Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4205-4220.doi: 10.3864/j.issn.0578-1752.2024.21.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize

GUO Ya(), REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng()   

  1. College of Agriculture, Shandong Agricultural University/Huang-Huai-Hai Regional Maize Technology Innovation Center, Taian 271018, Shandong
  • Received:2024-03-13 Accepted:2024-09-18 Online:2024-11-01 Published:2024-11-10
  • Contact: LIU Peng

Abstract:

【Objective】This study aimed to explore the underlying reasons for the reduction of maize photosynthesis under the high temperature and drought combined stress, so as to provide theoretical basis for alleviating the combined stress of high temperature and drought. 【Method】Maize cultivar “Denghai 605” was selected as the experimental material for this experiment. Two temperature levels were set, namely normal temperature control (30 ℃/22 ℃ for day (8:00-18:00)/ night (18:00- 8:00 the next day)) and high temperature treatment (38 ℃/28 ℃ for day/night). The two water conditions were normal water supply control (soil water content was 70%-80% of field capacity) and drought treatment (soil water content was set to 50%-60% of field capacity). There were four treatments in the experiment, including control (CK), high temperature stress (H), drought stress (D), high temperature and drought combined stress (HD), and the treatment began at VT stage (VT). The changes in leaf gas exchange parameters, photosystem Ⅱ (PSII) performance, key photosynthetic enzyme activity, plant biomass, and grain yield under different stress treatments were analyzed. 【Result】High temperature, drought and combined stress all led to the increase of chlorophyll fluorescence parameters, the ratio of a variable fluorescence FK to F0-FJ amplitude (WK) and variable fluorescence FJ to F0-FJ amplitude (VJ), and damaged the donor side and acceptor side of PSII. Compared with the control, PSII maximum quantum yield for primary photochemistry (φP0), the probability of captured excitons transferring electrons to other electron acceptors in the electron transfer chain beyond QA (Ψ0), quantum yield for electron transport (φE0), quantum yield of energy dissipation (φD0), quantum yield for reduction of the end electron acceptors at the PSI acceptor side (φR0), and performance index based on absorption of light energy (PIABS) were significantly decreased, and the absorption and transfer of light energy were inhibited; absorbed photon flux per active PSII (ABS/RC), trapped energy flux per active PSII (TR0/RC) and dissipated energy flux per active PSII (DI0/RC) increased significantly, but the electron flux from QA to the PQ pool per active PSII (ET0/RC) decreased significantly, which affected the energy distribution of reaction centers, reduced the number of PSII active reaction centers, and inhibited the performance of PSII. Combined stress could aggravate the inhibition of PSII performance by damaging the donor side, the acceptor side and the active reaction center. At the same time, the activities of ribose 1, 5-diphosphate carboxylase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase) decreased, which inhibited photosynthetic carbon assimilation. High temperature, drought, and combined stress reduced the net photosynthetic rate by reducing the performance of PSII and the activity of key photosynthetic enzymes. Compared with the control, the net photosynthetic rate of VT+5 d was reduced by 14.6%, 31.4%, and 39.9%, respectively. The decrease in photosynthetic rate inhibited the accumulation of biomass and its transport to grains. Under high temperature, drought, and combined stress, the grain yield decreased by 80.3%, 27.1%, and 84.0% than that under control, respectively. 【Conclusion】In summary, the combined stress of high temperature and drought mainly reduced net photosynthetic rate, hindered biomass, and reduced grain yield by inhibiting leaf PSII performance. The impact of combined stress on PSII performance and grain yield was greater than that of single stress under high temperature and drought.

