Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 792-801.doi: 10.3864/j.issn.0578-1752.2025.04.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Research Progress on the Roles and Mechanisms of Autophagy Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection

LI Rui(), LIANG Yue, BAI Yang, ZHANG GuiYue, WANG NanNan, QIAO SongLin(), ZHANG GaiPing()   

  1. Institute for Animal Health (Key Laboratory of Animal Immunology), Henan Academy of Agricultural Sciences, Zhengzhou 450002
  • Received:2024-09-07 Accepted:2024-12-22 Online:2025-02-16 Published:2025-02-24
  • Contact: QIAO SongLin, ZHANG GaiPing

Abstract:

Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped single-stranded positive sense RNA arterivirus. Infection by PRRSV results in porcine reproductive and respiratory syndrome (PRRS), characterized by abortions, stillbirths, weak-born piglets, and mummified fetuses in sows as well as respiratory diseases in pigs of all ages. PRRSV has caused tremendous economic losses to the global swine industry. Comprehensive investigation on PRRSV infection would be beneficial for the prevention and control of PRRS, and contribute to the high-quality development of the swine industry. Autophagy is a lysosome-dependent degradation and recycling process for abnormal proteins, damaged organelles, and invading pathogens. It comprises macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA),among which macroautophagy has been most extensively investigated so far, and is classified as non-selective autophagy and selective autophagy. Autophagy plays crucial roles in maintaining cellular homeostasis, controlling the quality of organelles, and transporting intracellular materials. Furthermore, autophagy is involved in diverse diseases, such as neurodegenerative diseases, autoimmune diseases, and cancers. Moreover, autophagy is a potent defense response to eliminate invading viruses, while viruses have evolved multiple strategies to subvert the autophagic degradation or even exploit autophagy for their own benefits. This review systematically scrutinized recent research progress on the roles and mechanisms of autophagy involved in PRRSV infection, and elaborated that autophagy played a dual role during PRRSV infection. On the one hand, PRRSV non-structural and structural proteins triggered macroautophagy (including reticulophagy, mitophagy, aggrephagy, and lipophagy) and CMA via a variety of mechanisms; in turn, macroautophagy and CMA facilitated PRRSV infection by participation in viral replication, antagonism of apoptosis, and inhibition of host immunity. On the other hand, selective autophagy (eg., reticulophagy) and CMA suppressed PRRSV infection by degradation of viral non-structural proteins and activation of antiviral immune responses. This review actually deepend the understanding of PRRSV infection from the autophagy perspective. In addition, this review summarized and raised certain controversial or unsolved issues, which provided clues for future studies on the roles and mechanisms of autophagy involved in PRRSV infection; in the meantime, this review illustrated and supported potential targets against autophagy for developing antiviral interventions to restrain PRRS epidemics.

Key words: PRRSV, infection, autophagy, roles and mechanisms, antiviral targets

Fig. 1

The dual role of autophagy during PRRSV infection"

[1]
ROSSOW K D. Porcine reproductive and respiratory syndrome. Veterinary Pathology, 1998, 35(1): 1-20.

doi: 10.1177/030098589803500101 pmid: 9545131
[2]
HOLTKAMP D, KLIEBENSTEIN J, NEUMANN E, ZIMMERMAN J, ROTTO H, YODER T, WANG C, YESKE P, MOWRER C, HALEY C. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. Journal of Swine Health and Production, 2013, 21(2): 72-84.
[3]
RENKEN C, NATHUES C, SWAM H, FIEBIG K, WEISS C, EDDICKS M, RITZMANN M, NATHUES H. Application of an economic calculator to determine the cost of porcine reproductive and respiratory syndrome at farm-level in 21 pig herds in Germany. Porcine Health Management, 2021, 7(1): 3.
[4]
ZHANG Z D, LI Z, LI H, YANG S Q, REN F B, BIAN T, SUN L M, ZHOU B, ZHOU L, QU X Y. The economic impact of porcine reproductive and respiratory syndrome outbreak in four Chinese farms: based on cost and revenue analysis. Frontiers in Veterinary Science, 2022, 9: 1024720.
[5]
FANG Y, SNIJDER E J. The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Research, 2010, 154(1/2): 61-76.
[6]
SNIJDER E J, KIKKERT M, FANG Y. Arterivirus molecular biology and pathogenesis. The Journal of General Virology, 2013, 94(Pt 10): 2141-2163.
[7]
VEIT M, MATCZUK A K, SINHADRI B C, KRAUSE E, THAA B. Membrane proteins of arterivirus particles: structure, topology, processing and function. Virus Research, 2014, 194: 16-36.

