Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 2022-2034.doi: 10.3864/j.issn.0578-1752.2025.10.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Analysis of Multidimensional Characterization Methods for Tannin Quality in Dry Red Wine

LI JiaHui1(), LI YueQi1, ZHOU XiaoFang2, FAN GuoYuan3, LI AiHua4, TAO YongSheng1,5()   

  1. 1 College of Enology, Northwest A&F University, Yangling 712100, Shaanxi
    2 Sino-French Joint-Venture Dynasty Winery LTD., Tianjin 300402
    3 Loulan Winery Co., Ltd., Shanshan 838299, Xinjiang
    4 College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi
    5 Shaanxi Key Laboratory of Viticulture & Enology, Yangling 712100, Shaanxi
  • Received:2024-10-14 Accepted:2025-01-09 Online:2025-05-16 Published:2025-05-21
  • Contact: TAO YongSheng

Abstract:

【Objective】 Tannins are important polyphenolic compounds that significantly influence the sensory characteristics of color, aroma, and taste in dry red wine. This study compared various methods for tannin analysis, including spectroscopic quantification, total phenols, monomers, binding characteristics, and astringency quality, so as to provide the methodological support for the comprehensive characterization of tannin quality in dry red wine. 【Method】 The study used 18 Xinjiang dry red wines aged from 1 to 9 years. Tannin spectroscopic quantification was conducted using the Folin-Denis method, Bate-Smith method, hydrochloric acid-vanillin method, protein precipitation method, and methyl cellulose method. Total phenols were measured using the Folin-Ciocalteu reagent method, while flavanols and flavonols were quantified using UV-visible spectrophotometry. Aggregation characteristics were analyzed using the hydrochloric acid, ethanol, and gelatin precipitation methods. Tannin astringency quality was evaluated by a trained sensory panel, assessing six attributes: astringency balance, astringency intensity, acidity intensity, dryness, puckery, and smoothness. 【Result】 In comparison to other spectroscopic quantification methods, the methyl cellulose method showed higher recovery rate, with the recovery rates of mixed tannins added to simulated wine, raw wine, and finished wine being 130.67%, 107.54%, and 76.94%, respectively. Tannin content, as measured by the five spectroscopic methods, decreased with wine age, with the methyl cellulose method (1 247-3 103 mg·L-1) and the Bate-Smith method (1 643-5 064 mg·L-1) showing distinct trends. Total phenol (3 145-4 383 mg·L-1), flavanols (352-1 151 mg·L-1), and flavonols (107-199 mg·L-1) content also decreased as wine age increased, with correlation coefficients of 0.71, 0.65, and 0.29 with the methyl cellulose method, respectively. The hydrochloric acid index (0.11-0.35) and ethanol index (0.21-0.44) showed an increasing trend with wine age, while the gelatin index (0.08-0.53) showed no clear trend. Sensory analysis revealed that astringency intensity was most prominent in the 1-3 year group, gradually weakening as the wine aged, with a reduction in puckery and an increase in smoothness. Principal component analysis (PCA) of the tested samples indicated that spectroscopic quantification, flavanol content, astringency intensity, and puckery were the most important factors in most to differentiating between wine samples. Wines in the 1-3 year group had higher tannin content and stronger astringency; wines in the 4-6 year group had weaker astringency but the strongest acidity and dryness; wines in the 7-9 year group had higher tannin polymerization and the weakest astringency but stronger acidity. 【Conclusion】 The methyl cellulose method has been shown to be the most effective for determining total tannin content in dry red wines. Total phenols and flavanols were effective at quantifying both the overall and monomeric tannin characteristics. The hydrochloric acid index and ethanol index were effective indicators of tannin binding characteristics, while astringency intensity and puckery were key indicators for distinguishing the sensory attributes of tannins.

