Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1065-1082.doi: 10.3864/j.issn.0578-1752.2025.06.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis

PAN LiYuan1(), WANG YongJun1, LI HaiJun1, HOU Fu1, LI Jing1, LI LiLi1, SUN SuYang1,2,3()   

  1. 1 Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an 223001, Jiangsu
    2 Zhongshan Laboratory of Biological Breeding, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
    3 Jiangsu Provincial Collaborative Innovation Center of Modern Industrial Technology for Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2024-08-04 Accepted:2024-09-20 Online:2025-03-25 Published:2025-03-25
  • Contact: SUN SuYang

Abstract:

【Objective】 Common wheat, as an important food crop, plays a crucial role in global food security. Identifying the gene regulatory networks involved in wheat grain protein synthesis and determining key candidate genes will provide theoretical support for quality breeding and improvement of wheat. 【Method】 The study used wheat grains at six developmental stages (5, 10, 15, 20, 25, and 30 days post-anthesis) as research materials to summarize the pattern of protein accumulation in wheat grains. Transcriptome data and grain protein content phenotypic data were analyzed using the WGCNA (Weighted Gene Co-expression Network Analysis) method to construct weighted gene co-expression networks and identify key hub transcription factor (TFs) genes.【Result】 The accumulation of protein content in wheat grains showed a trend of initial decline followed by an increase, reaching its lowest value (12.16%) at 25 days post-anthesis, with significant differences in protein content between adjacent developmental stages. A total of 25 427 differentially expressed genes (DEGs) were identified between adjacent developmental stages. Cluster analysis divided these DEGs into five groups (A-E), with group B containing the highest number of DEGs (10 906). A total of 1 022 transcription factors (TFs) from 49 families were identified, with the NAC family containing the most TFs (107). WGCNA analysis identified five co-expression modules significantly associated with protein content. The turquoise module showed the highest positive correlation with protein content (r=0.80, P=1×10-⁴). By integrating differentially expressed genes and weighted gene co-expression networks, six positively regulated hub TFs from the MIKC-MADS, TCP, TALE, and CPP families were identified in two modules (turquoise and blue). Further correlation analysis between the protein content phenotype of Huaimai 48 and gene expression levels at different time points revealed that the expression levels of five hub TFs were significantly positively correlated with the protein content phenotype. Specifically, TraesCS5B03G0740100 and TraesCS7D03G0590500 showed specific high expression in spike and grain tissues.【Conclusion】 The study identified important modules (turquoise and blue) related to wheat protein content accumulation, screened six hub TFs, and identified that the expression levels of two hub TFs are significantly positively correlated with protein content and are specifically highly expressed in spike and grain tissues. These genes can serve as candidate genes for regulating protein accumulation in wheat grains.

Key words: common wheat, seed development, protein content, weighted gene co-expression network analysis, transcript factors

Table 1

The primers used for qRT-PCR in this study"

基因ID Gene ID 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
TraesCS3A03G0074600 CGGAGATCATTGCGTAGGG GGAATTAGCACGTGTGGCG
TraesCS3A03G0885700 TCTTCCTTCATCGCTTCCATC TCCTCAGGGTGCCATCTATCA
TraesCS3A03G0888300 TACCCAGTTTTAGTAGACGCCC CTCGTTTTGTCCCAGTGTGC
TraesCS3A03G0891600 GAAGTGCGACGTGGATATAAGG GAAGGTACTGAGAGAGGCGAGA
TraesCS3A03G0891900 GAAGGCTTTTGGGGATGCT GCTATCCAATCGCTCTCCTCTT
TraesCS3A03G0892500 TCGTTCGGATGACAGTGCTT CTATCCCACATTTGGAAACAGG
TraesCS4B03G0043800 GAACAAATCCCAGCCATCCA ACGAGTAGGCGTTGGGTATTC
TraesCS4B03G0823800 TCCACCAGATGGCGGAGTT GGCGTGGGGAAGAGCGT
TraesCS6B03G0310500 GGGGAGGCACTATTGCTTTC CCAAAGTAGTCCGAAGCGTATC
TraesCS6B03G0312000 CCTGCTTTGATGGCTGGAC AAGAAGGGGAATGGGGCT
TaActin GGAATGGTCAAGGCTGGTTT CGGAGCTCGTTGTAGAATGTGT

