Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1890-1903.doi: 10.3864/j.issn.0578-1752.2020.09.015

• HORTICULTURE • Previous Articles     Next Articles

vvi-miR160s in Mediating VvARF18 Response to Gibberellin Regulation of Grape Seed Development

YunHe BAI,WenRan WANG,TianYu DONG,Le GUAN,ZiWen SU,HaiFeng JIA,JingGui FANG,Chen WANG()   

  1. College of Horticulture, Nanjing Agricultural University, Nanjing 210095
  • Received:2019-09-05 Accepted:2019-12-25 Online:2020-05-01 Published:2020-05-13
  • Contact: Chen WANG E-mail:wangchen@njau.edu.cn

Abstract:

【Objective】This study was performed to investigate the roles and the modes responsive to gibberellin (GA) of the vvi-miR160 family and its target genes in the development of Wink grape seed. 【Method】miR-RACE, RT-qPCR, bioinformatics and RLM-RACE were employed to identify vvi-miR160s and its target gene, and to analyze their modes responsive to GAof spatio-temporal expression and potential functions. 【Result】GA treatment before flowering strongly inhibited the ovule and seed development of Wink grape and induced grape seedless berries with high efficiency, and the seedless rate of berries reached 99.8%. The precursor gene sequence (501 bp) and mature sequence of vvi-miR160s were cloned and identified, which were highly conserved across different plant species. The mature sequences of vvi-miR160s were used as queries to predict the target gene VvARF18. The cleavage sites with 9/17 being their cleavage frequency of vvi-miR160s on VvARF18 were detected between the 10th and 11th sites by RLM-RACE and PPM-RACE, which proved that VvARF18 was the true target gene of vvi-miR160s. VvARF18 encoded 683 amino acids, and a nuclear localization signal existed at positions 398-411, while the protein sub-cellular was localized on the nucleus. The homology of VvARF18 with other in other species was highly conserved. The VvARF18 protein was closely related to tea, tobacco, plum and other species. The number of elements and their order were the same across different species, and the genes structures were similar. The VvARF18 promoter contained four types of cis-elements, which possessed more hormone-related cis-elements. RT-qPCR analysis showed that vvi-miR160c/d/e showed a ‘V’-shaped expression trend with the development of grape berries, and the lowest expression levels were found during the stone-hardening stage. VvARF18 exhibited an opposite expression trend to the former, with the highest expression during stone-hardening stage, indicating that vvi-miR160c/d/e negatively regulates VvARF18, but there was no significant negative correlation between vvi-miR160a/b and VvARF18 expression levels. GA treatment significantly up-regulated the expression of vvi-miR160a/b in the development of grape hardcore seeds, and also conspicuously inhibited the expression of VvARF18 in the corresponding period. The expression levels between vvi-miR160a/b and VvARF18 under GA treatments showed the typical negative correlation, indicating that GA treatment promoted the negative regulation of vvi-miR160a/b on VvARF18; reversely, GA weakened the negative regulation of vvi-miR160c/d/e on VvARF18. 【Conclusion】Among the vvi-miR160 family, vvi-miR160c/d/e may mediated VvARF18 regulation of seed development during specific stages of grape seed development, whereas vvi-miR160a/b may mediated VvARF18, which might be mainly involved in the regulation of GA-induced grape seedless berry development.

Key words: grape, vvi-miR160s, VvARF18, gibberellin (GA), seed development

Table 1

VvMIR160s PCR amplification primer sequences"

基因名称 Gene name 正向引物序列 Forward primer sequence 反向引物序列 Reverse primer sequence
VvMIR160a ACACCTCCTAAAATCATTGTCTG CTTGTGACATGAATATGGTGCG
VvMIR160b CTATGTATTTGTCTTGTTCTGATTGAA TGAATGGTCACAGTTCTTTGG
VvMIR160c GGCCTGGCCTCTATAAATATCA AATCGACCCACAATCAAACC
VvMIR160d GATGTGGTGCTTCGCCAAT ATGTGGGTTTTCTAAATGCCTAACC
VvMIR160e CACTCACTCACACCCTTCC ATATTATATTCTCTCTGCAGCCAAG

Table 2

vvi-miR160s and VvARF18 quantitative primer sequence"