Key words: dry red wine, tannin determination, sensory astringency, sensory evaluation, principal component analysis (PCA)

Table 1

Information on experimental wine samples"

酒样编号
Sample
采收年份
Harvest vintage
灌装日期(年-月-日)
Bottling date (Y-M-D)
酒样编号
Sample
采收年份
Harvest vintage
灌装日期(年-月-日)
Bottling date (Y-M-D)
S1 2020 2023-11-02 S11 2017 2020-04-25
S2 2020 2023-11-02 S12 2017 2020-09-11
S3 2022 2023-11-02 S13 2014 2017-03-02
S4 2021 2023-11-02 S14 2014 2017-12-16
S5 2020 2023-11-02 S15 2014 2017-09-12
S6 2020 2023-11-02 S16 2015 2018-04-26
S7 2018 2020-11-20 S17 2015 2018-01-11
S8 2018 2020-04-14 S18 2016 2019-01-23
S9 2018 2020-10-28 S19 2019 2021-05-25
S10 2017 2020-06-16

Table 2

Definition and reference materials for tannin astringency quality"

单宁涩感质量
Astringency quality
定义
Definition
参考标准
Reference standard
涩感平衡度
Astringency balance
对涩感质量的整体评价
Overall evaluation of the astringency quality
S19(2019年吐鲁番楼兰酒庄赤霞珠)
S19 (Cabernet Sauvignon, Turpan Loulan Winery, 2019)
涩感强度
Astringency intensity
在口腔中感官期间的最强烈涩感强度
The strongest astringent sensation during sensory evaluation in the mouth
0.50、1.00、2.00、3.00和4.00 g·L-1单宁酸
0.50, 1.00, 2.00, 3.00, and 4.00 g·L-1 tannic acid
酸感强度
Acidity intensity
在口腔中感官期间的最强烈酸感强度
The strongest acidity sensation during sensory evaluation in the mouth
0.50 、1.00 、2.00、3.00 和4.00 g·L-1酒石酸
0.50, 1.00, 2.00, 3.00, and 4.00 g·L-1 tartaric acid
干燥感
Dryness
口腔中缺乏润滑或干燥的感觉
The sensation of lack of lubrication or dryness in the mouth
0.5 g·L-1单宁酸
0.5 g·L-1 tannic acid
褶皱感
Puckering
口腔表面被挤压并放开的反射动作
Reflex action of the mouth's surface being squeezed and released
0.5 g·L-1硫酸铝+1.0 g·L-1酒石酸
0.5 g·L-1 aluminum sulfate + 1.0 g·L-1 tartaric acid
平滑度
Smoothness
与丝滑感相关的质地
Texture associated with silky smoothness
10.0 g·L-1甘露蛋白+1.0 g·L-1单宁酸
10.0 g·L-1 mannan + 1.0 g·L-1 tannic acid

Table 3

Recovery rates of different tannin determination methods in three matrices (%)"

酒样
Sample
Folin-Denis法
Folin-Denis method
Bate-Smith法
Bate-Smith method
盐酸香草醛法
Hydrochloric Acid-Vanillin method
蛋白沉淀法
Protein precipitation method
甲基纤维素法
Methyl cellulose
method
S-T 89.52±5.36 0.00±0.00 18.37±0.58 5.92±1.47 222.47±2.73
S-P 64.90±2.04 130.16±8.05 0.70±0.10 0.00±0.00 56.79±3.93
S-TP 74.07±0.60 65.72±3.87 4.70±0.00 3.28±0.56 130.67±4.97
B-T 16.52±0.59 65.72±5.47 191.00±19.71 43.82±6.25 153.88±9.67
B-P 10.83±0.49 215.21±33.11 5.00±3.83 13.20±6.43 69.95±16.24
B-TP 6.89±0.42 97.94±26.03 50.00±8.64 18.61±5.91 107.54±10.07
F-T 40.08±6.76 28.58±7.73 37.00±8.43 56.68±3.42 156.94±17.71
F-P 16.89±6.77 92.78±13.20 33.00±8.27 29.27±3.42 39.78±15.61
F-TP 32.35±7.46 69.59±14.81 24.33±8.74 49.24±3.70 76.94±11.00