Fig. 1

The phentotypic distribution of the protein content trait in developing seeds of Huaimai 48 A: Grains of Huaimai 48 at six different developmental stages; B: Graph showing the changes in protein content of Huaimai 48 grains at six different developmental stages. Different letters represent significiant differences at 0.05 level"

Table 2

Transcriptome sequencing quality of samples at different developmental stages"

样本
Sample
时期
Stage
(d)
原始reads数
Raw reads
质控后reads数
Saved reads
质量分数
High quality rate (%)
比对率
Reads aligned
(%)
多次比对率
Multialignment (%)
单一比对率
Unique alignment (%)
05D.Rep1 5 53494726 53253286 99.55 88.31 6.18 94.49
05D.Rep2 5 41144322 40944134 99.51 88.17 6.22 94.38
05D.Rep3 5 42043100 41848014 99.54 88.55 6.14 94.69
10D.Rep1 10 43073974 42750556 99.25 82.85 6.39 89.23
10D.Rep2 10 45712962 45445466 99.41 85.54 6.37 91.91
10D.Rep3 10 47715540 47273162 99.07 80.03 6.62 86.65
15D.Rep1 15 46401552 45997986 99.13 73.62 8.65 82.27
15D.Rep2 15 40517866 40147604 99.09 72.56 8.86 81.42
15D.Rep3 15 44238716 43790148 98.99 71.59 9.02 80.61
20D.Rep1 20 37942654 37577108 99.04 70.18 10.93 81.11
20D.Rep2 20 41530148 41087334 98.93 68.35 11.76 80.11
20D.Rep3 20 53574728 52925588 98.79 69.67 14.02 83.69
25D.Rep1 25 52320432 51672172 98.76 66.29 14.04 80.34
25D.Rep2 25 46626444 46097376 98.87 66.08 13.96 80.04
25D.Rep3 25 51864528 51434414 99.17 69.34 12.86 82.20
30D.Rep1 30 54570678 53738308 98.47 61.09 16.36 77.44
30D.Rep2 30 51852354 51090038 98.53 67.55 12.04 79.59
30D.Rep3 30 55777132 55100978 98.79 68.56 12.38 80.94
共计/平均Total/Mean 850401856 842173672 99.05 74.35 10.16 84.51

Table 3

Numbers of genes detected in different samples of Huaimai 48"

样本
Sample
已知基因数
No. of known genes
新基因数
No. of new genes
所有基因数
No. of all genes
05D.Rep1 87963 6413 94376
05D.Rep2 86713 6512 93225
05D.Rep3 86541 6394 92935
10D.Rep1 84695 6534 91229
10D.Rep2 87409 6613 94022
10D.Rep3 84971 6509 91480
15D.Rep1 83938 6406 90344
15D.Rep2 80963 6210 87173
15D.Rep3 81302 6156 87458
20D.Rep1 78899 6029 84928
20D.Rep2 78802 5994 84796
20D.Rep3 81241 6308 87549
25D.Rep1 79118 6076 85194
25D.Rep2 79869 6076 85945
25D.Rep3 82747 6337 89084
30D.Rep1 77776 5945 83721
30D.Rep2 81517 6167 87684
30D.Rep3 80690 6187 86877
平均Mean 82509 6270 88779

Fig. 2

Gene expression profiles of Huaimai 48 grain across different developmental stages A: Cluster dendrogram of gene expression profiles during six different developmental stages and under various replicate conditions; B: Principal component analysis (PCA) plot of gene expression levels for samples from six different developmental stages; C: Classification plot of gene expression levels for each developmental stage; D: A venn diagram illustrating the number of expressed genes in samples from six different developmental stages"

Fig. 3

The Correlation analysis of gene expression levels between transcriptomic data and qRT-PCR results"