doi: 10.1016/j.virusres.2014.09.010 pmid: 25278143
[8]
DUAN X, NAUWYNCK H J, PENSAERT M B. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary Microbiology, 1997, 56(1/2): 9-19.
[9]
KIM H S, KWANG J, YOON I J, JOO H S, FREY M L. Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Archives of Virology, 1993, 133(3/4): 477-483.
[10]
KLIONSKY D J, EMR S D. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497): 1717-1721.

doi: 10.1126/science.290.5497.1717 pmid: 11099404
[11]
CHOI Y, BOWMAN J W, JUNG J U. Autophagy during viral infection—a double-edged sword. Nature Reviews Microbiology, 2018, 16: 341-354.
[12]
陈小琴, 赵一霏, 孙岩, 冯晓慧, 曹辉, 魏澍, 姚龙泉, 张飞, 沈国顺, 刘金玲. 细胞自噬与PRRSV感染相互作用研究进展. 动物医学进展, 2018, 39(11): 93-96.
CHEN X Q, ZHAO Y F, SUN Y, FENG X H, CAO H, WEI S, YAO L Q, ZHANG F, SHEN G S, LIU J L. Advance in interaction of autophagy and PRRSV infection. Progress in Veterinary Medicine, 2018, 39(11): 93-96. (in Chinese)
[13]
CHEN X Y, YU Z D, LI W F. Molecular mechanism of autophagy in porcine reproductive and respiratory syndrome virus infection. Frontiers in Cellular and Infection Microbiology, 2024, 14: 1434775.
[14]
HE Z, LI F F, YAN J C, LIU M, CHEN Y J, GUO C H. The dual role of autophagy during porcine reproductive and respiratory syndrome virus infection: A review. International Journal of Biological Macromolecules, 2024, 282(Pt 3): 136978.
[15]
GALLUZZI L, BAEHRECKE E H, BALLABIO A, BOYA P, BRAVO-SAN PEDRO J M, CECCONI F, CHOI A M, CHU C T, CODOGNO P, COLOMBO M I, et al. Molecular definitions of autophagy and related processes. The EMBO Journal, 2017, 36(13): 1811-1836.
[16]
YU L, CHEN Y, TOOZE S A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2): 207-215.

doi: 10.1080/15548627.2017.1378838 pmid: 28933638
[17]
NAKAMURA S, YOSHIMORI T. New insights into autophagosome- lysosome fusion. Journal of Cell Science, 2017, 130(7): 1209-1216.
[18]
GATICA D, LAHIRI V, KLIONSKY D J. Cargo recognition and degradation by selective autophagy. Nature Cell Biology, 2018, 20(3): 233-242.

doi: 10.1038/s41556-018-0037-z pmid: 29476151
[19]
VARGAS J N S, HAMASAKI M, KAWABATA T, YOULE R J, YOSHIMORI T. The mechanisms and roles of selective autophagy in mammals. Nature Reviews Molecular Cell Biology, 2023, 24(3): 167-185.
[20]
WANG L M, KLIONSKY D J, SHEN H M. The emerging mechanisms and functions of microautophagy. Nature Reviews Molecular Cell Biology, 2023, 24(3): 186-203.
[21]
KUCHITSU Y, TAGUCHI T. Lysosomal microautophagy: An emerging dimension in mammalian autophagy. Trends in Cell Biology, 2024, 34(7): 606-616.
[22]
KAUSHIK S, CUERVO A M. The coming of age of chaperone- mediated autophagy. Nature Reviews Molecular Cell Biology, 2018, 19(6): 365-381.
[23]
YANG Q, WANG R L, ZHU L. Chaperone-mediated autophagy. Advances in Experimental Medicine and Biology. Singapore: Springer Singapore, 2019: 435-452.
[24]
HARRIS H, RUBINSZTEIN D C. Control of autophagy as a therapy for neurodegenerative disease. Nature Reviews Neurology, 2011, 8(2): 108-117.