Table 4

Spectrophotometric quantification results of tannins in dry red wine"

酒样
Sample
酒龄(年)
Wine age (Year)
Folin-Denis法
Folin-Denis method
Bate-Smith法
Bate-Smith method
盐酸香草醛法
Hydrochloric Acid-Vanillin method
蛋白沉淀法
Protein precipitation method
甲基纤维素法
Methyl cellulose method
S1 1—3 1895.34±16.38 3769.35±229.52 1489.35±80.21 482.28±11.22 2077.38±33.88
S2 2011.25±27.58 4194.61±251.31 1387.85±68.51 338.83±3.04 1601.97±59.21
S3 1632.84±18.79 2512.90±150.33 986.35±45.09 259.64±7.43 1536.39±59.57
S4 2083.98±23.45 4445.90±231.67 1432.85±44.27 538.28±8.17 2395.41±36.92
S5 2002.16±36.62 5064.46±296.69 1530.85±47.77 757.17±14.80 3103.61±33.46
S6 1879.43±16.78 3981.98±267.96 1489.35±80.21 553.28±2.58 2080.66±55.62
均值 Mean 1917.50±159.15cd 3994.87±852.60a 1386.43±186.03d 488.25±175.31e 2132.57±575.28bcd
S7 4—6 1512.39±15.34 2222.95±297.68 796.85±69.05 309.94±16.74 1913.88±36.21
S8 1657.84±31.51 2628.88±198.05 803.85±48.71 277.17±3.08 1798.03±43.68
S9 1598.75±36.09 2010.32±289.77 687.35±82.73 287.82±19.18 1758.69±56.64
S10 1502.16±43.17 2570.89±181.38 874.85±83.16 267.51±5.13 1736.83±32.49
S11 1713.52±35.14 2590.22±199.88 1183.35±46.68 281.61±14.01 1763.06±41.71
S12 1716.93±23.04 2628.88±185.83 1293.35±88.48 431.61±8.64 2015.08±52.97
均值 Mean 1616.93±95.33c 2442.02±261.82a 939.43±206.43d 309.28±61.59e 1830.93±110.05bc
S13 7—9 1588.52±15.24 2512.90±178.27 1025.35±74.01 269.94±28.76 1702.95±44.96
S14 1440.80±23.19 2126.30±226.54 776.85±40.80 129.94±25.42 1388.20±33.01
S15 1490.80±34.37 1933.00±177.58 321.35±68.68 277.17±21.48 1594.75±45.31
S16 1349.89±21.16 1643.05±183.32 308.35±89.28 202.03±22.55 1247.21±48.99
S17 1558.98±28.59 2068.31±263.87 665.35±92.04 262.94±15.31 1529.18±34.94
S18 1683.98±19.73 2493.57±180.90 781.85±87.38 335.28±13.03 1894.21±46.72
均值 Mean 1518.83±117.61c 2129.52±334.23a 646.62±261.87d 246.22±71.00e 1559.42±228.75bc

Table 5

Analysis results of total phenols, tannin monomers, and aggregation characteristics in the tested wine samples"

