Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (23): 4658-4672.doi: 10.3864/j.issn.0578-1752.2024.23.007

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Regulation Effects of Line-Spacing Expansion and Row-Spacing Shrinkage on Dry Matter and Nutrient Accumulation and Transport of Summer Maize Under High Plant Density

SHI DeYang(), LI YanHong2, WANG FeiFei3, XIA DeJun1, JIAO YanLin1(), SUN NiNa1, ZHAO Jian1()   

  1. 1 Institute of Grain and Oil Crops, Shandong Yantai Agricultural Research Institute, Yantai 265500, Shandong
    2 Yantai Agricultural Technology Promotion Center, Yantai 26400, Shandong
    3 Binzhou Zhongyu Agricultural Science Research Institute, Binzhou 256600, Shandong
  • Received:2024-04-19 Accepted:2024-08-31 Online:2024-12-01 Published:2024-12-07

Abstract:

【Objective】 The aim of this study was to explore the effect of line-spacing expansion and row-spacing shrinkage on maize yield, dry matter and nutrient accumulation and transport under high-density planting conditions, and to clarify the optimal allocations of row-spacing, so as to provide the theoretical basis for the further increase of grain yield in Huang-Huai-Hai summer maize region.【Method】 For two consecutive maize growing seasons in 2019-2020, under the planting density of 82 500 plants/hm2, a field comparison experiment was conducted with 5 equidistant row, including 60 cm (B1), 65 cm (B2), 70 cm (B3), 75 cm (B4) and 80 cm (B5), and 2 summer maize varieties, including Denghai 518 (DH518) and Denghai 605 (DH605). The effects of line-spacing expansion and row-spacing shrinkage on maize yield and its constituent factors, dry matter accumulation, distribution and transport, nutrient absorption and transport were studied, and the correlation between dry matter accumulation, nutrient absorption and yield was analyzed too. 【Result】 The increase of the yield of summer maize showed a trend of increasing first and then decreasing, reaching the extreme value under B4. In the 2-year experiment, the yields of DH518 and DH605 under B4 treatment increased by 9.59% and 13.18% on average compared with B1 treatment, respectively. The analysis of yield components showed that the yield of summer maize was affected mainly by the number of grains per ear, the grain number per spike of DH518 and DH605 increased by 8.30% and 11.1% under B4 treatment compared with B1 treatment, respectively. Line-spacing expansion and row-spacing shrinkage significantly affected the dry matter accumulation of maize plants after silking (R1), and the increase of trailing distance showed a trend of first increasing and then decreasing, which reached the maximum value under B4 treatment. Logistic regression equation was used to fit the growth curve, and it was found that the maximum dry matter accumulation rate of DH518 and DH605 under B4 treatment increased by 13.6% and 16.3% than that under B1 treatment, respectively, and the average growth rate increased by 15.9% and 17.5%, respectively. Appropriate increase of planting row spacing could improve dry matter accumulation after R1, and dry matter transfered from vegetative organs to grain before R1. The accumulation of N, P and K in the two varieties increased first and then decreased. The N, P and K accumulation of DH518 in R1 and physiological maturity (R6) were increased by 5.2%-25.2%, 9.8%-43.5%, 3.5%-26.1% and 6.3%-29.0%, 9.6%-49.9%, and 8.5%-31.0% compared with B1 treatment, respectively; DH605 increased by 6.0%-17.4%, 5.7%-28.9%, 5.2%-19.1% and 7.6%-28.4%, 8.7%-46.5%, and 6.6%-25.7%, respectively. The increase of row spacing significantly increased the volume of transshipment of N, P and K in the 2 varieties, and reached the extreme value under B4 treatment. The volume of transshipment of N, P and K in DH518 and DH605 under B4 treatment increased by 19.9%, 39.3%, 23.3% and 14.6%, 30.8%, 24.9% compared with B1 treatment, respectively. The correlation analysis of above-ground dry matter accumulation and N, P, K accumulation and yield in R1 and R6 showed that the dry matter accumulation and N, P, and K accumulation were significantly positively correlated with grain yield.【Conclusion】 Under high density planting conditions, line-spacing expansion and row-spacing shrinkage improved the maximum and average dry matter growth rate of DH518 and DH605, and promoted nutrient translocation amount and contribution rate of accumulation nutrients after the R1 stage, synergistically, thus increased maize yield and fertilizer utilization. Considering yield, accumulation and transport of dry matter and nutrients, 75 cm equal row spacing was beneficial to yield under the planting condition of 82 500 plants /hm2 in Huang-Huai-Hai summer maize region.