Key words: high temperature and drought combined stress, net photosynthetic rate, PSII, photosynthetic enzyme, grain yield, summer maize

Fig. 1

Changes in canopy temperature, soil water content and soil water potential in 2022 (a, b, c) and 2023 (d, e, f)"

Fig. 2

Effects of high temperature, drought and their combined stress on gas exchange parameters of ear leaf"

Fig. 3

Effects of high temperature, drought and their combined stress on chlorophyll a relative variable fluorescence intensity (Vt) and the difference of relative variable fluorescence intensity (ΔVt) of leaf PSⅡof ear leaf"

Fig. 4

Effects of high temperature, drought and their combined stress on energy distribution in PSⅡ reaction center"

Fig. 5

Effects of high temperature, drought and their combined stress on the ratio of a variable fluorescence FK to F0-FJ amplitude (WK) and variable fluorescence FJ to F0-FP amplitude (VJ) of leaves"

Fig. 6

Effects of high temperature, drought and their combined stress on PSⅡ performance of leaves"

Fig. 7

Principal component analysis of chlorophyll fluorescence parameters"

Fig. 8

Effects of high temperature, drought and their combined stress on Rubisco and PEPCase activity in leaves"

Fig. 9

Main influencing indexes of net photosynthetic rate in random forest analysis (*: P<0.05; **: P<0.01)"

Fig. 10

Effects of high temperature, drought and combined stress on biomass and grain yield of summer maize"

Fig. 11

Correlation analysis of chlorophyll fluorescence parameters and related indexes of plant growth under high temperature, drought and combined stress (*: P<0.05; **: P<0.01)"

[1]
IPCC. Climate change 2021: The physical science basis. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021.
[2]
中国气象局国家气候中心. 中国气候变化蓝皮书 (2021). 北京: 科学出版社, 2021.
National Climate Center of China Meteorological Bureau. Blue Book of Meteorological Change in China (2021). Beijing: Science Press, 2021. (in Chinese)
[3]
中国气象局国家气候中心. 中国气候公报 (2023). 北京: 科学出版社, 2023.
National Climate Center of China Meteorological Bureau. China Climate Bulletin (2023). Beijing: Science Press, 2023. (in Chinese)
[4]
LAMAOUI M, JEMO M, DATLA R, BEKKAOUI F. Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 2018, 6: 26.

