Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3154-3170.doi: 10.3864/j.issn.0578-1752.2024.16.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Nitrogen Nutrition Estimation of Maize Based on UAV Spectrum and Texture Information

YUN BinYuan1(), XIE TieNa2, LI Hong3, YUE Xiang3, LÜ MingYue1, WANG JiaQi1, JIA Biao1()   

  1. 1 School of Agriculture, Ningxia University, Yinchuan 750021
    2 Institute of Science and Technology, Ningxia University, Yinchuan 750021
    3 Agricultural Environmental Protection Monitoring Station, Ningxia Hui Autonomous Region, Yinchuan 750021
  • Received:2024-01-25 Accepted:2024-07-03 Online:2024-08-16 Published:2024-08-27
  • Contact: JIA Biao

Abstract:

【Objective】Crop nitrogen nutrition status is a key indicator to characterize the green degree and health status of maize canopy. In order to compare the accuracy of single spectral index model and texture information fusion model in maize nitrogen nutrition estimation model, this investigated the accuracy and reliability of maize nitrogen nutrition estimation model based on UAV multispectral information and texture information fusion. 【Method】 Matrice-300 RTK multi-rotor aircraft equipped with MS600 Pro multi-spectral sensor was used to obtain multi-spectral images of maize tasseling-silking stages under six nitrogen levels in two years. By extracting vegetation index and texture features, the correlation between vegetation index, single texture feature, combined texture index and fusion information of vegetation index and texture index, was comprehensively analyzed. The vegetation index, normalized difference texture index (NDTI) and their combined parameters with the largest amount of information were selected. Four nitrogen nutrition parameters of maize leaf nitrogen content (LNC), plant nitrogen content (PNC), leaf nitrogen accumulation (LNA), and plant nitrogen accumulation (PNA) were compared and estimated by multiple stepwise regression (MSR), random forest (RF), support vector machine (SVM), and grey wolf optimized convolutional neural network ( GWO-CNN ). 【Result】 (1) There were differences in the original spectral reflectance of maize under different nitrogen treatments, and the differences in the red band R (660 nm), blue band B (450 nm) and near-infrared band NIR (840 nm) were significant. (2) The vegetation indices (EVI, GARI, REOSAVI, SIPI, and MCARI), single texture features (var450, var660, mean840, dis720, and hom840) and combined texture index NDTI extracted from UAV multispectral images could be used for LNC, PNC, LNA and PNA estimation of maize in VT-R1 stage. The GWO-CNN model based on vegetation index had better estimation effect on LNC, PNC, LNA and PNA than single texture feature and texture index model, and its R2 were 0.831, 0.761, 0.826 and 0.770, respectively. (3) The accuracy of GWO-CNN model with vegetation index and texture index for LNC, PNC, LNA and PNA estimation was significantly higher than that of vegetation index and texture index, and its R2 was 0.921, 0.901, 0.917 and 0.892, respectively, which was 9.77%, 15.54%, 9.92% and 13.68% higher than that of single spectral information optimal estimation model. 【Conclusion】 Fusion of multi-spectral vegetation index and texture index could effectively improve the estimation accuracy of maize nitrogen nutrition, and better evaluate the distribution of maize nitrogen distribution, which provided new ideas for precise maize nitrogen fertilizer management based on UAV platform at field scale.

Key words: maize, nitrogen, multi-spectral, vegetation index, texture features

Fig. 1

Average daily temperatures and precipitations during maize growth period in 2021 and 2022"

Table 1

Foundation fertility of 0-20 cm soil at experimental field"

年份
Year
pH 有机质
OM (g·kg-1)
全氮
Total N (g·kg-1)
全磷
Total P (g·kg-1)
碱解氮
Avail. N (mg·kg-1)
速效磷
Avail. P (mg·kg-1)
速效钾
Avail. K (mg·kg-1)
2021 7.71 12.56 0.73 0.51 36.00 15.37 99.54
2022 8.14 14.15 0.80 0.60 37.65 16.31 108.41

Fig. 2

Field location and experimental design layout"

Table 2

Main parameters of the multispectral sensor"

光谱波段
Band
中心波长
Center band-length (nm)
波宽
Band width (nm)
灰板反射率
Gray plate reflectivity (%)
红Red (R) 660 10 51.2
绿Green (G) 555 20 51.2
蓝Blue (B) 450 20 51.2
近红外Near infrared reflectance (NIR) 840 40 51.0
红边Red edge (RE) 720 10 51.2