Fig. 4

Numbers of differently expressed genes (DEGs) during different developmental stages of Huaimai 48 grain"

Fig. 5

Clustering analysis of all DEGs and expression profiles of known genes in Huaimai 48 grains A: Clustering of gene expression patterns for Huaimai 48 grain across six different developmental stages; B: Expression patterns of the reported genes in Huaimai 48"

Table 4

Classification and expression patterns of transcription factors"

家族
Family
数目
Number
5种表达模式 Five expression patterns 家族
Family
数目
Number
5种表达模式 Five expression patterns
A B C D E A B C D E
AP2 22 4 8 9 1 0 HRT-like 1 0 1 0 0 0
ARF 14 4 9 1 0 0 HSF 24 5 1 15 0 3
ARR-B 11 1 9 0 0 1 LBD 17 5 5 0 0 7
B3 49 4 30 2 5 8 LSD 1 0 1 0 0 0
BES1 2 1 1 0 0 0 MIKC_MADS 37 1 32 0 2 2
bHLH 75 14 38 8 4 11 M-type_MADS 11 2 3 1 0 5
bZIP 59 12 19 10 3 15 MYB 90 22 34 8 2 24
C2H2 37 9 18 5 2 3 MYB_related 28 14 9 1 2 2
C3H 21 7 10 3 1 0 NAC 107 28 22 33 3 21
CAMTA 1 0 1 0 0 0 NF-YA 10 0 0 0 4 6
CO-like 3 0 2 0 0 1 NF-YB 14 6 4 0 0 4
CPP 3 2 1 0 0 0 NF-YC 9 1 8 0 0 0
DBB 8 2 4 0 0 2 Nin-like 3 3 0 0 0 0
Dof 14 1 4 3 1 5 S1Fa-like 1 1 0 0 0 0
E2F/DP 12 5 5 0 0 2 SBP 11 0 10 0 0 1
EIL 4 2 2 0 0 0 SRS 1 0 0 1 0 0
ERF 47 20 11 4 4 8 TALE 13 3 7 2 1 0
FAR1 15 2 3 3 0 7 TCP 22 1 21 0 0 0
G2-like 47 20 17 2 1 7 Trihelix 22 6 10 1 0 5
GATA 4 0 2 0 2 0 Whirly 6 1 5 0 0 0
GeBP 2 1 1 0 0 0 WOX 9 4 1 3 1 0
GRAS 24 8 11 1 2 2 WRKY 34 4 14 1 4 11
GRF 7 0 6 0 1 0 YABBY 9 0 7 2 0 0
HB-other 3 0 2 0 0 1 ZF-HD 11 2 3 6 0 0
HD-ZIP 47 7 35 3 1 1 总计Total 1022 235 447 128 47 165

Fig. 6

Correlation between weighted gene co-expression network and protein content A: Correlation analysis between gene modules and protein content. The first row from the bottom represents WGCNA modules, and the second row represents the correlation between the module and the protein content. The two numbers indicate the correlation coefficient and the P value, respectively. The bar chart at the top shows the number of genes contained in each module; B: Distribution plot of gene significance values across different modules"

Table 5

Canditate TFs for regulating the protein content of wheat grain"

基因ID Gene ID 类别Description 基因连通性值kME 所属模块The modlue
TraesCS2A03G0362900 MADS-box转录因子 MADS-box transcription factor 0.986 青绿色 Turquoise
TraesCS4D03G0036300 TALE转录因子 TALE transcription factor 0.981 青绿色 Turquoise
TraesCS5A03G0079200 TCP转录因子 TCP transcription factor 0.984 青绿色 Turquoise
TraesCS5B03G0740100 MADS-box转录因子 MADS-box transcription factor 0.987 青绿色 Turquoise
TraesCS7D03G0590500 MADS-box转录因子 MADS-box transcription factor 0.981 青绿色 Turquoise
TraesCS5A03G0135400 CPP转录因子 CPP transcription factor 0.981 蓝色 Blue