doi: 10.1038/nrneurol.2011.200 pmid: 22187000
[25]
FLEMING A, BOURDENX M, FUJIMAKI M, KARABIYIK C, KRAUSE G J, LOPEZ A, MARTÍN-SEGURA A, PURI C, SCRIVO A, SKIDMORE J, et al. The different autophagy degradation pathways and neurodegeneration. Neuron, 2022, 110(6): 935-966.

doi: 10.1016/j.neuron.2022.01.017 pmid: 35134347
[26]
KELLER C W, ADAMOPOULOS I E, LÜNEMANN J D. Autophagy pathways in autoimmune diseases. Journal of Autoimmunity, 2023, 136: 103030.
[27]
DEBNATH J, GAMMOH N, RYAN K M. Autophagy and autophagy- related pathways in cancer. Nature Reviews Molecular Cell Biology, 2023, 24(8): 560-575.
[28]
RUBINSZTEIN D C, CODOGNO P, LEVINE B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery, 2012, 11(9): 709-730.

doi: 10.1038/nrd3802 pmid: 22935804
[29]
WU W X, LUO X M, REN M Z. Clearance or hijack: Universal interplay mechanisms between viruses and host autophagy from plants to animals. Frontiers in Cellular and Infection Microbiology, 2021, 11: 786348.
[30]
CHEN T, TU S Y, DING L, JIN M L, CHEN H C, ZHOU H B. The role of autophagy in viral infections. Journal of Biomedical Science, 2023, 30(1): 5.
[31]
ZHAI H J, WANG T, LIU D, PAN L, SUN Y, QIU H J. Autophagy as a dual-faced host response to viral infections. Frontiers in Cellular and Infection Microbiology, 2023, 13: 1289170.
[32]
JASSEY A, JACKSON W T. Viruses and autophagy: bend, but don’t break. Nature Reviews Microbiology, 2024, 22(5): 309-321.
[33]
CHEN Q G, FANG L R, WANG D, WANG S H, LI P, LI M, LUO R, CHEN H C, XIAO S B. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Research, 2012, 163(2): 650-655.

doi: 10.1016/j.virusres.2011.11.008 pmid: 22119900
[34]
LIU Q H, QIN Y X, ZHOU L, KOU Q W, GUO X, GE X N, YANG H C, HU H B. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells. Virology, 2012, 429(2): 136-147.

doi: 10.1016/j.virol.2012.03.022 pmid: 22564420
[35]
SUN M X, HUANG L, WANG R, YU Y L, LI C, LI P P, HU X C, HAO H P, ISHAG H A, MAO X. Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication. Autophagy, 2012, 8(10): 1434-1447.
[36]
ZHOU A, LI S F, KHAN F A, ZHANG S J. Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction. Virulence, 2016, 7(2): 98-109.

doi: 10.1080/21505594.2015.1131381 pmid: 26670824
[37]
LI S F, ZHOU A, WANG J X, ZHANG S J. Interplay of autophagy and apoptosis during PRRSV infection of Marc145 cell. Infection, Genetics and Evolution, 2016, 39: 51-54.