基因名称 Gene name 正向引物序列 Forward primer sequence 反向引物序列 Reverse primer sequence
vvi-miR160a TGACCTTTGTGCTTCAGTGG GCTATCTGGGTTGACCTCCA
vvi-miR160b TTCTGCAGGAGATGGAGCTT AGTGTTTCGCCTGCTTGACT
vvi-miR160c CCACATTCCGTGACCTTTCT GCACAACCCATTTCACCTTT
vvi-miR160d CGCCAATGCAGGAAATTTAT GGGAGCCAGGCATGTAAGTA
vvi-miR160e CTGTATGCCATTTGCAGAGC GGGGGAGAAGATTGAAGAGG
VvARF18 CTGAACACGCCTATGGGAAT CCGTTTCACCCTCAGTGTTT

Fig. 1

Effect of GA treatment on fruit development of Wink grape"

Fig. 2

Sequence analysis and chromosome distribution of mature vvi-miR160s"

Fig. 3

MicroR160s evolution analysis and mature sequence alignment"

Fig. 4

vvi-miR160s and target gene complementary mismatch ×:Mismatch is 1, ○: Mismatch is 0.5"

Fig. 5

ARF gene sequence structure analysis"

Fig. 6

ARF18 protein evolution analysis and gene structure analysis"

Fig. 7

ARF18 protein action element"

Table 3

VvARF18 gene promoter cis-acting element"

元件类型 Component type 相关元件 Related component 数量 Number 功能注释 Functional comment
光响应元件
Photoresponsive element
3-AF1 binding site 1 光响应元件Photoresponsive element
AE-box 1 光反应元件Photoresponsive element
Box 4 7 光响应元件Photoresponsive element
G-box 2 光响应元件Photoresponsive element
GT1-motif 6 光响应元件Photoresponsive element
激素响应元件
Hormone response element
ABRE 2 脱落酸响应元件Abscisic acid response element
AuxRR-core 1 生长素响应元件Auxin response element
CGTCA-motif 1 茉莉酸甲酯响应元件Methyl jasmonate response element
TGACG-motif 1 茉莉酸甲酯响应元件Methyl jasmonate response element
P-box 1 赤霉素响应元件Gibberellin response element
胁迫相关元件
Stress related component
ARE 3 厌氧诱导元件Anaerobic inducing element
LRT 1 低温诱导元件Low temperature inducing element
结合位点
Bonding component
CCAAT-box 1 MYBHv1结合位点MYBHv1 binding site
MBS 2 MYB参与干旱诱导位点MYB participates in drought induction sites

Fig. 8

vvi-miR160s and its target gene fragmentation validation"

Fig. 9

vvi-miR160s: VvARF18 spatiotemporal expression pattern and its correlation"

Fig. 10

vvi-miR160s and VvARF18 respond to GA regulation of grapevine nuclear development"