Key words: line-spacing expansion and row-spacing shrinkage, summer maize, accumulation and distribution of dry matter, nutrient absorption and transport, yield

Fig. 1

Meteorological condition during maize growth period"

Table 1

Effects of line-spacing expansion and row-spacing shrinkage on the yield and its components of summer maize"

年份
Year
品种
Cultivar
行距
Row space
产量
Yield (kg·hm-2)
穗数
Ear number (ear·hm-2)
穗粒数
Grain number per ear
千粒重
1000-grain weight (g)
2019 登海518
DH518
B1 11453.1b 79629.6a 497.7d 298.7a
B2 11740.0b 79316.2a 508.0c 299.0a
B3 12292.8a 79682.5a 522.7b 301.2a
B4 12532.0a 80288.9a 535.0a 302.4a
B5 12288.2a 79792.0a 523.3b 301.1a
登海605
DH605
B1 11935.1c 80370.4a 486.3c 315.0a
B2 12509.6b 80000.3a 504.0b 318.7a
B3 13190.2a 80954.0a 520.7ab 319.3a
B4 13334.9a 81077.8a 539.3a 319.0a
B5 13009.4a 80555.6a 521.3ab 319.3a
2020 登海518
DH518
B1 11291.0b 80370.4a 484.7c 296.5a
B2 11740.8ab 79809.9a 504.0b 298.2a
B3 12272.3a 79719.0a 520.0ab 298.7a
B4 12391.5a 80355.6a 528.7a 299.4a
B5 12030.8ab 79925.3a 514.0ab 298.8a
登海605
DH605
B1 11458.5c 81111.1a 477.3d 312.6a
B2 12289.8b 81025.6a 493.3c 313.7a
B3 13056.7a 81238.1a 521.3ab 314.6a
B4 13133.6a 82074.1a 531.3a 314.2a
B5 12791.9a 80833.3a 514.0b 314.0a
变异来源Sources of variation
年份 Year (Y) ** ** ** **
品种 Cultivar (C) ** ** ** *
行距 Row space (R) ** ** ** **
年份×品种 Y×C NS NS ** NS
年份×行距 Y×R NS NS NS NS
品种×行距 C×R * NS NS NS
年份×品种×行距 Y×C×R NS NS NS NS

Fig. 2

Effect of line-spacing expansion and row-spacing shrinkage on dry matter accumulation (DMA) in summer maize"

Table 2

Logistic equation analysis for the accumulation rate of dry matter of maize"

品种
Cultivar
行距
Row space
回归方程
Regression equation
R2 最大增长速率出现天数
The days of maximum
increase rate (d)
最大增长速率
Maximum increase rate (g·d-1·m-2)
平均增长速率
Average increase rate (g·d-1·m-2)
登海518
DH518
B1 Y=2292.83/(1+e61.945-0.087t 0.9955 47.4 49.88 21.77
B2 Y=2278.66/(1+e60.86-0.087t 0.9953 47.3 49.43 22.55
B3 Y=2468.94/(1+e63.30-0.087t 0.9947 47.7 53.69 24.40
B4 Y=2555.71/(1+e66.68-0.089t 0.9949 47.3 56.69 25.24
B5 Y=2488.01/(1+e62.87-0.087t 0.9946 47.7 54.01 24.59
登海605
DH605
B1 Y=2429.46/(1+e79.83-0.082t 0.9966 53.1 50.11 23.20
B2 Y=2570.92/(1+e85.40-0.083t 0.9966 53.3 53.59 24.60
B3 Y=2772.03/(1+e73.41-0.080t 0.9959 54.1 55.08 26.49
B4 Y=2862.69/(1+e79.15-0.081t 0.9969 53.7 58.28 27.26
B5 Y=2760.91/(1+e79.25-0.081t 0.9964 53.8 56.06 26.33

Table 3

Analysis of variance of DMA in each organ at R1and R6 stage as affected by cultivar and race space"