酒样
Sample
酒龄(年)
Wine age
(Year)
总酚
Total phenols (mg∙L-1)
黄烷醇
Flavanols
(mg∙L-1)
黄酮醇
Flavonols
(mg∙L-1)
盐酸指数
Hydrochloric acid index
乙醇指数
Ethanol index
明胶指数
Gelatin index
S1 1—3 3520.37±57.14 847.91±41.64 156.12±8.41 0.27±0.01 0.23±0.00 0.53±0.05
S2 3821.99±40.55 1020.98±52.98 160.22±1.43 0.26±0.01 0.21±0.01 0.52±0.01
S3 3205.74±163.50 957.79±10.84 176.76±2.89 0.24±0.01 0.21±0.00 0.43±0.01
S4 3758.00±82.66 1151.43±23.57 151.24±2.61 0.24±0.00 0.30±0.02 0.38±0.01
S5 4383.14±144.19 1140.52±57.42 199.15±3.99 0.25±0.01 0.28±0.01 0.33±0.01
S6 3725.07±73.11 856.98±26.70 120.94±5.27 0.19±0.01 0.24±0.01 0.35±0.01
均值 Mean 3735.72±388.45 995.93±132.96 160.74±26.18 0.24±0.03 0.24±0.04 0.42±0.09
S7 4—6 3087.94±46.52 430.47±12.41 114.35±2.98 0.11±0.01 0.25±0.00 0.28±0.01
S8 3477.11±103.91 549.14±15.72 163.28±4.84 0.30±0.00 0.26±0.01 0.13±0.01
S9 3269.45±17.64 646.71±6.29 172.78±8.22 0.32±0.01 0.44±0.01 0.13±0.00
S10 3091.71±204.02 628.07±16.82 166.96±2.54 0.30±0.01 0.31±0.02 0.08±0.00
S11 3349.22±8.60 621.60±32.29 158.73±4.52 0.28±0.00 0.33±0.01 0.20±0.01
S12 3526.58±35.55 679.25±19.00 130.64±1.83 0.24±0.01 0.33±0.01 0.29±0.01
均值 Mean 3300.33±186.77 592.54±90.23 151.12±23.23 0.26±0.08 0.32±0.07 0.19±0.09
S13 7—9 3699.24±186.26 472.99±16.95 178.29±3.40 0.35±0.00 0.33±0.00 0.45±0.01
S14 3208.86±107.98 488.17±8.99 148.26±8.02 0.31±0.00 0.33±0.02 0.46±0.02
S15 3472.54±106.21 435.75±19.58 150.65±3.53 0.21±0.00 0.33±0.01 0.44±0.00
S16 3144.81±227.06 439.67±32.58 127.80±4.12 0.26±0.00 0.38±0.01 0.44±0.02
S17 3675.97±92.12 351.60±11.56 120.22±2.58 0.30±0.00 0.32±0.00 0.28±0.00
S18 3413.62±154.48 540.87±4.50 106.74±0.74 0.27±0.01 0.36±0.01 0.32±0.01
均值 Mean 3435.84±230.26 454.84±63.39 138.66±25.63 0.28±0.05 0.34±0.02 0.40±0.08

Fig. 1

Sensory astringency radar chart of the tested wine samples"

Fig. 2

Heatmap of correlation between tannin quality characteristics in the tested wine samples"

Fig. 3

Distribution of wine age samples and indicator loadings based on principal component analysis In the figure, the further the tannin-related characteristic indicators are from the origin point, the greater their contribution to the principal components, meaning these variables have stronger explanatory power for the principal components"

[1]
ROUSSERIE P, LACAMPAGNE S, VANBRABANT S, RABOT A, GENY-DENIS L. Wine tannins: Where are they coming from? A method to access the importance of berry part on wine tannins content. MethodsX, 2020, 7: 100961.
[2]
FOLIN O, DENIS W. On phosphotungstic-phosphomolybdic compounds as color reagents. Journal of Biological Chemistry, 1912, 12(2): 239-243.
[3]
BATE-SMITH E C, LERNER N H. Leuco-anthocyanins. 2. Systematic distribution of leuco-anthocyanins in leaves. Biochemical Journal, 1954, 58(1): 126-132.