[1] PARK M Y, WU G, GONZALEZ-SULSER A, VAUCHERET H, POETHIG R S . Nuclear processing and export of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(10):3691-3696.
doi: 10.1073/pnas.0405570102 pmid: 15738428
[2] BRODERSEN P, SAKVARELIDZE-ACHARD L, BRUUN- RASMUSSEN M, DUNOYER P, YAMAMOTO Y Y, SISBURTH L, VOINNET O . Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008,320(5880):1185-1190.
doi: 10.1126/science.1159151 pmid: 18483398
[3] BUSHATI N, COHEN N . microRNA functions. Annual Review of Cell and Developmental Biology, 2007,23(1):175-205.
[4] GOSWAMI K, TRIPATHI A, SANAN-MISHRA N . Comparative miRomics of salt-tolerant and salt-sensitive rice. Journal of Integrative Bioinformatics, 2017,14(1):189-197.
doi: 10.1515/jib-2017-0002 pmid: 28637931
[5] NAG A, JACK T . Sculpting the flower; the role of microRNAs in flower development. Current Topics in Developmental Biology, 2010,91:349-378.
doi: 10.1016/S0070-2153(10)91012-0 pmid: 20705188
[6] CHEN Q S, LI M, ZHANG Z C, TIE W W, CHEN X, JIN L F, ZHAI N, ZHENG Q X, ZHANG J F, WANG R, XU G Y, ZHANG H, LIU P P, ZHOU H N . Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco. BMC Genomics, 2017,18(1):62.
doi: 10.1186/s12864-016-3372-0 pmid: 28068898
[7] TURNER M, NIZAMPATNAM N R, BARON M, COPPIN S, DAMODARAN S, ADHIKARI S, ARUNACHALAM S P, YU O, SUBRAMANIAN S . Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiology, 2013,162(4):2042-2055.
doi: 10.1104/pp.113.220699
[8] PINWEHA N, ASVARAK T, VIBOONJUN U, NARANGAJAVANA J . Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. Journal of Plant Physiology, 2015,174(1):26-35.
doi: 10.1016/j.jplph.2014.09.006 pmid: 25462963
[9] LIU X D, HUANG J, WANG Y, KHANNA K, XIE Z X, OWEN H A, ZHAO D Z . The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant Journal, 2010,62(3):416-428.
doi: 10.1111/j.1365-313X.2010.04164.x pmid: 20136729
[10] WÓJCIK A M, NODINE M D, GAJ M D . MiR160 and miR166/165 contribute to the LEC2-mediated auxin response involved in the somatic embryogenesis induction in Arabidopsis. Frontiers in Plant Science, 2017,8:2024.
doi: 10.3389/fpls.2017.02024 pmid: 29321785
[11] MALLORY A C, BARTEL D P, BARTEL B . MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. The Plant Cell, 2005,17(5):1360-1375.
doi: 10.1105/tpc.105.031716 pmid: 15829600
[12] TIWARI S B, HAGEN G, GUILFOYLE T . The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell, 2003,15(2):533-543.
doi: 10.1105/tpc.008417 pmid: 12566590
[13] GRAY W M, KEPINSKI S, ROUSE D, LEYSER O, ESTELLE M . Auxin regulates SCF TIR1-dependent degradation of Aux/IAA proteins . Nature, 2001,414(6861):271-276.
doi: 10.1038/35104500 pmid: 11713520
[14] 李艳林, 高志红, 宋娟, 王万许, 侍婷 . 植物生长素响应因子ARF与生长发育. 植物生理学报, 2017,53(10):1842-1858.
LI Y L, GAO Z H, SONG J, WANG W X, SHI T . Auxin response factor (ARF) and its functions in plant growth and development. Plant Physiology Journal, 2017,53(10):1842-1858. (in Chinese)
[15] HENDELMAN A, BUXDORF K, STAV R, KRAVCHIK M, ARAZI T . Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. Plant Molecular Biology, 2012,78(6):561-576.
doi: 10.1007/s11103-012-9883-4
[16] LIU P P, MONTGOMERY T A, FAHLGREN N, KASSCHAU K D, NONOGAKI H, CARRINGTON J C . Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. The Plant Journal, 2007,52(1):133-146.
doi: 10.1111/j.1365-313X.2007.03218.x pmid: 17672844
[17] DE JONG M, WOLTERS-ARTS M, GARCIA-MARTINEZ J L, MARIANI C, VRIEZEN W H . The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. Journal of Experimental Botany, 2011,62(2):617-626.
doi: 10.1093/jxb/erq293 pmid: 20937732
[18] FRIGERIO M, ALABADÍ D, PÉREZ-GÓMEZ J, GARCÍA- CÁRCEL L, PHILLIPS A L, HEDDEN P, BLÁZQUEZ M A . Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiology, 2006,142(2):553-563.
doi: 10.1104/pp.106.084871 pmid: 16905669
[19] DORCEY E, URBEZ C, BLÁZQUEZ M A, CARBONELL J, PEREZ-AMADOR M A . Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 2009,58(2):318-332.
doi: 10.1111/j.1365-313X.2008.03781.x pmid: 19207215
[20] WANG C, WANG X C, KIBET N K, SONG C N, ZHANG C Q, LI X Y, HAN J, FANG J G . Deep sequencing of grape flower and berry short RNA libraries for the discovery of new microRNAs and verification of the precise sequence of grape microRNAs preserved in miRBase. Physiologia Plantarum, 2011,143(1):64-81.
doi: 10.1111/j.1399-3054.2011.01481.x pmid: 21496033