Fig. 7

Hub transcription factors in the weighted gene co-expression network Only the genes (nodes) with kME>0.98 and top 100 weight value in the positive regulation module were shown. The node size was corresponding with the number of regulated genes. The group of the red nodes represent the hub TF genes. The purple, blue and orange colors indicate this gene regulated by ≥3, 2 and 1 hub transcription factors (hub TFs), respectively"

Fig. 8

The result of GO (A) and KEGG (B) enrichment of the weighted gene co-expression network"

Table 6

Correlation analysis between expression levels of hub TFs and protein content in Huaimai 48 grains during different developmental stages"

表型/基因<BOLD>P</BOLD>henotype/gene 5 d 10 d 15 d 20 d 25 d 30 d 相关性系数r
蛋白质含量GPC (%) 15.59 15.04 14.15 12.81 12.16 13.20
TraesCS2A03G0362900 8.60 5.85 2.99 1.32 0.90 0.56 0.93**
TraesCS4D03G0036300 13.19 7.96 2.72 2.36 1.57 2.39 0.89*
TraesCS5A03G0079200 5.32 3.77 1.95 0.64 0.50 0.54 0.95**
TraesCS5A03G0135400 21.54 48.33 35.01 15.00 11.12 8.03 0.67n.s.
TraesCS5B03G0740100 136.13 83.19 35.66 28.30 19.17 15.06 0.89*
TraesCS7D03G0590500 284.97 153.86 63.75 55.35 33.35 24.53 0.87*

Fig. 9

Expression levels of hub TFs in different tissues from the public database WheatOmics"

[1]
WAN Y F, POOLE R L, HUTTLY A K, TOSCANO-UNDERWOOD C, FEENEY K, WELHAM S, GOODING M J, MILLS C, EDWARDS K J, SHEWRY P R, MITCHELL R A. Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics, 2008, 9: 121.

doi: 10.1186/1471-2164-9-121 pmid: 18325108
[2]
刘旭, 李立会, 黎裕, 谭光万, 周美亮. 作物及其种质资源与人文环境的协同演变学说. 植物遗传资源学报, 2022, 23(1): 1-11.

doi: 10.13430/j.cnki.jpgr.20211202001
LIU X, LI L H, LI Y, TAN G W, ZHOU M L. Synergistic evolution theory of crop germplasm resources and cultural environments. Journal of Plant Genetic Resources, 2022, 23(1): 1-11. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20211202001
[3]
SHEWRY P R, MITCHELL R A C, TOSI P, WAN Y F, UNDERWOOD C, LOVEGROVE A, FREEMAN J, TOOLE G A, CLARE MILLS E N, WARD J L. An integrated study of grain development of wheat (cv. Hereward). Journal of Cereal Science, 2012, 56(1): 21-30.
[4]
NADAUD I, GIROUSSE C, DEBITON C, CHAMBON C, BOUZIDI M F, MARTRE P, BRANLARD G. Proteomic and morphological analysis of early stages of wheat grain development. Proteomics, 2010, 10(16): 2901-2910.

doi: 10.1002/pmic.200900792 pmid: 20641138
[5]
CAO J, LIU H R, TAN S Y, LI Z H. Transcription factors- regulated leaf senescence: Current knowledge, challenges and approaches. International Journal of Molecular Sciences, 2023, 24(11): 9245.
[6]
GAO Y J, AN K X, GUO W W, CHEN Y M, ZHANG R J, ZHANG X, CHANG S Y, ROSSI V, JIN F M, CAO X Y, XIN M M, PENG H R, HU Z R, GUO W L, DU J K, NI Z F, SUN Q X, YAO Y Y. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. The Plant Cell, 2021, 33(3): 603-622.

