392.
[10]
SUN X, PAN B, WANG Y, XU W, ZHANG S. Exogenous calcium improved resistance to Botryosphaeria dothidea by increasing autophagy activity and salicylic acid level in pear. Molecular Plant-Microbe Interactions, 2020, 33(9): 1150-1160.
[11]
LIANG C, ZHANG Y, REN X. Calcium regulates antioxidative isozyme activity for enhancing rice adaption to acid rain stress. Plant Science, 2021, 306: 110876.
[12]
LIN Y, GU H, JIA X, WANG W, HONG B, ZHANG F, YIN H. Rhizoctonia solani AG1 IA extracellular polysaccharides: Structural characterization and induced resistance to rice sheath blight. International Journal of Biological Macromolecules, 2023, 244: 125281.
[13]
王爱军, 舒新月, 蒋钰琪, 郑爱萍, 李平, 殷得所. 水稻与纹枯病菌互作的分子机制研究进展. 植物保护学报, 2023, 50(1): 11-21.
WANG A J, SHU X Y, JIANG Y Q, ZHENG A P, LI P, YIN D S. Recent progresses on molecular mechanisms in the interactions between rice and pathogenic fungus Rhizoctonia solani AG1-IA. Journal of Plant Protection, 2023, 50(1): 11-21. (in Chinese)
[14]
潘晓曦, 张淋淋, 关一鸣, 张悦, 王秋霞. 植物内生促生菌多样性及促生作用研究进展. 特产研究, 2024, doi: 10.16720/j.cnki.tcyj.2024.134.
PAN X X, ZHANG L L, GUAN Y M, ZHANG Y, WANG Q X. Research progress on diversity and growth promoting effects of plant growth promoting endophytes. Special Wild Economic Animal and Plant Research, 2024, doi: 10.16720/j.cnki.tcyj.2024.134. (in Chinese)
[15]
PANDEY S S, JAIN R, BHARDWAJ P, THAKUR A, KUMARI M, BHUSHAN S, KUMAR S. Plant probiotics - Endophytes pivotal to plant health. Microbiological Research, 2022, 263: 127148.
[16]
巫艳, 周云莹, 朱玺燊, 张力敏, JIBRIL S, 杨志兵, 王一, 李成云. 植物内生菌多样性及其病害生防机制研究进展. 云南农业大学学报(自然科学), 2022, 37(5): 897-905.
WU Y, ZHOU Y Y, ZHU X S, ZHANG L M, JIBRIL S, YANG Z B, WANG Y, LI C Y. Research progress on plant endophyte diversity and its disease biocontrol mechanism. Journal of Yunnan Agricultural University (Natural Science), 2022, 37(5): 897-905. (in Chinese)
[17]
BARGE E G, LEOPOLD D R, ROJAS A, VILGALYS R, BUSBY P E. Phylogenetic conservatism of mycoparasitism and its contribution to pathogen antagonism. Molecular Ecology, 2022, 31(10): 3018-3030.
[18]
BU Z, LI W, LIU X, LIU Y, GAO Y, PEI G, ZHUO R, CUI K, QIN Z, ZHENG H, et al. The rice endophyte-derived α-mannosidase ShAM1 degrades host cell walls to activate DAMP-triggered immunity against disease. Microbiology Spectrum, 2023, 11(3): e0482422.
[19]
ROJAS E C, JENSEN B, JØRGENSEN H J L, LATZ M A C, ESTEBAN P, COLLINGE D B. The fungal endophyte Penicillium olsonii ML37 reduces fusarium head blight by local induced resistance in wheat spikes. Journal of Fungi, 2022, 8(4): 345.
[20]
HUANG Z, CAI X, SHAO C, SHE Z, XIA X, CHEN Y, YANG J, ZHOU S, LIN Y. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry, 2008, 69(7): 1604-1608.
[21]
PÉREZ-ALONSO M M, GUERRERO-GALÁN C, GONZÁLEZ ORTEGA-VILLAIZÁN A, ORTIZ-GARCÍA P, SCHOLZ S S, RAMOS P, SAKAKIBARA H, KIBA T, LUDWIG-MÜLLER J, KRAPP A, OELMÜLLER R, VICENTE-CARBAJOSA J, POLLMANN S. The calcium sensor CBL7 is required for Serendipita indica- induced growth stimulation in Arabidopsis thaliana, controlling defense against the endophyte and K+ homoeostasis in the symbiosis. Plant, Cell and Environment, 2022, 45(11): 3367-3382.
[22]
ZHOU L, LI C, WHITE J F, JOHNSON R D. Synergism between calcium nitrate applications and fungal endophytes to increase sugar concentration in Festuca sinensis under cold stress. PeerJ, 2021, 9: e10568.
[23]
马军韬, 张国民, 邓凌韦, 王永力, 高洪儒, 王南博, 肖明纲, 赵北平, 任洋, 宫秀杰. 水稻纹枯病离体接种鉴定技术因子量化试验. 江苏农业科学, 2022, 50(21): 127-135.
MA J T, ZHANG G M, DENG L W, WANG Y L, GAO H R, WANG N B, XIAO M G, ZHAO B P, REN Y, GONG X J. Quantitative test for identification of technical factors for rice stripe blight in vitro inoculation. Jiangsu Agricultural Sciences, 2022, 50(21): 127-135. (in Chinese)
[24]
ARNON D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24(1): 1-15.
[25]
WANG F, CHEN F, CAI Y, ZHANG G, WU F. Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biological Trace Element Research, 2011, 144(1/3): 1275-1288.
[26]
孙佳星, 娄琦, 彭雅慧, 玉蓝, 黄文婷, 李琳琳. 根际Ca2+对番茄灰霉病抗性的影响. 沈阳农业大学学报, 2021, 52(2): 137-144.
SUN J X, LOU Q, PENG Y H, YU L, HUANG W T, LI L L. Effect of rhizosphere Ca2+induced resistance to Botrytis cinerea in tomato. Journal of Shenyang Agricultural University, 2021, 52(2): 137-144. (in Chinese)
[27]
SPYCHALLA J P, DESBOROUGH S L. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiology, 1990, 94(3): 1214-1218.