变异来源
Sources of variation
吐丝期 Silking (R1) 成熟期 Physiological maturity (R6)
叶片
Leaf
茎鞘
Stem+sheath
雌穗
Ear
叶片
Leaf
茎鞘
Stem + sheath
苞叶+穗轴
Cob + husk
籽粒
Grain
品种 Cultivar (C) ** ** ** ** ** ** **
行距 Row space (R) ** ** ** ** ** ** **
品种×行距 C×R ** ** ** ** ** ** **

Fig. 3

Effects of line-spacing expansion and row-spacing shrinkage on dry matter distribution proportion in summer maize at the R1 and R6 stage"

Table 4

Dry matter transfer before and after silking and their contribution to grain dry matter as affected by the line-spacing expansion and row-spacing shrinkage"

品种
Cultivar
行距
Row space
吐丝前 Before silking 吐丝后
After silking
DMR (g·m-2) DMRE (%) DMRCG (%)
叶片
Leaf
茎鞘
Stem+sheath
叶片
Leaf
茎鞘
Stem+sheath
叶片
Leaf
茎鞘
Stem+sheath
DMAS DMASCG
登海518
DH518
B1 45.76c 34.83b 13.18a 6.95a 4.10b 3.12a 1311.5d 92.78b
B2 46.94bc 35.27b 12.96ab 6.79a 4.05b 3.04a 1354.5c 92.91b
B3 48.46b 35.45b 12.24bc 6.28bc 3.83c 2.80b 1458.8b 93.37a
B4 50.24a 36.55a 12.15c 6.18c 3.83c 2.78b 1501.9a 93.39a
B5 50.01a 36.32a 12.59bc 6.38b 3.93a 2.85b 1465.9b 93.22a
登海605
DH605
B1 47.22b 16.67b 12.24a 3.09a 3.88a 1.37a 1462.6d 94.75c
B2 48.59bc 16.42b 12.03ab 2.91ab 3.72a 1.25ab 1549.6c 95.03b
B3 50.57a 16.75ab 11.88bc 2.82b 3.56b 1.18bc 1694.6b 95.26ab
B4 51.15a 16.75ab 11.80c 2.76c 3.48c 1.14c 1748.1a 95.38a
B5 50.57a 17.00a 11.97b 2.87b 3.58b 1.20b 1677.8b 95.21ab
变异来源 Sources of variation
品种Cultivar (C) ** ** ** ** ** ** ** **
行距Row space (R) ** ** ** NS ** NS ** *
品种×行距 C×R ** * NS NS ** NS ** *

Table 5

Analysis of variance of N, P and K accumulation at R1 and R6 stage as affected by cultivar and row space"

变异来源
Sources of variation
吐丝期 Silking (R1) 成熟期 Physiological maturity (R6)
N P K N P K
品种 Cultivar (C) ** ** ** ** ** **
行距 Row space (R) ** ** ** ** ** **
品种×行距 C×R ** ** ** * ** **

Fig. 4

Accumulation of N, P and K at R1 and R6 of maize as affected by the line-spacing expansion and row-spacing shrinkage"

Table 6

Dry matter transfer before and after silking and their contribution to grain dry matter as affected by the line-spacing expansion and row-spacing shrinkage"

品种
Cultivar
行距
Row space
转运量
Translocation amount
(g·m-2)
转运率
Translocation rate
(%)
转运养分贡献率
Contribution rate of translocated nutrient (%)
积累养分贡献率
Contribution rate of accumulated nutrient (%)
N P K N P K N P K N P K
登海518
DH518
B1 10.59d 2.57d 2.32b 64.26a 73.93a 20.92a 68.78a 51.91a 39.12a 31.22b 48.09c 60.88c
B2 11.02c 2.82c 2.37b 63.68b 73.02b 20.30c 67.76b 52.50a 37.40b 32.24b 47.50c 62.60b
B3 11.96b 3.34b 2.71a 61.73c 71.72c 20.38c 64.29c 49.92b 37.78b 35.71a 50.08b 62.22b
B4 12.70a 3.58a 2.86a 61.53c 70.46d 20.37c 65.23c 49.10c 36.64c 34.77a 50.90a 63.36a
B5 11.74b 3.39b 2.76a 61.58c 71.95c 20.64b 64.38c 50.41b 37.44b 35.62a 49.59b 62.56b
登海605
DH605
B1 11.45d 2.95d 2.41c 64.89b 73.09d 18.35b 71.22a 55.31a 36.94a 28.78d 44.69d 63.06c
B2 12.31c 3.16c 2.77b 65.88a 73.36c 20.09a 70.16b 54.35b 37.61a 29.84c 45.65c 62.39c
B3 12.91ab 3.73b 2.94ab 64.62b 73.70b 19.46a 64.56c 51.15c 35.10b 35.44b 48.85b 64.90b
B4 13.12a 3.86a 3.01a 63.54c 73.43c 19.29a 62.94d 48.45d 33.62c 37.06a 51.55a 66.38a
B5 12.72b 3.68b 2.89ab 65.49c 74.17a 19.26a 64.02c 51.43c 35.30b 35.98b 48.57b 64.70b
变异来源 Sources of variation
品种Cultivar (C) ** ** ** ** ** ** ** ** ** ** ** **
行距Row space (R) ** ** ** ** ** * ** ** ** ** ** **
品种×行距 C×R ** ** ** ** ** ** ** ** ** ** ** **