doi: 10.1093/plcell/koaa040 pmid: 33955492
[7]
LI J H, XIE L N, TIAN X L, LIU S Y, XU D A, JIN H, SONG J, DONG Y, ZHAO D H, LI G Y, LI Y L, ZHANG Y, ZHANG Y, XIA X C, HE Z H, CAO S H. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. Plant Journal, 2021, 108(3): 829-840.
[8]
SHEN L S, LUO G B, SONG Y H, XU J Y, JI J J, ZHANG C, GREGOVÁ E, YANG W L, LI X, SUN J Z, ZHAN K H, CUI D Q, LIU D C, ZHANG A M. A novel NAC family transcription factor SPR suppresses seed storage protein synthesis in wheat. Plant Biotechnology Journal, 2021, 19(5): 992-1007.

doi: 10.1111/pbi.13524 pmid: 33305445
[9]
SUN F S, LIU X Y, WEI Q H, LIU J N, YANG T X, JIA L Y, WANG Y S, YANG G X, HE G Y. Functional characterization of TaFUSCA3, a B3-superfamily transcription factor gene in the wheat. Frontiers in Plant Science, 2017, 8: 1133.

doi: 10.3389/fpls.2017.01133 pmid: 28702045
[10]
LE B H, CHENG C, BUI A Q, WAGMAISTER J A, HENRY K F, PELLETIER J, KWONG L, BELMONTE M, KIRKBRIDE R, HORVATH S, DREWS G N, FISCHER R L, OKAMURO J K, HARADA J J, GOLDBERG R B. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8063-8070.
[11]
International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.
[12]
ZHU T T, WANG L, RIMBERT H, RODRIGUEZ J C, DEAL K R, DE OLIVEIRA R, CHOULET F, KEEBLE-GAGNÈRE G, TIBBITS J, ROGERS J, EVERSOLE K, APPELS R, GU Y Q, MASCHER M, DVORAK J, LUO M C. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 2021, 107(1): 303-314.
[13]
LUO G B, SHEN L S, ZHAO S C, LI R D, SONG Y H, SONG S Y, YU K, YANG W L, LI X, SUN J Z, WANG Y P, GAO C X, LIU D C, ZHANG A M. Genome-wide identification of seed storage protein gene regulators in wheat through coexpression analysis. The Plant Journal, 2021, 108(6): 1704-1720.

doi: 10.1111/tpj.15538 pmid: 34634158
[14]
ZHOU Z, CHENG Y A, JIANG Y N, LIU S, ZHANG M, LIU J, ZHAO Q. Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis. International Journal of Biological Sciences, 2018, 14(2): 124-136.

doi: 10.7150/ijbs.22619 pmid: 29483831
[15]
ZHANG B, HORVATH S. A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 2005, 4(1): Article17.
[16]
LANGFELDER P, HORVATH S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.

doi: 10.1186/1471-2105-9-559 pmid: 19114008
[17]
陈敏氡, 王彬, 刘建汀, 李永平, 白昌辉, 叶新如, 裘波音, 温庆放, 朱海生. 基于转录组和WGCNA筛选丝瓜果长和果径发育调控相关基因. 中国农业科学, 2023, 56(22): 4506-4522. doi: 10.3864/j.issn.0578-1752.2023.22.012.
CHEN M D, WANG B, LIU J T, LI Y P, BAI C H, YE X R, QIU B Y, WEN Q F, ZHU H S. Screening regulatory genes related to luffa fruit length and diameter development based on transcriptome and WGCNA. Scientia Agricultura Sinica, 2023, 56(22): 4506-4522. doi: 10.3864/j.issn.0578-1752.2023.22.012. (in Chinese)
[18]
曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因. 作物学报, 2021, 47(11): 2121-2133.

doi: 10.3724/SP.J.1006.2021.04249
ZENG J, XU X C, XU Y F, WANG X C, YU H Y, FENG B B, XING G N. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean. Acta Agronomica Sinica, 2021, 47(11): 2121-2133. (in Chinese)

doi: 10.3724/SP.J.1006.2021.04249
[19]
杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建. 作物学报, 2024, 50(1): 237-250.