doi: S1567-1348(16)30010-7 pmid: 26774368
[38]
JIANG D D, HE M J, SUI C, WU X J, HU Y, CONG X Y, LI J T, DU Y J, QI J. PRRSV nonstructural protein 11 degrades swine ISG15 by its endoribonuclease activity to antagonize antiviral immune response. Veterinary Microbiology, 2023, 280: 109720.
[39]
LI J, ZHOU Y R, ZHAO W K, LIU J, ULLAH R, FANG P X, FANG L R, XIAO S B. Porcine reproductive and respiratory syndrome virus degrades DDX10 via SQSTM1/p62-dependent selective autophagy to antagonize its antiviral activity. Autophagy, 2023, 19(8): 2257-2274.
[40]
SUN R Q, GUO Y Y, ZHANG L L, ZHANG H X, YIN B X, LI X Y, LI C Y, YANG L, ZHANG L, LI Z X, HUANG J H. PRRSV degrades MDA5 via dual autophagy receptors P62 and CCT2 to evade antiviral innate immunity. Virologica Sinica, 2024, 39(2): 264-276.
[41]
ZHANG W, CHEN K R, GUO Y, CHEN Y S, LIU X H. Involvement of PRRSV NSP3 and NSP5 in the autophagy process. Virology Journal, 2019, 16(1): 13.
[42]
ZHANG S, ZENG L, SU B Q, YANG G Y, WANG J, MING S L, CHU B B. The glycoprotein 5 of porcine reproductive and respiratory syndrome virus stimulates mitochondrial ROS to facilitate viral replication. mBio, 2023, 14(6): e0265123.
[43]
PUJHARI S, KRYWORUCHKO M, ZAKHARTCHOUK A N. Role of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) signalling pathways in porcine reproductive and respiratory syndrome virus (PRRSV) replication. Virus Research, 2014, 194: 138-144.

doi: 10.1016/j.virusres.2014.09.017 pmid: 25304692
[44]
WANG K, LI S F, WORKU T, HAO X J, YANG L H, ZHANG S J. Rab11a is required for porcine reproductive and respiratory syndrome virus induced autophagy to promote viral replication. Biochemical and Biophysical Research Communications, 2017, 492(2): 236-242.

doi: S0006-291X(17)31609-1 pmid: 28822762
[45]
JIANG J H, SUN Y M, WANG Y L, SABEK A, SHANGGUAN A S, WANG K, ZHAO S H, LI G L, ZHOU A, ZHANG S J. Genome-wide CRISPR/Cas9 screen identifies host factors important for porcine reproductive and respiratory syndrome virus replication. Virus Research, 2022, 314: 198738.
[46]
JIANG C L, DIAO F F, MA Z C, ZHANG J, BAI J, NAUWYNCK H, JIANG P, LIU X. Autophagy induced by Rab1a-ULK1 interaction promotes porcine reproductive and respiratory syndrome virus replication. Virus Research, 2023, 323: 198989.
[47]
GU H, QIU H, YANG H T, DENG Z F, ZHANG S K, DU L Y, HE F. PRRSV utilizes MALT1-regulated autophagy flux to switch virus spread and reserve. Autophagy, 2024, 20(12): 2697-2718.
[48]
ZHAO S S, QIAN Q S, CHEN X X, LU Q X, XING G X, QIAO S L, LI R, ZHANG G P. Porcine reproductive and respiratory syndrome virus triggers Golgi apparatus fragmentation-mediated autophagy to facilitate viral self-replication. Journal of Virology, 2024, 98(2): e0184223.
[49]
QI Z H, CHEN L X. Endoplasmic reticulum stress and autophagy. Advances in Experimental Medicine and Biology, 2019, 1206: 167-177.

doi: 10.1007/978-981-15-0602-4_8 pmid: 31776985
[50]
WALTER P, RON D. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011, 334(6059): 1081-1086.

doi: 10.1126/science.1209038 pmid: 22116877
[51]
KARAGÖZ G E, ACOSTA-ALVEAR D, WALTER P. The unfolded protein response: Detecting and responding to fluctuations in the protein-folding capacity of the endoplasmic reticulum. Cold Spring Harbor Perspectives in Biology, 2019, 11(9): a033886.
[52]
HETZ C, ZHANG K Z, KAUFMAN R J. Mechanisms, regulation and functions of the unfolded protein response. Nature Reviews Molecular Cell Biology, 2020, 21(8): 421-438.