pmid: 13198863
[4]
BROADHURST R B, JONES W T. Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 1978, 29(9): 788-794.
[5]
HAGERMAN A E, BUTLER L G. Protein precipitation method for the quantitative determination of tannins. Journal of Agricultural and Food Chemistry, 1978, 26(4): 809-812.
[6]
SARNECKIS C J, DAMBERGS R G, JONES P, MERCURIO M, HERDERICH M J, SMITH P A. Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis. Australian Journal of Grape and Wine Research, 2006, 12(1): 39-49.
[7]
张亮亮, 汪咏梅, 徐曼, 吴冬梅, 陈笳鸿. 植物单宁化学结构分析方法研究进展. 林产化学与工业, 2012, 32(3): 107-116.
ZHANG L L, WANG Y M, XU M, WU D M, CHEN J H. Research progress in analytical methods of vegetable tannins. Chemistry and Industry of Forest Products, 2012, 32(3): 107-116. (in Chinese)
[8]
YACCO R S, WATRELOT A A, KENNEDY J A. Red wine tannin structure-activity relationships during fermentation and maceration. Journal of Agricultural and Food Chemistry, 2016, 64(4): 860-869.

doi: 10.1021/acs.jafc.5b05058 pmid: 26766301
[9]
SINGLETON V L, ROSSI J A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 1965, 16(3): 144-158.
[10]
WÜRDIG G, WOLLER R. Chemie des Weins. Eugen Ulmer GmbH & Co, Stuttgart, 1989.
[11]
RIBÉREAU-GAYON P, GLORIES Y, MAUJEAN A, DUBOURDIEU D. Chimie du vin. Stabilisation et traitements. Traité d’ Œnologie, Vol. 2. Paris: Dunod, 1998: 163-237.
[12]
ARNOLD R A, NOBLE A C, SINGLETON V L. Bitterness and astringency of phenolic fractions in wine. Journal of Agricultural and Food Chemistry, 1980, 28(3): 675-678.
[13]
CHIRA K, PACELLA N, JOURDES M, TEISSEDRE P L. Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age. Food Chemistry, 2011, 126(4): 1971-1977.

doi: 10.1016/j.foodchem.2010.12.056 pmid: 25213985
[14]
郭玉呈, 李桂善, 王俊婷, 郭安鹊, 吴帅. 不同类型发酵柿子果酒的质量和抗氧化活性. 食品与发酵工业, 2017, 43(12): 108-113.
GUO Y C, LI G S, WANG J T, GUO A Q, WU S. Quality evaluation and antioxidant activity of fermented persimmon wines. Food and Fermentation Industries, 2017, 43(12): 108-113. (in Chinese)