doi: 10.3724/SP.J.1006.2024.34076
YANG C, WANG L, QUAN C T, YU L Q, DAI C, GUO L, FU T D, MA C Z. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L.. Acta Agronomica Sinica, 2024, 50(1): 237-250. (in Chinese)
[20]
KONG X C, WANG F, WANG Z Y, GAO X H, GENG S F, DENG Z Y, ZHANG S, FU M X, CUI D D, LIU S S, CHE Y Q, LIAO R Y, YIN L J, ZHOU P, WANG K, YE X G, LIU D C, FU X D, MAO L, LI A L. Grain yield improvement by genome editing of TaARF12 that decoupled peduncle and Rachis development trajectories via differential regulation of gibberellin signalling in wheat. Plant Biotechnology Journal, 2023, 21(10): 1990-2001.

doi: 10.1111/pbi.14107 pmid: 37589238
[21]
ISO/TS16634-2:2009. Food products - Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content -Part2: Cereals, pulses and milled cereal products. Switzerland: International organization for standardization, Geneva: 2009: 25.
[22]
GUO X J, FU Y X, LEE Y R J, CHERN M, LI M L, CHENG M P, DONG H X, YUAN Z W, GUI L X, YIN J J, QING H, ZHANG C B, PU Z E, LIU Y J, LI W T, LI W, QI P F, CHEN G Y, JIANG Q T, MA J, CHEN X W, WEI Y M, ZHENG Y L, WU Y R, LIU B, WANG J R. The PGS The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 2022, 20(7): 1311-1326.

doi: 10.1111/pbi.13809 pmid: 35315196
[23]
UAUY C, DISTELFELD A, FAHIMA T, BLECHL A, DUBCOVSKY J. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314(5803): 1298-1301.

doi: 10.1126/science.1133649 pmid: 17124321
[24]
BRIGGS G C, OSMONT K S, SHINDO C, SIBOUT R, HARDTKE C S. Unequal genetic redundancies in Arabidopsis-a neglected phenomenon? Trends in Plant Science, 2006, 11(10): 492-498.
[25]
CUSACK S A, WANG P P, LOTRECK S G, MOORE B M, MENG F R, CONNER J K, KRYSAN P J, LEHTI-SHIU M D, SHIU S H. Predictive models of genetic redundancy in Arabidopsis thaliana. Molecular Biology and Evolution, 2021, 38(8): 3397-3414.
[26]
CHEN M X, ZHANG B, LI C X, KULAVEERASINGAM H, CHEW F T, YU H. TRANSPARENT TESTA GLABRA1 regulates the accumulation of seed storage reserves in Arabidopsis. Plant Physiology, 2015, 169(1): 391-402.
[27]
HOLLENDER C A, KANG C Y, DARWISH O, GERETZ A, MATTHEWS B F, SLOVIN J, ALKHAROUF N, LIU Z C. Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiology, 2014, 165(3): 1062-1075.

pmid: 24828307
[28]
LI C B, YUE Y H, CHEN H J, QI W W, SONG R T. The ZmbZIP22 transcription factor regulates 27-kD γ-zein gene transcription during maize endosperm development. The Plant Cell, 2018, 30(10): 2402-2424.

doi: 10.1105/tpc.18.00422 pmid: 30242039
[29]
RUBIO-SOMOZA I, MARTINEZ M, ABRAHAM Z, DIAZ I, CARBONERO P. Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. The Plant Journal, 2006, 47(2): 269-281.
[30]
YAMAMOTO M P, ONODERA Y, TOUNO S M, TAKAIWA F. Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiology, 2006, 141(4): 1694-1707.

doi: 10.1104/pp.106.082826 pmid: 16798940
[31]
MUROZUKA E, MASSANGE-SÁNCHEZ J A, NIELSEN K, GREGERSEN P L, BRAUMANN I. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS ONE, 2018, 13(12): e0209769.
[32]
ZHANG Z Y, DONG J Q, JI C, WU Y R, MESSING J. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11223-11228.
[33]
KOBAYASHI K, YASUNO N, SATO Y, YODA M, YAMAZAKI R, KIMIZU M, YOSHIDA H, NAGAMURA Y, KYOZUKA J. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2 a SEPALLATA MADS box gene. The Plant Cell, 2012, 24(5): 1848-1859.
[34]
CUI R F, HAN J K, ZHAO S Z, SU K M, WU F, DU X Q, XU Q J, CHONG K, THEISSEN G, MENG Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant Journal, 2010, 61(5): 767-781.