doi: 10.1104/pp.94.3.1214 pmid: 16667819
[28]
MAEHLY A C, CHANCE B. The assay of catalases and peroxidases. Methods of Biochemical Analysis, 1954, 1: 357-424.

pmid: 13193536
[29]
MANO J, OHNO C, DOMAE Y, ASADA K. Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: Its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochimica et Biophysica Acta, 2001, 1504(2/3): 275-287.
[30]
LING F, SU Q, JIANG H, CUI J, HE X, WU Z, ZHANG Z, LIU J, ZHAO Y. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Scientific Reports, 2020, 10(1): 6183.

doi: 10.1038/s41598-020-63352-6 pmid: 32277136
[31]
PETERS R R, BAIER KREPSKY P, SIQUEIRA-JUNIOR J, DA SILVA ROCHA J C, MARQUES BEZERRA M, DE ALBUQUERQUE RIBEIRO R, DE BRUM-FERNANDES A J, ROCHA FARIAS M, CASTRO DA ROCHA F A, RIBEIRO-DO-VALLE R M. Nitric oxide and cyclooxygenase may participate in the analgesic and anti- inflammatory effect of the cucurbitacins fraction from Wilbrandia ebracteata. Life Sciences, 2003, 73(17): 2185-2197.
[32]
BRENNAN T, FRENKEL C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology, 1977, 59(3): 411-416.

doi: 10.1104/pp.59.3.411 pmid: 16659863
[33]
KAMPFENKEL K, VAN MONTAGU M, INZÉ D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 1995, 225(1): 165-167.

doi: 10.1006/abio.1995.1127 pmid: 7778771
[34]
LAWRENCE R A, BURK R F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 1976, 71(4): 952-958.

doi: 10.1016/0006-291x(76)90747-6 pmid: 971321
[35]
NAGALAKSHMI N, PRASAD M N. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science, 2001, 160(2): 291-299.
[36]
YAN C, GAO Q, YANG M, SHAO Q, XU X, ZHANG Y, LUAN S. Ca2+/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence. Nature Plants, 2024, 10(1): 145-160.
[37]
ZHANG Y, TIAN H, CHEN D, ZHANG H, SUN M, CHEN S, QIN Z, DING Z, DAI S. Cysteine-rich receptor-like protein kinases: Emerging regulators of plant stress responses. Trends in Plant Science, 2023, 28(7): 776-794.

doi: 10.1016/j.tplants.2023.03.028 pmid: 37105805
[38]
WANG J, REN Y, LIU X, LUO S, ZHANG X, LIU X, LIN Q, ZHU S, WAN H, YANG Y, et al. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Molecular Plant, 2021, 14(2): 315-329.
[39]
SRIVASTAVA R K, PANDEY P, RAJPOOT R, RANI A, GAUTAM A, DUBEY R S. Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma, 2015, 252(4): 959-975.