doi: 10.13995/j.cnki.11-1802/ts.015155
[15]
FIGUEIREDO-GONZÁLEZ M, CANCHO-GRANDE B, SIMAL-GÁNDARA J. Garnacha tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV-vis spectrophotometry. Food Chemistry, 2013, 140(1/2): 217-224.
[16]
PINEAU N, GIRARDI A, LACOSTE GREGORUTTI C, FILLION L, LABBE D. Comparison of RATA, CATA, sorting and Napping® as rapid alternatives to sensory profiling in a food industry environment. Food Research International, 2022, 158: 111467.
[17]
ZHAO Q H, DU G R, ZHAO P T, GUO A Q, CAO X M, CHENG C, LIU H, WANG F, ZHAO Y F, LIU Y, WANG X Y. Investigating wine astringency profiles by characterizing tannin fractions in Cabernet Sauvignon wines and model wines. Food Chemistry, 2023, 414: 135673.
[18]
ALEIXANDRE-TUDO J L, BUICA A, NIEUWOUDT H, ALEIXANDRE J L, DU TOIT W. Spectrophotometric analysis of phenolic compounds in grapes and wines. Journal of Agricultural and Food Chemistry, 2017, 65(20): 4009-4026.
[19]
白雪冰, 杨佳宁, 姜醒, 赵宇, 武运. 西北地区干红葡萄酒产地与酒龄的理化判别方法. 农业工程学报, 2022, 38(13): 319-326.
BAI X B, YANG J N, JIANG X, ZHAO Y, WU Y. Discrimination method for the origin and age of dry red wine by physico-chemical indices in northwest China. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 319-326. (in Chinese)
[20]
MARTINS G R, MONTEIRO A F, DO AMARAL F R L, DA SILVA A S. A validated Folin-Ciocalteu method for total phenolics quantification of condensed tannin-rich açaí (Euterpe oleracea Mart.) seeds extract. Journal of Food Science and Technology, 2021, 58(12): 4693-4702.
[21]
蒋静, 王伟华. 原花青素含量测定方法考察及应用. 食品工业, 2019, 40(4): 168-172.
JIANG J, WANG W H. Procyanidins content determination method and application. The Food Industry, 2019, 40(4): 168-172. (in Chinese)
[22]
JENSEN J S, RØNSTED N, CORNETT C, JÄGER A K. Direct qualitative and quantitative determination of alkamides in Echinacea purpurea (L.) Moench by UHPLC-DAD-MS-MS. Journal of Agricultural and Food Chemistry, 2008, 56(19): 8903-8908.
[23]
WATRELOT A A. Tannin content in Vitis species red wines quantified using three analytical methods. Molecules, 2021, 26(16): 4923.
[24]
PANDEYA A, RAYAMAJHI S, POKHREL P, GIRI B. Evaluation of secondary metabolites, antioxidant activity, and color parameters of Nepali wines. Food Science & Nutrition, 2018, 6(8): 2252-2263.
[25]
SOTO VÁZQUEZ E, RIO SEGADE S, FERNÁNDEZ GOMEZ E. Incidence of the winemaking technique on metal content and phenolic composition of red wines. International Journal of Food Properties, 2013, 16(3): 622-633.
[26]
曲睿, 陈胜, 唐利萨, 张雪, 张学忠, 刘延琳. 河西走廊新引品种红葡萄酒酚类物质及颜色分析. 食品与发酵工业, 2022, 48(14): 107-112.

doi: 10.13995/j.cnki.11-1802/ts.029861
QU R, CHEN S, TANG L S, ZHANG X, ZHANG X Z, LIU Y L. Analysis of phenolics and color in red wines brewed by grape varieties newly introduced in Hexi Corridor. Food and Fermentation Industries, 2022, 48(14): 107-112. (in Chinese)

doi: 10.13995/j.cnki.11-1802/ts.029861
[27]
强文乐, 余飞, 赵晓兰, 李恺安, 陈建军, 马腾臻. 陈酿期不同调配比例对赤霞珠-美乐葡萄酒化学成分和感官品质的影响. 核农学报, 2024, 38(4): 703-714.