doi: 10.1111/j.1365-313X.2009.04101.x pmid: 20003164
[35]
WANG J D, LO S F, LI Y S, CHEN P J, LIN S Y, HO T Y, LIN J H, CHEN L J. Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice. Botanical Studies, 2013, 54(1): 12.
[36]
WANG R N, YANG X Y, GUO S, WANG Z H, ZHANG Z H, FANG Z M. MiR319-targeted OsTCP21 and OsGAmyb regulate tillering and grain yield in rice. Journal of Integrative Plant Biology, 2021, 63(7): 1260-1272.
[37]
KONG Q, SINGH S K, MANTYLA J J, PATTANAIK S, GUO L, YUAN L, BENNING C, MA W. TEOSINTE BRANCHED1/ CYCLOIDEA/PROLIFERATING CELL FACTOR4 interacts with WRINKLED1 to mediate seed oil biosynthesis. Plant Physiology, 2020, 184(2): 658-665.
[38]
LUO H, SONG F, GOODMAN R M, ZHENG Z. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biology, 2005, 7(5): 459-468.

pmid: 16163610
[39]
GAUDINIER A, RODRIGUEZ-MEDINA J, ZHANG L F, OLSON A, LISERON-MONFILS C, BÅGMAN A M, FORET J, ABBITT S, TANG M, LI B H, RUNCIE D E, KLIEBENSTEIN D J, SHEN B, FRANK M J, WARE D, BRADY S M. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature, 2018, 563(7730): 259-264.
[40]
SMIT M E, MCGREGOR S R, SUN H, GOUGH C, BÅGMAN A M, SOYARS C L, KROON J T, GAUDINIER A, WILLIAMS C J, YANG X Y, NIMCHUK Z L, WEIJERS D, TURNER S R, BRADY S M, ETCHELLS J P. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. The Plant Cell, 2020, 32(2): 319-335.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] TANG HuaPing, CHEN HuangXin, LI Cong, GOU LuLu, TAN Cui, MU Yang, TANG LiWei, LAN XiuJin, WEI YuMing, MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[4] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[5] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[6] WANG WenRan,XIE ZhenQiang,ZHUGE YaXian,BAI YunHe,GUAN Le,WU WeiMin,ZHANG PeiAn,ZHENG Ting,FANG JingGui,WANG Chen. Function Analysis of GA3 Mediate miR171s and Its Target Genes VvSCLs in Grape Seed Development [J]. Scientia Agricultura Sinica, 2021, 54(2): 357-369.
[7] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[8] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[9] YunHe BAI,WenRan WANG,TianYu DONG,Le GUAN,ZiWen SU,HaiFeng JIA,JingGui FANG,Chen WANG. vvi-miR160s in Mediating VvARF18 Response to Gibberellin Regulation of Grape Seed Development [J]. Scientia Agricultura Sinica, 2020, 53(9): 1890-1903.
[10] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[11] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[12] XIA ShuFeng,WANG Fan,WANG LongJun,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,DAI TingBo,JIANG Dong. Study on the Adaptability of Wheat Reaching the Protein Content Standard of Soft Wheat in Jiangsu Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 4992-5004.
[13] CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet [J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293.
[14] ZHANG WenQiang,CHEN QingJun,ZHANG GuoQing,SHI ShiDa,CAO Na,ABLAT· Tohtirjap,GUO YuXin,LIN WenCai. Effects of Protein Supplements on Agronomic Characters and Quality of the Mushroom Agaricus bisporus [J]. Scientia Agricultura Sinica, 2020, 53(10): 2091-2100.
[15] BAI HuiYang, LU Geng, LU JunXing, GUAN Li, TANG Xin, ZHANG Tao. Cloning and Expression Analysis of Jasmonic Acid Carboxyl Methyltransferase Gene from Perilla frutescens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1657-1666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!