doi: 10.3389/fchem.2018.00026 pmid: 29520357
[5]
ZHOU P, LIU Z Y. Likelihood of concurrent climate extremes and variations over China. Environmental Research Letters, 2018, 13(9): 094023.
[6]
陆伟婷, 于欢, 曹胜男, 陈长青. 近20年黄淮海地区气候变暖对夏玉米生育进程及产量的影响. 中国农业科学, 2015, 48(16): 3132-3145. doi: 10.3864/j.issn.0578-1752.2015.16.004.
LU W T, YU H, CAO S N, CHEN C Q. Effects of climate warming on growth process and yield of summer maize in Huang-Huai-Hai Plain in last 20 years. Scientia Agricultura Sinica, 2015, 48(16): 3132-3145. doi: 10.3864/j.issn.0578-1752.2015.16.004. (in Chinese)
[7]
李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)
[8]
和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41(1): 1-15.
HE H Y, HU Q, PAN X B, MA X Q, HU L T, WANG X C, HE Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change. Chinese Journal of Agrometeorology, 2020, 41(1): 1-15. (in Chinese)
[9]
TAO Z Q, CHEN Y Q, LI T, ZOU J X, YAN P, YUAN S F, WU X, SUI P. The causes and impacts for heat stress in spring maize during grain filling in the North China Plain—A review. Journal of Integrative Agriculture, 2016, 15(12): 2677-2687.
[10]
LI T, ZHANG X P, LIU Q, LIU J, CHEN Y Q, SUI P. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
[11]
XU Y F, CHU C C, YAO S G. The impact of high-temperature stress on rice: Challenges and solutions. The Crop Journal, 2021, 9(5): 963-976.
[12]
王文铖. 水稻水分生理特征与高温抗性的关系及其机理[D]. 武汉: 华中农业大学, 2021.
WANG W C. Relationship between rice water status and heat resistance and its mechanisms[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
[13]
RU C, HU X T, CHEN D Y, WANG W E, SONG T Y. Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis, root morphology, and antioxidant defense in maize seedlings. Environmental and Experimental Botany, 2022, 202: 105010.
[14]
HU J, ZHAO X Y, GU L M, LIU P, ZHAO B, ZHANG J W, REN B Z. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agricultural Water Management, 2023, 289: 108525.
[15]
李小凡, 邵靖宜, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响. 中国农业科学, 2022, 55(18): 3516-3529. doi: 10.3864/j.issn.0578-1752.2022.18.004.
LI X F, SHAO J Y, YU W Z, LIU P, ZHAO B, ZHANG J W, REN B Z. Combined effects of high temperature and drought on yield and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529. doi: 10.3864/j.issn.0578-1752.2022.18.004. (in Chinese)
[16]
吕梦薇, 胡笑涛, 范晓懂, 汝晨. 拔节期高温干旱复合胁迫对夏玉米生长发育的影响. 干旱地区农业研究, 2022, 40(6): 82-89.
M W, HU X T, FAN X D, RU C. Effects of combined stress of high temperature and drought at jointing stage on summer maize growth and development. Agricultural Research in the Arid Areas, 2022, 40(6): 82-89. (in Chinese)
[17]
邵靖宜, 李小凡, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响. 中国农业科学, 2021, 54(17): 3623-3631. doi: 10.3864/j.issn.0578-1752.2021.17.006.
SHAO J Y, LI X F, YU W Z, LIU P, ZHAO B, ZHANG J W, REN B Z. Combined effects of high temperature and drought on yield and stem microstructure of summer maize. Scientia Agricultura Sinica, 2021, 54(17): 3623-3631. doi: 10.3864/j.issn.0578-1752.2021.17.006. (in Chinese)
[18]
WU Y W, LI Q, JIN R, CHEN W, LIU X L, KONG F L, KE Y P, SHI H C, YUAN J C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. Journal of Integrative Agriculture, 2019, 18(6): 1246-1256.
[19]
杨程, 李向东, 杜思梦, 张德奇, 时艳华, 王汉芳, 邵运辉, 方保停, 程红建, 位芳. 高温对冬小麦旗叶光合机构的伤害机制. 中国生态农业学报, 2022, 30(3): 399-408.
YANG C, LI X D, DU S M, ZHANG D Q, SHI Y H, WANG H F, SHAO Y H, FANG B T, CHENG H J, WEI F. Photosystem damage mechanism in flag leaves of winter wheat under high temperature. Chinese Journal of Eco-Agriculture, 2022, 30(3): 399-408. (in Chinese)
[20]
SOMMER S G, HAN E, LI X N, ROSENQVIST E, LIU F L. The chlorophyll fluorescence parameter Fv/Fm correlates with loss of grain yield after severe drought in three wheat genotypes grown at two CO2 concentrations. Plants, 2023, 12(3): 436.
[21]
MOUSAVI S S, KARAMI A, MAGGI F. Photosynthesis and chlorophyll fluorescence of Iranian licorice (Glycyrrhiza glabra L.) accessions under salinity stress. Frontiers in Plant Science, 2022, 13: 984944.
[22]
孟宪敏, 季延海, 孙旺旺, 武占会, 储昭胜, 刘明池. 两个番茄品种叶绿体超微结构及光合生理对弱光胁迫的响应. 中国农业科学, 2021, 54(5): 1017-1028. doi: 10.3864/j.issn.0578-1752.2021.05.013.
MENG X M, JI Y H, SUN W W, WU Z H, CHU Z S, LIU M C. Response of chloroplast ultrastructure and photosynthetic physiology of two tomato varieties to low light stress. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028. doi: 10.3864/j.issn.0578-1752.2021.05.013. (in Chinese)
[23]
程爽, ULAANDUU Namuun, 李卓琳, 胡海玲, 邓晓霞, 李月明, 王竞红, 蔺吉祥. 植物光系统Ⅱ(PSⅡ)应答非生物胁迫机理研究进展. 生物技术通报, 2023, 39(12): 33-42.