Fig. 5

The correlations between yield and dry matter, N, P and K accumulation on the R1 and R6 stage of maize"

[1]
崔爱民, 张久刚, 张虎, 单皓, 陈伟. 我国玉米生产现状及发展变革. 中国农业科技导报, 2020, 22(7): 10-19.

doi: doi:10.13304/j.nykjdb.2019.0508
CUI A M, ZHANG J G, ZHANG H, SHAN H, CHEN W. Preliminary exploration on current situation and development of maize production in China. Journal of Agricultural Science and Technology, 2020, 22(7): 10-19. (in Chinese)

doi: doi:10.13304/j.nykjdb.2019.0508
[2]
王利青, 于晓芳, 高聚林, 马达灵, 胡树平, 郭怀怀, 刘爱业. 不同年代玉米品种籽粒产量形成对种植密度的响应. 作物学报, 2022, 48(10): 2625-2637.

doi: 10.3724/SP.J.1006.2022.13057
WANG L Q, YU X F, GAO J L, MA D L, HU S P, GUO H H, LIU A Y. Response of grain yield formation to planting density of maize varieties in different eras. Acta Agronomica Sinica, 2022, 48(10): 2625-2637. (in Chinese)
[3]
YAN Y Y, DUAN F Y, LI X, ZHAO R L, HOU P, ZHAO M, LI S K, WANG Y H, DAI T B, ZHOU W B. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 2024, 195(4): 2652-2667.

doi: 10.1093/plphys/kiae204 pmid: 38590166
[4]
郑伟, 边丽梅, 董喆, 张丽妍, 张昊, 郝春雷, 孟繁盛, 慈艳华, 杜江洪. 不同种植密度对玉米品种产量形成及生长发育特性的影响. 陕西农业科学, 2021, 67(8): 52-55.
ZHENG W, BIAN L M, DONG Z, ZHANG L Y, ZHANG H, HAO C L, MENG F S, CI Y H, DU J H. Effects of different densities on yield and growth characteristicson in maize. Shaanxi Journal of Agricultural Sciences, 2021, 67(8): 52-55. (in Chinese)
[5]
LIU G Z, LIU W M, HOU P, MING B, YANG Y S, GUO X X, XIE R Z, WANG K R, LI S K. Reducing maize yield gap by matching plant density and solar radiation. Journal of Integrative Agriculture, 2021, 20(2): 363-370.
[6]
CHEN C Y, HOU Y H, SUN R, ZHU P, DONG Z Q, ZHAO M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160.
[7]
侯云鹏, 孔丽丽, 尹彩侠, 李前, 王立春, 徐新朋. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应. 植物营养与肥料学报, 2021, 27(1): 54-65.
HOU Y P, KONG L L, YIN C X, LI Q, WANG L C, XU X P. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in Northeast China. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 54-65. (in Chinese)
[8]
陈传永, 侯海鹏, 李强, 朱平, 张振勇, 董志强, 赵明. 种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响. 作物学报, 2010, 36(5): 871-878.
CHEN C Y, HOU H P, LI Q, ZHU P, ZHANG Z Y, DONG Z Q, ZHAO M. Effects of planting density on photosynthetic characteristics and changes of carbon and nitrogen in leaf of different corn hybrids. Acta Agronomica Sinica, 2010, 36(5): 871-878. (in Chinese)
[9]
严云, 廖成松, 张福锁, 李春俭. 密植条件下玉米冠根生长抑制的因果关系. 植物营养与肥料学报, 2010, 16(2): 257-265.
YAN Y, LIAO C S, ZHANG F S, LI C J. The causal relationship of the decreased shoot and root growth of maize plants under higher plant density. Plant Nutrition and Fertilizer Science, 2010, 16(2): 257-265. (in Chinese)
[10]
齐文增, 陈晓璐, 刘鹏, 刘惠惠, 李耕, 邵立杰, 王飞飞, 董树亭, 张吉旺, 赵斌. 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点. 植物营养与肥料学报, 2013, 19(1): 26-36.
QI W Z, CHEN X L, LIU P, LIU H H, LI G, SHAO L J, WANG F F, DONG S T, ZHANG J W, ZHAO B. Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2013, 19(1): 26-36. (in Chinese)
[11]
卢霖, 董志强, 董学瑞, 焦浏, 李光彦, 高娇. 乙矮合剂对不同密度夏玉米花粒期叶片氮素同化与早衰的影响. 作物学报, 2015, 41(12): 1870-1879.