Table 3

The formula and source of typical vegetation index for maize canopy"

指数Index 公式Formula 来源 Reference
归一化植被指数 NDVI (NIR−R)/(NIR+R) [13]
改进比值植被指数 MSR (NIR/R−1) /(NIR/R+1)0.5 [13]
增强型植被指数 EVI 2.5(NIR−R)/(NIR+6R−7.5B+1) [11]
归一化绿色植被指数NGI G/(NIR+G+RE) [17]
绿色大气阻力植被指数 GARI NIR−[G−1.7(B−R)]/ NIR+[G−1.7(B−R)] [8]
结构不敏感色素指数 SIPI (NIR−B)/(NIR−R) [18]
修正型叶绿素吸收反射率植被指数 MCARI [(NIR−RE) −0.2(NIR−R) ]( NIR/RE) [8]
红边重归一化差值植被指数RERDVI (NIR−RE)/(NIR+RE) [19]
红边优化土壤调节植被指数REOSAVI (1+0.16)( NIR−RE) /(NIR+RE+0.16) [19]

Table 4

Texture feature index and formula"

指数Index 公式Formula
均值Mean (mean) $\text{mean=}\sum{_{i,j}^{N-\text{1}}i{{P}_{i,j}}}$
方差Variance (var) $\text{var=}\sum{_{i,j=0}^{N-\text{1}}i{{P}_{i,j}}}{{(i-mean)}^{2}}$
同质性Homogeneity (hom) $\text{hom=}\sum{_{i,j=0}^{N-\text{1}}i}\frac{{{P}_{i,j}}}{1+{{(i-j)}^{2}}}$
对比度Contrast (con) $\text{con=}\sum{_{i,j=0}^{N-\text{1}}i}{{P}_{i,j}}{{(i-j)}^{2}}$
相异性Dissimilarity (dis) $~\text{dis=}\sum{_{i,j=0}^{N-\text{1}}i}{{P}_{i,j}}|i-j|$
墒Entropy (ent) $\text{ent=}\sum{_{i,j=0}^{N-\text{1}}i}{{P}_{i,j}}(-\ln {{P}_{i,j}})$
二阶矩Second moment (sm) $\text{sm=}\sum{_{i,j=0}^{N-\text{1}}i}{{P}_{i,j}}^{2}$
自相关Correlation (cor) $\operatorname{corr}=\sum_{i, j=0}^{N-1} i P_{i, j}\left[\frac{(i-\text { mean })(j-\text { mean })}{\sqrt{\operatorname{var}_{i} \times \operatorname{var}_{j}}}\right]$

Fig. 3

Maize nitrogen nutrition estimation flowchart"

Fig. 4

Reflectivity of different nitrogen application rates N0, N1, N2, N3, N4, and N5 represent the nitrogen application rate of 0, 90, 180, 270, 360, and 450 kg·hm-2"

Fig. 5

Matrix of correlation coefficients between vegetation index and nitrogen nutrient parameters * and * * indicate significant difference ( P<0.05 ) and extremely significant difference (P<0.01 ), respectively. The same as below"

Table 5

Estimation model for nitrogen nutrient parameters based on vegetation index"

模型
Model
LNC PNC LNA PNA
R2 RMSE R2 RMSE R2 RMSE R2 RMSE
MSR 0.771 0.998 0.664 0.734 0.759 7.314 0.701 12.677
RF 0.795 0.876 0.747 0.848 0.783 6.294 0.751 11.858
SVM 0.802 0.917 0.721 0.391 0.798 7.286 0.759 12.387
GWO-CNN 0.831 0.723 0.761 0.336 0.826 6.299 0.770 11.387

Fig. 6

Correlation coefficient matrix of individual texture feature and nitrogen nutritional parameters"

Table 6

Nitrogen nutrition parameter estimation model based on individual texture feature"

模型
Model
LNC PNC LNA PNA
R2 RMSE R2 RMSE R2 RMSE R2 RMSE
MSR 0.545 0.519 0.510 1.095 0.548 8.133 0.510 14.606
RF 0.574 0.823 0.536 1.087 0.563 7.251 0.529 12.358
SVM 0.571 0.749 0.542 0.987 0.559 8.288 0.532 13.487
GWO-CNN 0.599 0.648 0.569 0.996 0.597 7.287 0.563 12.397