doi: 10.13560/j.cnki.biotech.bull.1985.2023-0658
CHENG S, NAMUUN U, LI Z L, HU H L, DENG X X, LI Y M, WANG J H, LIN J X. Research progress in the mechanism of plant photosystem Ⅱ(PSⅡ) responsing to abiotic stress. Biotechnology Bulletin, 2023, 39(12): 33-42. (in Chinese)
[24]
HAMDANI S, GAUTHIER A, MSILINI N, CARPENTIER R. Positive charges of polyamines protect PSII in isolated thylakoid membranes during photoinhibitory conditions. Plant and Cell Physiology, 2011, 52(5): 866-873.

doi: 10.1093/pcp/pcr040 pmid: 21471122
[25]
ZHOU R H, KAN X, CHEN J J, HUA H L, LI Y, REN J J, FENG K, LIU H H, DENG D X, YIN Z T. Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. Environmental and Experimental Botany, 2019, 158: 51-62.
[26]
AWASTHI R, GAUR P, TURNER N C, VADEZ V, SIDDIQUE K H M, NAYYAR H. Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop and Pasture Science, 2017, 68(9): 823.
[27]
孙欧文. 高温干旱胁迫对4个绣球品种生理生化特性的影响[D]. 浙江农林大学, 2019.
SUN O W. Effects of high temperature and drought stress on physiological and biochemical characteristics of four Hydrangea cultivars[D]. Zhejiang Agricultural and Forestry University, 2019. (in Chinese)
[28]
SHARKEY T D, ZHANG R. High temperature effects on electron and proton circuits of photosynthesis. Journal of Integrative Plant Biology, 2010, 52(8): 712-722.