doi: 10.3724/SP.J.1006.2015.01870
LU L, DONG Z Q, DONG X R, JIAO L, LI G Y, GAO J. Effects of ethylene-chlormequat-potassium on leaf nitrogen assimilation after anthesis and early senescence under different planting densities. Acta Agronomica Sinica, 2015, 41(12): 1870-1879. (in Chinese)

doi: 10.3724/SP.J.1006.2015.01870
[12]
张中东, 王璞, 何雪峰, 罗坤. 不同密度处理对紧凑型玉米农大486叶片生长发育的影响. 玉米科学, 2004, 12(增刊):91-93.
ZHANG Z D, WANG P, HE X F, LUO K. Effects of different density treatments on the growth and development of leaves of compact Maize Nongda 486. Journal of Maize Science, 2004, 12 (supplement) :91-93. (in Chinese)
[13]
马超, 黄晓书, 李鹏坤, 卫丽. 种植密度对夏玉米果穗叶生理功能衰退的影响. 玉米科学, 2010, 18(2): 50-53.
MA C, HUANG X S, LI P K, WEI L. Effects of planting density on physiological decline on ear leaf of summer maize. Journal of Maize Sciences, 2010, 18(2): 50-53. (in Chinese)
[14]
吕丽华, 王璞, 鲁来清. 不同冠层结构下夏玉米产量形成的源库关系. 玉米科学, 2008, 16(4): 66-71.
L H, WANG P, LU L Q. The relationship of source-sink for yield form in summer maize under different canopy structure. Journal of Maize Sciences, 2008, 16(4): 66-71. (in Chinese)
[15]
丁相鹏, 白晶, 张春雨, 张吉旺, 刘鹏, 任佰朝, 赵斌. 扩行缩株对夏玉米群体冠层结构及产量的影响. 中国农业科学, 2020, 53(19): 3915-3927. doi: 10.3864/j.issn.0578-1752.2020.19.006.
DING X P, BAI J, ZHANG C Y, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of line-spacing expansion and row-spacing shrinkage on population structure and yield of summer maize. Scientia Agricultura Sinica, 2020, 53(19): 3915-3927. doi: 10.3864/j.issn.0578-1752.2020.19.006. (in Chinese)
[16]
李强国, 邬小春, 杨晓军, 安丽娜, 王晓荣. 密度和行距配置对榆林市春玉米农艺性状和产量的影响. 安徽农业科学, 2024, 52(7): 30-32, 51.
LI Q G, WU X C, YANG X J, AN L N, WANG X R. Effects of density and row spacing on agronomic characters and yield of spring maize in Yulin City. Journal of Anhui Agricultural Sciences, 2024, 52(7): 30-32, 51. (in Chinese)
[17]
苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海. 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016, 42(1): 104-112.
CHANG J F, ZHANG H H, LI H P, DONG P F, LI C H. Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agronomica Sinica, 2016, 42(1): 104-112. (in Chinese)
[18]
MADDONNI G Á, MARTÍNEZ-BERCOVICH J. Row spacing, landscape position, and maize grain yield. International Journal of Agronomy, 2014, 2014: 195012.
[19]
何冬冬, 杨恒山, 张玉芹, 范秀艳. 宽行种植模式对春玉米叶面积、干物质及产量的影响. 内蒙古民族大学学报(自然科学版), 2017, 32(3): 248-252.
HE D D, YANG H S, ZHANG Y Q, FAN X Y. Effects of wide row planting on leaf area, dry matter and yield of spring maize. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2017, 32(3): 248-252. (in Chinese)
[20]
张晓丽, 边大红, 秦建国, 杜雄, 李军虎, 崔彦宏, 杜义英. 高密度条件下行距配置对夏玉米抗倒能力的影响. 玉米科学, 2012, 20(4): 118-121.
ZHANG X L, BIAN D H, QIN J G, DU X, LI J H, CUI Y H, DU Y Y. Effects of row spacing on lodging-resistance of summer maize under high density. Journal of Maize Sciences, 2012, 20(4): 118-121. (in Chinese)
[21]
邓妍, 王创云, 赵丽, 张丽光, 郭虹霞, 牛学谦, 王陆军. 行距配置对玉米茎秆抗倒伏特性及光合性能的影响. 中国农学通报, 2017, 33(21): 15-20.