doi: 10.1038/s41580-020-0250-z pmid: 32457508
[53]
REGGIORI F, MOLINARI M. ER-phagy: Mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiological Reviews, 2022, 102(3): 1393-1448.
[54]
CHINO H, MIZUSHIMA N. ER-phagy: Quality and quantity control of the endoplasmic reticulum by autophagy. Cold Spring Harbor Perspectives in Biology, 2023, 15(1): a041256.
[55]
HUO Y Z, FAN L H, YIN S T, DONG Y H, GUO X, YANG H C, HU H B. Involvement of unfolded protein response, p53 and Akt in modulation of porcine reproductive and respiratory syndrome virus-mediated JNK activation. Virology, 2013, 444(1/2): 233-240.
[56]
YUAN S Z, ZHANG N, XU L, ZHOU L, GE X N, GUO X, YANG H C. Induction of apoptosis by the nonstructural protein 4 and 10 of porcine reproductive and respiratory syndrome virus. PLoS ONE, 2016, 11(6): e0156518.
[57]
ZHOU Y R, FANG L R, WANG D, CAI K M, CHEN H C, XIAO S B. Porcine reproductive and respiratory syndrome virus infection induces stress granule formation depending on protein kinase R-like endoplasmic reticulum kinase (PERK) in MARC-145 cells. Frontiers in Cellular and Infection Microbiology, 2017, 7: 111.

doi: 10.3389/fcimb.2017.00111 pmid: 28421170
[58]
CHEN W Y, SCHNIZTLEIN W M, CALZADA-NOVA G, ZUCKERMANN F A. Genotype 2 strains of porcine reproductive and respiratory syndrome virus dysregulate alveolar macrophage cytokine production via the unfolded protein response. Journal of Virology, 2018, 92(2): e01251-17.
[59]
CATANZARO N, MENG X J. Porcine reproductive and respiratory syndrome virus (PRRSV)-induced stress granules are associated with viral replication complexes and suppression of host translation. Virus Research, 2019, 265: 47-56.

doi: S0168-1702(18)30755-X pmid: 30826338
[60]
GAO P, CHAI Y, SONG J W, LIU T, CHEN P, ZHOU L, GE X N, GUO X, HAN J, YANG H C. Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus. PLoS Pathogens, 2019, 15(11): e1008169.
[61]
CHEN Q G, MEN Y J, WANG D, XU D Q, LIU S Y, XIAO S B, FANG L R. Porcine reproductive and respiratory syndrome virus infection induces endoplasmic reticulum stress, facilitates virus replication, and contributes to autophagy and apoptosis. Scientific Reports, 2020, 10(1): 13131.
[62]
DIAO F F, JIANG C L, SUN Y Y, GAO Y N, BAI J, NAUWYNCK H, WANG X W, YANG Y Q, JIANG P, LIU X. Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication. PLoS Pathogens, 2023, 19(3): e1011295.
[63]
WANG J, SUN H Q, LI R, XU S X, GUO J Q, XING G X, JIA B, QIAO S L, CHEN X X, ZHANG G P. PRRSV non-structural protein 5 inhibits antiviral innate immunity by degrading multiple proteins of RLR signaling pathway through FAM134B-mediated ER-phagy. Journal of Virology, 2024, 98(10): e0081624.
[64]
NUNNARI J, SUOMALAINEN A. Mitochondria: In sickness and in health. Cell, 2012, 148(6): 1145-1159.

doi: 10.1016/j.cell.2012.02.035 pmid: 22424226
[65]
ONISHI M, YAMANO K, SATO M, MATSUDA N, OKAMOTO K. Molecular mechanisms and physiological functions of mitophagy. The EMBO Journal, 2021, 40(3): e104705.
[66]
LU Y Y, LI Z J, ZHANG S Q, ZHANG T T, LIU Y J, ZHANG L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics, 2023, 13(2): 736-766.

doi: 10.7150/thno.79876 pmid: 36632220
[67]
JIN S M, YOULE R J. PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 2012, 125(Pt 4): 795-799.