doi: 10.1111/j.1744-7909.2010.00975.x
[29]
SONG X Y, ZHOU G S, HE Q J. Critical leaf water content for maize photosynthesis under drought stress and its response to rewatering. Sustainability, 2021, 13(13): 7218.
[30]
WANG Y F, GUO Y Y, ZHAO C F, LI H J, ZHANG R H. Exogenous melatonin achieves drought tolerance by improving photosynthesis in maize seedlings leaves. Russian Journal of Plant Physiology, 2021, 68(4): 718-727.
[31]
贾双杰, 李红伟, 江艳平, 赵国强, 王和洲, 杨慎骄, 杨青华, 郭家萌, 邵瑞鑫. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40(3): 854-863.
JIA S J, LI H W, JIANG Y P, ZHAO G Q, WANG H Z, YANG S J, YANG Q H, GUO J M, SHAO R X. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecologica Sinica, 2020, 40(3): 854-863. (in Chinese)
[32]
张川, 刘栋, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘存辉, 刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响. 中国农业科学, 2022, 55(19): 3710-3722. doi: 10.3864/j.issn.0578-1752.2022.19.003.
ZHANG C, LIU D, WANG H Z, REN H, ZHAO B, ZHANG J W, REN B Z, LIU C H, LIU P. Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722. doi: 10.3864/j.issn.0578-1752.2022.19.003. (in Chinese)
[33]
SCHANSKER G, TÓTH S Z, STRASSER R J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2005, 1706(3): 250-261.
[34]
STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient//Papageorgiou G C, Govindjee, eds. Advances in Photosynthesis and Respiration. Dordrecht: Springer Netherlands, 2004: 321-362.
[35]
张翼飞. 施氮对甜菜氮素同化与碳代谢的调控机制研究[D]. 哈尔滨: 东北农业大学, 2013.
ZHANG Y F. Study on regulation mechanism of nitrogen application on nitrogen assimilation and carbon metabolism in sugar beet (Beta Vulgaris L.)[D]. Harbin: Northeast Agricultural University, 2013. (in Chinese)
[36]
穆心愿, 马智艳, 卢良涛, 吕姗姗, 刘天学, 胡秀丽, 李树岩, 蒋寒涛, 范艳萍, 赵霞, 等. 授粉期高温胁迫对夏玉米植株形态、叶片光合及产量的影响. 中国生态农业学报, 2024, 32(1): 106-118.
MU X Y, MA Z Y, LU L T, S S, LIU T X, HU X L, LI S Y, JIANG H T, FAN Y P, ZHAO X, etc. Effects of high temperature stress during pollination on plant morphology, leaf photosynthetic characteristics, and yield of summer maize. Chinese Journal of Eco-Agriculture, 2024, 32(1): 106-118. (in Chinese)
[37]
赵伟, 甄天悦, 张子山, 徐铮, 高大鹏, 丁聪, 刘鹏, 李耕, 宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量. 作物学报, 2020, 46(2): 249-258.
ZHAO W, ZHEN T Y, ZHANG Z S, XU Z, GAO D P, DING C, LIU P, LI G, NING T Y. Increasing phosphate fertilizer application to improve photosynthetic capacity and yield of summer soybean in weak light environment. Acta Agronomica Sinica, 2020, 46(2): 249-258. (in Chinese)
[38]
LI Y T, XU W W, REN B Z, ZHAO B, ZHANG J W, LIU P, ZHANG Z S. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. Journal of Agronomy and Crop Science, 2020, 206(5): 548-564.
[39]
马昕, 蔡丰乐, 穆心愿, 李鸿萍, 邵瑞鑫, 李树岩, 徐佳敏, 王帅丽, 卢良涛, 赵霞, 赵亚丽, 刘天学. 施氮量对穗期高温胁迫下玉米叶片光合生理及产量的影响. 植物营养与肥料学报, 2022, 28(10): 1852-1866.
MA X, CAI F L, MU X Y, LI H P, SHAO R X, LI S Y, XU J M, WANG S L, LU L T, ZHAO X, ZHAO Y L, LIU T X. Effects of nitrogen application rate on photosynthetic physiology of maize leaves and yield under high temperature stress at ear stage. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1852-1866. (in Chinese)
[40]
QI M, LIU X D, LI Y B, SONG H, YIN Z T, ZHANG F, HE Q J, XU Z Z, ZHOU G S. Photosynthetic resistance and resilience under drought, flooding and rewatering in maize plants. Photosynthesis Research, 2021, 148(1): 1-15.
[41]
CHEN S G, YANG J, ZHANG M S, STRASSER R J, QIANG S. Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environmental and Experimental Botany, 2016, 122: 126-140.
[42]
张兴华, 高杰, 杜伟莉, 张仁和, 薛吉全. 干旱胁迫对玉米品种苗期叶片光合特性的影响. 作物学报, 2015, 41(1): 154-159.
ZHANG X H, GAO J, DU W L, ZHANG R H, XUE J Q. Effects of drought stress on photosynthetic characteristics of maize hybrids at seedling stage. Acta Agronomica Sinica, 2015, 41(1): 154-159. (in Chinese)
[43]
CHEN Y Y, LIN Y J, ZHOU X B, ZHANG J, YANG C H, ZHANG Y M. Effects of drought treatment on photosystem II activity in the ephemeral plant Erodium oxyrhinchum. Journal of Arid Land, 2023, 15(6): 724-739. `
[44]
YAN Z N, MA T, GUO S X, LIU R J, LI M. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Scientia Horticulturae, 2021, 280: 109933.
[45]
HAMMAMI Z, TOUNSI-HAMMAMI S, NHAMO N, REZGUI S, TRIFA Y. The efficiency of chlorophyll fluorescence as a selection criterion for salinity and climate aridity tolerance in barley genotypes. Frontiers in Plant Science, 2024, 15: 1324388.
[46]
ZENG F L, WANG G J, LIANG Y P, GUO N H, ZHU L, WANG Q, CHEN H W, MA D R, WANG J Y. Disentangling the photosynthesis performance in Japonica rice during natural leaf senescence using OJIP fluorescence transient analysis. Functional Plant Biology, 2021, 48(2): 206.