doi: 10.1007/s00709-014-0731-z pmid: 25413289
[40]
RAHMAN A, NAHAR K, HASANUZZAMAN M, FUJITA M. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science, 2016, 7: 609.
[41]
GAO Y, DONG X, WANG R, HAO F, ZHANG H, ZHANG Y, LIN G. Exogenous calcium alleviates oxidative stress caused by salt stress in peanut seedling roots by regulating the antioxidant enzyme system and flavonoid biosynthesis. Antioxidants, 2024, 13(2): 233.
[42]
CHE Y, WANG H, YAO T, WANG Z, BO L, ZHANG H. Activation of the antioxidant system and transduction of the mediated by exogenous calcium improve drought resistance in tobacco. Plant Stress, 2024, 13: 100551.
[43]
DE TORRES ZABALA M, LITTLEJOHN G, JAYARAMAN S, STUDHOLME D, BAILEY T, LAWSON T, TILLICH M, LICHT D, BÖLTER B, DELFINO L, TRUMAN W, MANSFIELD J, SMIRNOFF N, GRANT M. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature Plants, 2015, 1: 15074.

doi: 10.1038/nplants.2015.74 pmid: 27250009
[44]
PANDEY P K, SAMANTA R, YADAV R N S. Inside the plant: Addressing bacterial endophytes in biotic stress alleviation. Archives of Microbiology, 2019, 201(4): 415-429.

doi: 10.1007/s00203-019-01642-y pmid: 30834947
[45]
TIAN D, CHEN Z, LIN Y, LIANG T, CHEN Z, GUO X, WANG F, WANG Z. The interaction between rice genotype and Magnaporthe oryzae regulates the assembly of rice root-associated microbiota. Rice, 2021, 14(1): 40.
[46]
HERNANDEZ D J, DAVID A S, MENGES E S, SEARCY C A, AFKHAMI M E. Environmental stress destabilizes microbial networks. The ISME Journal, 2021, 15(6): 1722-1734.
[47]
SOLANS M, PELLIZA Y I, TADEY M. Inoculation with native actinobacteria may improve desert plant growth and survival with potential use for restoration practices. Microbial Ecology, 2022, 83(2): 380-392.
[48]
ARORA N K, MISHRA J, SINGH P, FATIMA T. Salt-tolerant plant growth-promoting Pseudomonas atacamensis KSS-6 in combination with organic manure enhances rice yield, improves nutrient content and soil properties under salinity stress. Journal of Basic Microbiology, 2024, 64(6): e2300767.
[49]
HE D, SINGH S K, PENG L, KAUSHAL R, VÍLCHEZ J I, SHAO C, WU X, ZHENG S, MORCILLO R J L, PARÉ P W, ZHANG H. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. The ISME Journal, 2022, 16(11): 2622-2632.
[50]
JIMÉNEZ-VÁZQUEZ K R, GARCÍA-CÁRDENAS E, BARRERA- ORTIZ S, ORTIZ-CASTRO R, RUIZ-HERRERA L F, RAMOS- ACOSTA B P, CORIA-ARELLANO J L, SÁENZ-MATA J, LÓPEZ- BUCIO J. The plant beneficial rhizobacterium Achromobacter sp. 5B1 influences root development through auxin signaling and redistribution. The Plant Journal, 2020, 103(5): 1639-1654.
[51]
CAI W, OU F, STAEHELIN C, DAI W. Bradyrhizobium sp. strain ORS278 promotes rice growth and its quorum sensing system is required for optimal root colonization. Environmental Microbiology Reports, 2020, 12(6): 656-666.
[52]
NIU Y, HU X, SONG Y, WANG C, LUO P, NI S, JIAO F, QIU J, JIANG W, YANG S, et al. Blautia coccoides is a newly identified bacterium increased by leucine deprivation and has a novel function in improving metabolic disorders. Advanced Science, 2024, 11(18): e2309255.
[53]
ASAF S, NUMAN M, KHAN A L, AL-HARRASI A. Sphingomonas: From diversity and genomics to functional role in environmental remediation and plant growth. Critical Reviews in Biotechnology, 2020, 40(2): 138-152.