doi: 10.11869/j.issn.1000-8551.2024.04.0703
QIANG W L, YU F, ZHAO X L, LI K A, CHEN J J, MA T Z. Effect of different blending ratio on chemical parameters and sensory properties of Cabernet Sauvignon-Merlot wines during barrel aging period. Journal of Nuclear Agricultural Sciences, 2024, 38(04): 703-714. (in Chinese)
[28]
RIOU V, VERNHET A, DOCO T, MOUTOUNET M. Aggregation of grape seed tannins in model wine: Effect of wine polysaccharides. Food Hydrocolloids, 2002, 16(1): 17-23.
[29]
苏洁, 张军翔. 葡萄酒圆润度研究进展. 食品与机械, 2013, 29(2): 238-241.
SU J, ZHANG J X. Progress on research in rounded taste of wine. Food & Machinery, 2013, 29(2): 238-241. (in Chinese)
[30]
DARIAS-MARTÍN J, CARRILLO-LÓPEZ M, ECHAVARRI-GRANADO J F, DÍAZ-ROMERO C. The magnitude of copigmentation in the colour of aged red wines made in the Canary Islands. European Food Research and Technology, 2007, 224(5): 643-648.
[31]
WANG S Y, OLARTE MANTILLA S M, STOKES J R, SMITH P A, SMYTH H E. pH dominates the temporal perception of astringency sub-qualities and saliva friction response-A study under Iso-pH and Iso-titratable acidity conditions in model wine. Food Hydrocolloids, 2024, 146: 109274.
[32]
WILHELMY C, PAVEZ C, BORDEU E, BROSSARD N. A review of tannin determination methods using spectrophotometric detection in red wines and their ability to predict astringency. South African Journal of Enology and Viticulture, 2021, 42(1): 1-9.
[1] ZHANG SiNing, ZHANG XingRui, WU DongXuan, KANG JingBo, CHEN XiaoLin, GENG LiJun, YIN GuangMin, CHEN JiaJing, GAO JunYan, CAI ZhongHu, LIU Yuan, XU Juan. Aroma Quality Analysis of Guangdongxiangshui Lemon Based on Molecular Sensory Technology [J]. Scientia Agricultura Sinica, 2025, 58(1): 141-155.
[2] YANG YaHeng, JIA PeiLong, NIE LanChun, ZHAO WenSheng, ZHAO JiaTeng, WANG JinXiang, LIU Jie. Evaluation of Fruit Texture Quality in Melon [J]. Scientia Agricultura Sinica, 2024, 57(8): 1560-1574.
[3] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[4] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[5] FAN Peng, YANG TianLe, ZHU ShaoLong, WANG ZhiJie, ZHANG MingYue, WEI HaiYan, LIU GuoDong. Preliminary Study on Appearance Quality Evaluation of Semi-Waxy Rice in Yangtze River Delta Region [J]. Scientia Agricultura Sinica, 2024, 57(16): 3105-3115.
[6] WU YaNuo, LIU Yuan, KONG JiaTao, HU ZheHui, CHEN MingHua, WU JunChen, ZHANG HongYan, JIANG YouWu, XU Juan, CHEN JiaJing. Basing Fuzzy Modeling to Evaluate Sensory Quality Differences of ‘Orah’ Mandarin Fruits from Various Production Regions [J]. Scientia Agricultura Sinica, 2024, 57(10): 2010-2022.
[7] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[8] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[9] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[10] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[11] Hui LU,YuJie YUAN,SiQi ZHANG,Hong CHEN,Duo CHEN,XiaoYuan ZHONG,Bo LI,Fei DENG,Yong CHEN,GuiYong LI,WanJun REN. Evaluation of Rice Eating Quality and Optimization of Varieties of Southwest Indica Hybrid Rice Based on Three Taste Evaluation Methods [J]. Scientia Agricultura Sinica, 2021, 54(6): 1243-1257.
[12] ZOU YunQian,ZHANG Li,WU FangFang,XU RangWei,XU Juan,HU ShiQuan,XIE HePing,CHENG YunJiang. Effects of Wax Coating on Off-Flavor Compound Accumulation in the Pulp of Satsuma Mandarin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2450-2459.
[13] SHI FangFang, ZHANG QingAn. Effects of Different Citric Acid Solutions on the Quality of Apricot Kernels During Debitterizing Mediated by Ultrasound Irradiation [J]. Scientia Agricultura Sinica, 2019, 52(17): 3034-3048.
[14] SU Hang, WANG Qi, LI ChunMei, SHAO Hua, JIN MaoJun, WANG ShanShan, ZHENG LuFei, SHE YongXin, WANG Jing, WANG HuaiSong, JIN Fen. Effects of Plant Growth Regulators Thidiazuron on Melon Quality [J]. Scientia Agricultura Sinica, 2018, 51(16): 3095-3105.
[15] WANG Qiong, XU BaoCai, YU Hai, LI Cong. Electronic Nose and Electronic Tongue Combined with Fuzzy Mathematics Sensory Evaluation to Optimize Bacon Smoking Procedure [J]. Scientia Agricultura Sinica, 2017, 50(1): 161-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!