doi: 10.1071/FP20104 pmid: 33099327
[47]
SEHAR Z, GAUTAM H, MASOOD A, KHAN N A. Ethylene- and proline-dependent regulation of antioxidant enzymes to mitigate heat stress and boost photosynthetic efficacy in wheat plants. Journal of Plant Growth Regulation, 2023, 42(5): 2683-2697.
[48]
BERNARDO L, CARLETTI P, BADECK F W, RIZZA F, MORCIA C, GHIZZONI R, ROUPHAEL Y, COLLA G, TERZI V, LUCINI L. Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry, 2019, 137: 203-212.

doi: S0981-9428(19)30056-7 pmid: 30802803
[49]
ZHANG Z W, SUN M, GAO Y M, LUO Y. Exogenous trehalose differently improves photosynthetic carbon assimilation capacities in maize and wheat under heat stress. Journal of Plant Interactions, 2022, 17(1): 361-370.
[50]
ROULIN S, FELLER U. Dithiothreitol triggers photooxidative stress and fragmentation of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in intact pea chloroplasts. Plant Physiology and Biochemistry, 1998, 36(12): 849-856.
[51]
张国, 王玮, 邹琦. Rubisco活化酶的分子生物学. 植物生理学通讯, 2004, 40(5): 633-637.
ZHANG G, WANG W, ZOU Q. Molecular biology of Rubisco activase. Plant Physiology Communications, 2004, 40(5): 633-637. (in Chinese)
[52]
CUMMINS P L. The coevolution of Rubisco, photorespiration, and carbon concentrating mechanisms in higher plants. Frontiers in Plant Science, 2021, 12: 662425.
[53]
叶志谦, 黄腾波, 黄健子. 植物PEPC在非生物胁迫响应中的作用. 植物生理学报, 2023, 59(2): 267-280.
YE Z Q, HUANG T B, HUANG J Z. The role of plant PEPC in response to abiotic stress. Plant Physiology Journal, 2023, 59(2): 267-280. (in Chinese)
[54]
赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45(23): 4947-4958. doi:10.3864/j.issn.0578-1752.2012.23.023.
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L.). Scientia Agricultura Sinica, 2012, 45(23): 4947-4958. doi:10.3864/j.issn.0578-1752.2012.23.023. (in Chinese)
[55]
RAJA V, QADIR S U, ALYEMENI M N, AHMAD P. Impact of drought and heat stress individually and in combination on physio- biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 2020, 10(5): 208.
[56]
AHANGER M A, QI M D, HUANG Z G, XU X D, BEGUM N, QIN C, ZHANG C X, AHMAD N, MUSTAFA N S, ASHRAF M, ZHANG L X. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicology and Environmental Safety, 2021, 216: 112195.
[57]
王福祥, 肖开转, 姜身飞, 曲梦宇, 连玲, 何炜, 陈丽萍, 谢华安, 张建福. 干旱胁迫下植物体内活性氧的作用机制. 科学通报, 2019, 64(17): 1765-1779.
WANG F X, XIAO K Z, JIANG S F, QU M Y, LIAN L, HE W, CHEN L P, XIE H A, ZHANG J F. Mechanisms of reactive oxygen species in plants under drought stress. Science Bulletin, 2019, 64(17): 1765-1779. (in Chinese)
[58]
任伟, 高慧娟, 王润娟, 吕昕培, 何傲蕾, 邵坤仲, 汪永平, 张金林. 高等植物适应干旱生境研究进展. 草学, 2020(3): 4-15.
REN W, GAO H J, WANG R J, X P, HE A L, SHAO K Z, WANG Y P, ZHANG J L. Research advances in adaptation of higher plants to arid habitats. Journal of Grassland and Forage Science, 2020(3): 4-15. (in Chinese)
[59]
MOORE C E, MEACHAM-HENSOLD K, LEMONNIER P, SLATTERY R A, BENJAMIN C, BERNACCHI C J, LAWSON T, CAVANAGH A P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. Journal of Experimental Botany, 2021, 72(8): 2822-2844.