doi: 10.1242/jcs.093849 pmid: 22448035
[68]
LEE S M, KLEIBOEKER S B. Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway. Virology, 2007, 365(2): 419-434.
[69]
LI H W, YANG X T, SONG Y Z, ZHU Q G, LIAO Z Q, LIANG Y X, GUO J H, WAN B, BAO D K. PRRSV infection activates NLRP3 inflammasome through inducing cytosolic mitochondrial DNA stress. Veterinary Microbiology, 2023, 279: 109673.
[70]
LI S F, WANG J X, ZHOU A, KHAN F A, HU L, ZHANG S J. Porcine reproductive and respiratory syndrome virus triggers mitochondrial fission and mitophagy to attenuate apoptosis. Oncotarget, 2016, 7(35): 56002-56012.

doi: 10.18632/oncotarget.10817 pmid: 27463011
[71]
LAMARK T, JOHANSEN T. Aggrephagy: Selective disposal of protein aggregates by macroautophagy. International Journal of Cell Biology, 2012, 2012: 736905.
[72]
XIAO Y H, WU W N, GAO J M, SMITH N, BURKARD C, XIA D, ZHANG M X, WANG C B, ARCHIBALD A, DIGARD P, ZHOU E M, HISCOX J A. Characterization of the interactome of the porcine reproductive and respiratory syndrome virus nonstructural protein 2 reveals the hyper variable region as a binding platform for association with 14-3-3 proteins. Journal of Proteome Research, 2016, 15(5): 1388-1401.

doi: 10.1021/acs.jproteome.5b00396 pmid: 26709850
[73]
CAO S L, CONG F Y, TAN M, DING G F, LIU J Q, LI L, ZHAO Y Z, LIU S D, XIAO Y H. 14-3-3ε acts as a proviral factor in highly pathogenic porcine reproductive and respiratory syndrome virus infection. Veterinary Research, 2019, 50(1): 16.
[74]
CAO S L, LIU J Q, DING G F, SHAO Q Y, WANG B, LI Y C, FENG J, ZHAO Y Z, LIU S D, XIAO Y H. The tail domain of PRRSV NSP2 plays a key role in aggrephagy by interacting with 14-3-3ε. Veterinary Research, 2020, 51(1): 104.
[75]
SINGH R, CUERVO A M. Lipophagy: Connecting autophagy and lipid metabolism. International Journal of Cell Biology, 2012, 2012: 282041.
[76]
KHAWAR M B, GAO H, LI W. Autophagy and lipid metabolism. Advances in Experimental Medicine and Biology, 2019, 1206: 359-374.