doi: 10.11924/j.issn.1000-6850.casb17040091
DENG Y, WANG C Y, ZHAO L, ZHANG L G, GUO H X, NIU X Q, WANG L J. Row spacing allocation: effect on stem lodging resistance and photosynthetic properties of maize. Chinese Agricultural Science Bulletin, 2017, 33(21): 15-20. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb17040091
[22]
宋海星, 李生秀. 玉米生长量、养分吸收量及氮肥利用率的动态变化. 中国农业科学, 2003(1): 71-76.
SONG H X, LI S X. Dynamics of nutrient accumulation in maize plants under different water and N supply conditions. Scientia Agricultura Sinica, 2003(1): 71-76. (in Chinese)
[23]
侯云鹏, 杨建, 孔丽丽, 尹彩侠, 李前, 秦裕波, 王立春, 谢佳贵. 不同施磷水平对春玉米产量、养分吸收及转运的影响. 玉米科学, 2017, 25(3): 123-130.
HOU Y P, YANG J, KONG L L, YIN C X, LI Q, QIN Y B, WANG L C, XIE J G. Effect of different phosphorus levels on yield, nitrogen, phosphorus and potassium absorption and translocation of spring maize. Journal of Maize Sciences, 2017, 25(3): 123-130. (in Chinese)
[24]
YAN P, PAN J X, ZHANG W J, SHI J F, CHEN X P, CUI Z L. A high plant density reduces the ability of maize to use soil nitrogen. PLoS ONE, 2017, 12(2): e0172717.
[25]
曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012, 18(6): 1343-1353.
CAO S B, ZHANG J W, DONG S T, LIU P, ZHAO B, YANG J S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1343-1353. (in Chinese)
[26]
张海红. 行距配置对黄淮南部夏玉米群体资源利用效率的影响[D]. 河南农业大学, 2015.
ZHANG H H. The effects of resources utilization efficiency of summer maize (Zea mays L.) at different row spaces in Huang- Huai-Hai reigion[D]. Henan Agriculture University, 2015. (in Chinese)
[27]
魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25(2): 441-450.
WEI S S, WANG X Y, DONG S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maiz. Chinese Journal of Applied Ecology, 2014, 25(2): 441-450. (in Chinese)
[28]
金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630.

doi: 10.3724/SP.J.1006.2020.93034
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)

doi: 10.3724/SP.J.1006.2020.93034
[29]
魏廷邦, 胡发龙, 赵财, 冯福学, 于爱忠, 刘畅, 柴强. 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应. 中国农业科学, 2017, 50(15): 2916-2927. doi: 10.3864/j.issn.0578-1752.2017.15.006.
WEI T B, HU F L, ZHAO C, FENG F X, YU A Z, LIU C, CHAI Q. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas. Scientia Agricultura Sinica, 2017, 50(15): 2916-2927. doi: 10.3864/j.issn.0578-1752.2017.15.006. (in Chinese)
[30]
崔丽娜, 李令伟, 崔延臣, 张钰, 禹光媛, 杨连俊, 董树亭. 行距及密度对夏玉米产量及其构成因素的影响. 安徽农业科学, 2019, 47(13): 29-31, 34.
CUI L N, LI L W, CUI Y C, ZHANG Y, YU G Y, YANG L J, DONG S T. Row spacing and density on grain yield and its component factors of summer maize (Zea mays L.). Journal of Anhui Agricultural Sciences, 2019, 47(13): 29-31, 34. (in Chinese)
[31]
GAO J, LEI M, YANG L J, WANG P, TAO H B, HUANG S B. Reduced row spacing improved yield by optimizing root distribution in maize. European Journal of Agronomy, 2021, 127: 126291.
[32]
LICHT M A, PARVEJ M R, WRIGHT E E. Corn yield response to row spacing and plant population in Iowa. Crop, Forage & Turfgrass Management, 2019, 5(1): 190032.
[33]
柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45(12): 1868-1879.