[21] ZHANG W Y, ABDELRAHMAN M, JIU S T, GUAN L, HAN J, ZHENG T, JIA H F, SONG C N, FANG J G, WANG C . VvmiR160s/ VvARFs, interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biology, 2019,19(1):111.
doi: 10.1186/s12870-019-1719-9 pmid: 30898085
[22] ABU-ZAHRA T R . Percentage of thompson seeds affected by GIBBERELLIC acid and cance GIRDLING. Pakistan Journal of Botany, 2010,42(3):1755-1760.
[23] CHENG C X, XU X Z, SINGER S D, LI J, ZHANG H J, GAO M, WANG L, SONG J Y, WANG X P . Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS ONE, 2013,8(11):e80044.
doi: 10.1371/journal.pone.0080044 pmid: 24224035
[24] SPANUDAKIS E, JACKSON S . The role of microRNAs in the control of flowering time. Journal of Experimental Botany, 2014,65(2):365-380.
doi: 10.1093/jxb/ert453 pmid: 24474808
[25] LUO Y, GUO Z H, LI L . Evolutionary conservation of microRNA regulatory programs in plant flower development. Developmental Biology, 2013,380(2):133-144.
doi: 10.1016/j.ydbio.2013.05.009 pmid: 23707900
[26] ACHARD P, HERR A, BAULCOMBE D C, HARBERD N P . Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004,131(14):3357-3365.
doi: 10.1242/dev.01206 pmid: 15226253
[27] 王文然, 王晨, 解振强, 贾海锋, 汤崴, 崔梦杰, 房经贵 . VvmiR397a及其靶基因VvLACs在葡萄果实发育中的作用分析. 园艺学报, 2018,45(8):1441-1455.
WANG W R, WANG C, XIE Z Q, JIA H F, TANG W, CUI M J, FANG J G . Function analysis of VvmiR397a and its target gene VvLACs in grape berry development. Acta Horticulturae Sinica, 2018,45(8):1441-1455. (in Chinese)
[28] CUI M J, WANG C, ZHANG W Y, PERVAIZ T, HAIDER M S, TANG W, FANG J G . Characterization of Vv-miR156: Vv-SPL pairs involved in the modulation of grape berry development and ripening. Molecular Genetics and Genomics, 2018,293(6):1333-1354.
doi: 10.1007/s00438-018-1462-1 pmid: 29943289
[29] YE K Y, CHEN Y, HU X W, GUO J C . Computational identification of microRNAs and their targets in apple. Genes and Genomics, 2013,35(3):377-385.
doi: 10.1111/j.1399-3054.2010.01411.x pmid: 20875055
[30] SONG C N, FANG J G, LI X Y, LIU H, CHAO C T . Identification and characterization of 27 conserved microRNAs in citrus. Planta, 2009,230(4):671-685.
doi: 10.1007/s00425-009-0971-x pmid: 19585144
[31] XU X B, YIN L L, YING Q C, SONG H M, XUE D W, LAI T F, XU M J, SHEN B, WANG H Z, SHI X Q . High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa. PLoS ONE, 2013,8(8):e70959.
doi: 10.1371/journal.pone.0070959 pmid: 23990918
[32] HAN J, FANG J G, WANG C, YIN Y L, SUN X, LENG X P, SONG C N . Grapevine microRNAs responsive to exogenous gibberellin. BMC Genomics, 2014,15(1):111.
doi: 10.1186/1471-2164-15-111
[33] WANG B J, WANG J, WANG C, SHEN W B, JIA H F, ZHU X D, LI X P . Study on modes of expression and cleavage role of miR156b/c/d and its target gene Vv-SPL9 during the whole growth stage of grapevine. Journal of Heredity, 2016,107(7):626-634.
doi: 10.1093/jhered/esw030 pmid: 27660497
[34] WANG M, WU H J, FANG J, CHU C C, WANG X J . A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160. Science Bulletin, 2017,62(7):470-475.
doi: 10.1016/j.scib.2017.03.013
[35] NIU J, WANG J, AN J Y, LIU L L, LIN Z X, WANG R, WANG L B, MA C, SHI L L, LIN S Z . Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot. Scientific Reports, 2016,6:35675.
doi: 10.1038/srep35675 pmid: 27762296
[36] CUI J, SUN Z Y, LI J L, CHENG D Y, LUO C F, DAI C H . Characterization of miRNA160/164 and their targets expression of beet (Beta vulgaris) seedlings under the salt tolerance. Plant Molecular Biology Reporter, 2018,36(5/6):790-799.
[37] LIU X D, HUANG J, WANG Y, KHANNA K, XIE Z X, OWEN H A, ZHAO D Z . The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. The Plant Journal, 2010,62(3):416-428.
doi: 10.1111/j.1365-313X.2010.04164.x pmid: 20136729
[38] DAMODHARAN S, ZHAO D Z, ARAZI T . A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. The Plant Journal, 2016,86(6):458-471.
doi: 10.1111/tpj.13127 pmid: 26800988
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[6] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[7] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[8] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[9] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[10] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[11] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[12] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[13] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[14] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[15] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!