doi: 10.1007/978-981-15-0602-4_17 pmid: 31776994
[77]
ZHANG S, PENG X Q, YANG S, LI X Y, HUANG M Y, WEI S B, LIU J X, HE G P, ZHENG H Y, YANG L, LI H Y, FAN Q. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death & Disease, 2022, 13(2): 132.
[78]
JOSHI V, LAKHANI S R, MCCART REED A E. NDRG1 in cancer: A suppressor, promoter, or both? Cancers, 2022, 14(23): 5739.
[79]
WANG J, LIU J Y, SHAO K Y, HAN Y Q, LI G L, MING S L, SU B Q, DU Y K, LIU Z H, ZHANG G P, et al. Porcine reproductive and respiratory syndrome virus activates lipophagy to facilitate viral replication through downregulation of NDRG1 expression. Journal of Virology, 2019, 93(17): e00526-19.
[80]
LI G L, HAN Y Q, SU B Q, YU H S, ZHANG S, YANG G Y, WANG J, LIU F, MING S L, CHU B B. Porcine reproductive and respiratory syndrome virus 2 hijacks CMA-mediated lipolysis through upregulation of small GTPase RAB18. PLoS Pathogens, 2024, 20(4): e1012123.
[81]
ZHAO S S, QIAN Q S, WANG Y, QIAO S L, LI R. Porcine reproductive and respiratory syndrome virus degrades TANK-binding kinase 1 via chaperon-mediated autophagy to suppress type I interferon production and facilitate viral proliferation. Veterinary Research, 2024, 55(1): 151.
[82]
LI L W, BAI Y Z, ZHOU Y J, JIANG Y F, TONG W, LI G X, ZHENG H H, GAO F, TONG G Z. PSMB1 inhibits the replication of porcine reproductive and respiratory syndrome virus by recruiting NBR1 to degrade nonstructural protein 12 by autophagy. Journal of Virology, 2023, 97(1): e0166022.
[83]
YI H Y, WANG Q M, LU L C, YE R R, XIE E M, YU Z Q, SUN Y K, CHEN Y, CAI M K, QIU Y W, WU Q W, PENG J, WANG H, ZHANG G H. PSMB4 degrades the porcine reproductive and respiratory syndrome virus Nsp1α protein via the autolysosome pathway and induces the production of type I interferon. Journal of Virology, 2023, 97(4): e0026423.
[84]
CATANZARO N, MENG X J. Induction of the unfolded protein response (UPR) suppresses porcine reproductive and respiratory syndrome virus (PRRSV) replication. Virus Research, 2020, 276: 197820.
[85]
ZHU Z B, LIU P R, YUAN L L, LIAN Z M, HU D H, YAO X H, LI X D. Induction of UPR promotes interferon response to inhibit PRRSV replication via PKR and NF-κB pathway. Frontiers in Microbiology, 2021, 12: 757690.
[86]
GUAN K F, SU Q J, KUANG K L, MENG X G, ZHOU X, LIU B. MiR-142-5p/FAM134B axis manipulates ER-phagy to control PRRSV replication. Frontiers in Immunology, 2022, 13: 842077.
[87]
LI W, ZHANG M T, WANG Y S, ZHAO S J, XU P L, CUI Z Y, CHEN J, XIA P G, ZHANG Y N. PRRSV GP5 inhibits the antivirus effects of chaperone-mediated autophagy by targeting LAMP2A. mBio, 2024, 15(8): e0053224.
[88]
ZHOU Y R, LI Y, TAO R, LI J, FANG L R, XIAO S B. Porcine reproductive and respiratory syndrome virus nsp5 induces incomplete autophagy by impairing the interaction of STX17 and SNAP29. Microbiology Spectrum, 2023, 11(2): e0438622.
[89]
YU P W, FU P F, ZENG L, QI Y L, LI X Q, WANG Q, YANG G Y, LI H W, WANG J, CHU B B, WANG M D. EGCG restricts PRRSV proliferation by disturbing lipid metabolism. Microbiology Spectrum, 2022, 10(2): e0227621.
[90]
SUN N, SUN P P, YAO M J, KHAN A, SUN Y G, FAN K H, YIN W, LI H Q. Autophagy involved in antiviral activity of sodium tanshinone IIA sulfonate against porcine reproductive and respiratory syndrome virus infection in vitro. Antiviral Therapy, 2019, 24(1): 27-33.
[91]
闫普普, 刘欣, 林冰, 刘佳丽, 夏瑾瑾, 黄永熙, 白若男, 刘国平, 杨小林, 郭利伟. 基于生物信息学探讨猪繁殖与呼吸综合征病毒感染特征及银花甘草汤防治机制. 中国畜牧兽医, 2023, 50(10): 4196-4209.