doi: 10.3724/SP.J.1006.2019.93011
BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019, 45(12): 1868-1879. (in Chinese)
[34]
王玉, 赵财, 樊志龙, 苟志文, 胡发龙, 殷文, 柴强. 行距及密度影响玉米密植潜力的干物质累积和产量构成机制. 中国生态农业学报(中英文), 2020, 28(5): 652-661.
WANG Y, ZHAO C, FAN Z L, GOU Z W, HU F L, YIN W, CHAI Q. Characteristics of dry matter accumulation and yield formation of dense planting maize in different row spacings. Chinese Journal of Eco-Agriculture, 2020, 28(5): 652-661. (in Chinese)
[35]
高炳德, 李江遐, 周燕辉, 赵利梅. 内蒙古平原灌区公顷产量13.7 t-15.9 t不同品种春玉米氮、磷、钾吸收规律研究. 内蒙古农业大学学报(自然科学版), 2000, 21(S1): 62-71.
GAO B D, LI J X, ZHOU Y H, ZHAO L M. Study of the law of nitrogen-phosphate-potassium fertilizer absorption of 13. 7-15.9 t·hm-2 yield with different varieties of spring maize on the irrigated plain in Inner Mongolia. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2000, 21(S1): 62-71. (in Chinese)
[36]
梁忠宇, 张玉芹, 杨恒山, 邰继承, 杨伟鹏. 扩行缩株种植对春玉米氮素积累、转运及产量的影响. 内蒙古民族大学学报(自然科学版), 2021, 36(4): 345-349.
LIANG Z Y, ZHANG Y Q, YANG H S, TAI J C, YANG W P. Effects of expanding line spacing and shrinking row spacing on the accumulation, translocation and yield of nitrogen in spring maize. Journal of Inner Mongolia Minzu University (Natural Sciences), 2021, 36(4): 345-349. (in Chinese)
[37]
李朝苏, 汤永禄, 吴春, 吴晓丽, 黄钢, 何刚, 郭大明. 施氮量对四川盆地小麦生长及灌浆的影响. 植物营养与肥料学报, 2015, 21(4): 873-883.
LI C S, TANG Y L, WU C, WU X L, HUANG G, HE G, GUO D M. Effect of N rate on growth and grain filling of wheat in Sichuan Basin. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 873-883. (in Chinese)
[38]
何冬冬, 杨恒山, 张玉芹, 刘晶, 袁雪娇. 扩行缩株对春玉米干物质积累与转运的影响. 玉米科学, 2017, 25(3): 73-79.
HE D D, YANG H S, ZHANG Y Q, LIU J, YUAN X J. Effects of widening row spacing and shortening plant spacing on dry matter accumulation and transportation in spring maize. Journal of Maize Sciences, 2017, 25(3): 73-79. (in Chinese)
[39]
杨恒山, 张玉芹, 徐寿军, 李国红, 高聚林, 王志刚. 超高产春玉米干物质及养分积累与转运特征. 植物营养与肥料学报, 2012, 18(2): 315-323.
YANG H S, ZHANG Y Q, XU S J, LI G H, GAO J L, WANG Z G. Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield spring maize. Plant Nutrition and Fertilizer Science, 2012, 18(2): 315-323. (in Chinese)
[40]
LIU T N, HUANG R D, CAI T, HAN Q F, DONG S T. Optimum leaf removal increases nitrogen accumulation in kernels of maize grown at high density. Scientific Reports, 2017, 7: 39601.

doi: 10.1038/srep39601 pmid: 28084467
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[6] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[7] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[8] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[9] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[10] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[11] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[12] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[13] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[14] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[15] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!