doi: 10.1093/jxb/erab090 pmid: 33619527
[60]
汤钰镂, 王昊天, 王丽娟, 杨青华, 刘天学, 邵瑞鑫. 高温干旱复合胁迫对夏玉米花粉、花丝发育和产量的影响// 中国作物学会. 第二十届中国作物学会学术年会论文摘要集, 2023: 396.
TANG Y L, WANG H T, WANG L J, YANG Q H, LIU T X, SHAO R X. Effects of high temperature and drought combined stress on pollen and filaments development and yield of summer maize// The Crop Science Society of China. Abstracts of the 20th Annual Conference of the Crop Science Society of China, 2023: 396. (in Chinese)
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[3] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[4] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[5] MA Jia, PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong. Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress [J]. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540.
[6] TIAN LongBing, SHEN ZhaoYin, ZHAO XiaoTian, ZHANG Fang, HOU WenFeng, GAO Qiang, WANG Yin. Interactive Effects of Planting Density and Nitrogen Application Rate on Plant Grain Yield and Water Use Efficiency of Two Maize Cultivars [J]. Scientia Agricultura Sinica, 2024, 57(21): 4221-4237.
[7] QI Xin, WANG Yang, HUANG YuFang, YE YouLiang, GUO YuLong, ZHAO YaNan. Nitrogen Nutrition Diagnosis Method Based on Mobile Phone Image of Summer Maize Canopy [J]. Scientia Agricultura Sinica, 2024, 57(20): 4094-4106.
[8] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[9] LIU ShuiMiao, GUAN XiaoKang, ZHAO ZhiHeng, WANG JingHui, LIU ShiLong, GAO PeiMeng, WANG YanLi, WU PengNian, GAO ChenKai, LI YuMing, SHAO Jing, YU HaoLin, WANG TongChao, WEN PengFei. Residual Effects of Tillage Regime on Soil Moisture Dynamics, Grain Filling Characteristics and Yield of Summer Maize in Wheat-Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2024, 57(18): 3568-3585.
[10] WENG WenAn, XING ZhiPeng, HU Qun, WEI HaiYan, SHI YangJie, XI XiaoBo, LI XiuLi, LIU GuiYun, CHEN Juan, YUAN FengPing, MENG Yi, LIAO Ping, GAO Hui, ZHANG HongCheng. Effects of Unmanned Dry Direct-Seeded Mode on Yield, Grain Quality of Rice and Its Economic Benefits [J]. Scientia Agricultura Sinica, 2024, 57(17): 3350-3365.
[11] ZHAO HuaRong, ZHOU GuangSheng, QI Yue, GENG JinJian, TIAN XiaoLi. Effects of Sowing Date Adjustment on Yield and Quality of Winter Wheat and Summer Maize in Northern Area of North China [J]. Scientia Agricultura Sinica, 2024, 57(15): 2964-2985.
[12] ZHANG Zhen, SHI Yu, YU ZhenWen, ZHANG YongLi. The Differences of Plant Nitrogen Transport and Grain Nitrogen Accumulation in Different Yield Levels of Wheat Field [J]. Scientia Agricultura Sinica, 2024, 57(13): 2539-2548.
[13] QIN Feng, WANG XiaoFei, WU Zhen, HU YiBo, WANG XiaoQin, ZHANG JiaWei, CAI Tie. Effects of Planting Density and Row Spacing Configuration on Sugar Accumulation and Lodging Performance of Wheat Stem Under Rainfall Harvesting Planting Mode [J]. Scientia Agricultura Sinica, 2024, 57(1): 65-79.
[14] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[15] LIU Meng, ZHANG Yao, GE JunZhu, YANG YongAn, WU XiDong, HOU HaiPeng. Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight Under Different Rainfall Years [J]. Scientia Agricultura Sinica, 2023, 56(20): 3975-3995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!