doi: 10.1080/07388551.2019.1709793 pmid: 31906737
[54]
WANG P, WEI H, KE T, FU Y, ZENG Y, CHEN C, CHEN L. Characterization and genome analysis of Acinetobacter oleivorans S4 as an efficient hydrocarbon-degrading and plant-growth-promoting rhizobacterium. Chemosphere, 2023, 331: 138732.
[55]
VINCENT C V, BIGNELL D R D. Regulation of virulence mechanisms in plant-pathogenic Streptomyces. Canadian Journal of Microbiology, 2024, 70(6): 199-212.
[56]
LI Y, LIU J, DÍAZ-CRUZ G, CHENG Z, BIGNELL D R D. Virulence mechanisms of plant-pathogenic Streptomyces species: An updated review. Microbiology, 2019, 165(10): 1025-1040.
[57]
STRAUSBAUGH C A. Leuconostoc spp. associated with root rot in sugar beet and their interaction with Rhizoctonia solani. Phytopathology, 2016, 106(5): 432-441.
[58]
CAI Y Y, HUANG F Q, LAO X, LU Y, GAO X, ALOLGA R N, YIN K, ZHOU X, WANG Y, LIU B, SHANG J, QI L W, LI J. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. NPJ Biofilms and Microbiomes, 2022, 8(1): 11.
[59]
PETERS S, FOHMANN I, RUDEL T, SCHUBERT-UNKMEIR A. A comprehensive review on the interplay between Neisseria spp. and host sphingolipid metabolites. Cells, 2021, 10(11): 3201.
[60]
MIDGETT C R, KULL F J. Structural insights into regulation of Vibrio virulence gene networks. Advances in Experimental Medicine and Biology, 2023, 1404: 269-294.
[61]
LIU Y, WANG H, JIANG H, SUN Z, SUN A. Alloprevotella can be considered as a potential oral biomarker in intestinal metaphase of gastric patients. Studies in Health Technology and Informatics, 2023, 308: 155-167.
[62]
CHEUNG M K, LEUNG T F, TAM W H, LEUNG A S Y, CHAN O M, NG R W Y, YAU J W K, YUEN L Y, TONG S L Y, HO W C S, YEUNG A C M, CHEN Z, CHAN P K S. Development of the early-life gut microbiome and associations with eczema in a prospective Chinese cohort. mSystems, 2023, 8(5): e0052123.
[63]
SEVIAR D, NYUNT K, SAYER C, WRIGHT D, RIDER T. Romboutsia-induced bone marrow necrosis at presentation of acute myeloid leukaemia. British Journal of Haematology, 2022, 196(2): 262.
[64]
SHARMA G, GARG N, HASAN S, SHIRODKAR S. Prevotella: An insight into its characteristics and associated virulence factors. Microbial Pathogenesis, 2022, 169: 105673.
[65]
GUPTA S, PANDEY S, NANDI S P, SINGH M. Modulation of ethylene and ROS-scavenging enzymes by multifarious plant growth-promoting endophytes in tomato (Solanum lycopersicum) plants to combat Xanthomonas-induced stress. Plant Physiology and Biochemistry, 2023, 202: 107982.
[66]
魏松红, 张亚婷, 孔令春, 杨梦冉, 李晶, 郑媛媛, 王海宁, 王妍. 水稻纹枯病生防菌的筛选及田间防治效果. 农药, 2022, 61(7): 532-536.
WEI S H, ZHANG Y T, KONG L C, YANG M R, LI J, ZHENG Y Y, WANG H N, WANG Y. Screening of biocontrol bacteria for rice sheath blight and field control effect. Agrochemicals, 2022, 61(7): 532-536. (in Chinese)
[1] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[2] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] LI FangLiang, KONG QingBo, ZHANG Qing. Research on the Estimation Model of Calcium Content in Guanxi Honey Pomelo Leaves Based on Spectral Index [J]. Scientia Agricultura Sinica, 2025, 58(7): 1321-1332.
[5] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[6] TENG MengXin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI JingYang, LI XinGuo. Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana [J]. Scientia Agricultura Sinica, 2025, 58(7): 1418-1433.
[7] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[8] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[9] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[10] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[11] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[14] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[15] ZENG YueHui, ZOU WenGuang, ZHAO FuMing, XIAO ChangChun, HUANG JianHong, MA BinLin, YANG WangXing, WEI XinYu, XU XuMing. Map-Based Cloning and Functional Verification of A Novel Split Glume Gene OsSG2 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2025, 58(11): 2062-2080.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!