doi: 10.16431/j.cnki.1671-7236.2023.10.034
YAN P P, LIU X, LIN B, LIU J L, XIA J J, HUANG Y X, BAI R N, LIU G P, YANG X L, GUO L W. Exploring of the infection characteristics of porcine reproductive and respiratory syndrome virus and the prevention and control mechanism of Yinhua Gancao Decoction based on bioinformatics. China Animal Husbandry & Veterinary Medicine, 2023, 50(10): 4196-4209. (in Chinese)
[92]
XU Y F, WANG M J, ZHANG L, PAN Y, ZHANG W L, MA W J, CHEN H Y, TANG L J, XIA C Y, WANG Y. Glycoprotein non-metastatic melanoma protein B restricts PRRSV replication by inhibiting autophagosome-lysosome fusion. Viruses, 2023, 15(4): 920.
[93]
YAO Y, LI S H, ZHU Y Q, XU Y Y, HAO S Y, GUO S Y, FENG W H. MiR-204 suppresses porcine reproductive and respiratory syndrome virus (PRRSV) replication via inhibiting LC3B-mediated autophagy. Virologica Sinica, 2023, 38(5): 690-698.
[1] TONG ZhaoYang, LIU WenHua, ZHANG GuoXin, DONG ChunYan, ZHANG YanXia, XU XiaoWei, HE Dong, LIU HeChun, LI Yang, WANG FengTao, FENG Jing, YAO XiaoBo, LIU MeiJin, LIN RuiMing. The Relationship Between Occurrence of Hulless Barley Ear Rot and Population Migration of Grass Mite (Siteroptes spp.) [J]. Scientia Agricultura Sinica, 2025, 58(3): 493-506.
[2] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[3] LI XinLei, SUN JiuYing, YANG Cheng, CHENG Ning, WANG KaiYue, WANG HuanHuan, CHENG XueJiao, ZHAO Jian, SUN YingFeng. Isolation, Identification and Genetic Variation of a Three-Lineage Strain Recombined Porcine Reproductive and Respiratory Syndrome Virus [J]. Scientia Agricultura Sinica, 2024, 57(24): 4978-4989.
[4] GUI CuiLin, MA Liang, WANG YinYing, XIE FuGui, ZHAO CaiHong, WANG WenMiao, LI Xin, WANG Qing, GAO XiQuan. Identification of Resistant Germplasms and Mining of Candidate Genes Associated with Resistance to Stalk Rot Caused by Synergistic Infection with Fusarium spp. in Maize [J]. Scientia Agricultura Sinica, 2024, 57(13): 2509-2524.
[5] ZHANG YaLin, JIANG Yan, ZHAO LiHong, FENG ZiLi, FENG HongJie, WEI Feng, ZHOU JingLong, ZHU HeQin, MA ZhiYing. Effect of Temperature on the Occurrence of Cotton Verticillium Wilt and Host Defense Response [J]. Scientia Agricultura Sinica, 2023, 56(23): 4671-4683.
[6] HA DanDan, ZHENG HongXia, ZHANG ZhenHao, ZHU LiHong, LIU Hao, WANG JiaoYu, ZHOU Lei. Fluorescent Labeling and Observation of Infection Structure of Fusarium verticillioides [J]. Scientia Agricultura Sinica, 2023, 56(18): 3556-3573.
[7] HUANG Cheng, YANG LongFeng, SUN Peng, CHENG HuiMin, YANG ZhiYuan, LIN Jian, ZHU HongWei, LIU LiXin, SUN HouMin, LI JiaFeng, ZHAO JiCheng, DUAN HuiJuan, PAN Jie, LIU YueHuan. Establishment of a Canine Experimental Infection Model with a H3N2 Subtype Canine Influenza Virus [J]. Scientia Agricultura Sinica, 2023, 56(13): 2620-2628.
[8] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[9] LIN Xiao,SUN ChuanRu,WANG CaiXia,LIAN Sen,DONG XiangLi,LI BaoHua. Epidemic Factors Affecting the Infection and Occurrence of Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(11): 2333-2342.
[10] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[11] MingYue GONG,XiaoTian DUAN,TingTing YU,Jie WANG,LiLi SHEN,Ying LI,MingHong LIU,YongLiang LI,HongKun LÜ,SongBai ZHANG,JinGuang YANG. Cloning of Hsc70-2 and Its Promoting Effect on Potato virus Y Infection in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2020, 53(4): 771-781.
[12] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[13] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[14] CAI LinLin, HU HaiJing, YI XiaoKun, WANG HuHu, XU XingLian, PENG Bin. Lethal Effect of Meat-Borne Pseudomonas fluorescens to Acidic Electrolyzed Water [J]. Scientia Agricultura Sinica, 2019, 52(9): 1614-1623.
[15] LI WenXue, XIAO RuiGang, LÜ MiaoMiao, DING Ning, SHI HuaRong, GU PeiWen. Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera [J]. Scientia Agricultura Sinica, 2019, 52(9): 1529-1540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!