Fig. 7

The correlation coefficient matrix of texture index and nitrogen nutrition parameters"

Table 7

Parameter estimation model of nitrogen nutrition based on texture index"

参数 Parameter 纹理指数Texture Parameter MSR RF SVM GWO-CNN
LNC NDTI(hom720,con720)NDTI(var720,mean840)NDTI(dis660,hom840 0.670 0.717 0.723 0.755
PNC NDTI(con720,hom720)NDTI(var720,mean840)NDTI(dis660,hom840 0.662 0.691 0.711 0.737
LNA NDTI(hom720,con720)NDTI(var660,mean840)NDTI(dis660,hom840 0.674 0.709 0.719 0.753
PNA NDTI(dis660,hom840)NDTI(var660,mean840)NDTI(dis720,hom720 0.656 0.703 0.713 0.731

Table 8

Parameter estimation model of nitrogen nutrition based on VIs and TIs fusion"

模型
Model
LNC PNC LNA PNA
R2 RMSE R2 RMSE R2 RMSE R2 RMSE
MSR 0.881 0.768 0.872 0.889 0.884 4.378 0.860 7.256
RF 0.893 0.787 0.895 0.745 0.897 3.362 0.874 6.643
SVM 0.901 0.672 0.899 0.772 0.902 3.048 0.881 6.783
GWO-CNN 0.921 0.559 0.901 0.659 0.917 2.856 0.892 6.135

Fig.8

The optimal model verification based on the fusion of VIs and Tis"

Fig. 9

Distribution of maize nitrogen nutritional parameters in the study area"

[1]
郝子源, 杨玮, 李浩, 于滈, 李民赞. 基于多源信息和深度学习的多作物叶面积指数预测模型研究. 光谱学与光谱分析, 2023, 43(12): 3862-3870.
HAO Z Y, YANG W, LI H, YU H, LI M Z. Study on prediction models for leaf area index of multiple crops based on multi-source information and deep learning. Spectroscopy and Spectral Analysis, 2023, 43(12): 3862-3870. (in Chinese)
[2]
马俊伟, 陈鹏飞, 孙毅, 谷健, 王李娟. 基于无人机多光谱影像和机器学习方法的玉米叶面积指数反演研究. 作物学报, 2023, 49(12): 3364-3376.

doi: 10.3724/SP.J.1006.2023.33001
MA J W, CHEN P F, SUN Y, GU J, WANG L J. Comparing different machine learning methods for maize leaf area index (LAI) prediction using multispectral image from unmanned aerial vehicle(UAV). Acta Agronomica Sinica, 2023, 49(12): 3364-3376. (in Chinese)
[3]
邵亚杰, 汤秋香, 崔建平, 李晓娟, 王亮, 林涛. 融合无人机光谱信息与纹理特征的棉花叶面积指数估测. 农业机械学报, 2023, 54(6): 186-196.
SHAO Y J, TANG Q X, CUI J P, LI X J, WANG L, LIN T. Cotton leaf area index estimation combining UAV spectral and textural features. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 186-196. (in Chinese)
[4]
王伟康, 张嘉懿, 汪慧, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 基于固定翼无人机多光谱影像的水稻长势关键指标无损监测. 中国农业科学, 2023, 56(21): 4175-4191. doi: 10.3864/j.issn.0578-1752.2023.21.004.
WANG W K, ZHANG J Y, WANG H, CAO Q, TIAN Y C, ZHU Y, CAO W X, LIU X J. Non-destructive monitoring of rice growth key indicators based on fixed-wing UAV multispectral images. Scientia Agricultura Sinica, 2023, 56(21): 4175-4191. doi: 10.3864/j.issn.0578-1752.2023.21.004. (in Chinese)
[5]
WANG J G, WANG H J, TIAN T, CUI J, SHI X Y, SONG J H, LI T S, LI W D, ZHONG M T, ZHANG W X. Construction of spectral index based on multi-angle spectral data for estimating cotton leaf nitrogen concentration. Computers and Electronics in Agriculture, 2022, 201: 107328.
[6]
魏鹏飞, 徐新刚, 李中元, 杨贵军, 李振海, 冯海宽, 陈帼, 范玲玲, 王玉龙, 刘帅兵. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测. 农业工程学报, 2019, 35(8): 126-133, 335.
WEI P F, XU X G, LI Z Y, YANG G J, LI Z H, FENG H K, CHEN G, FAN L L, WANG Y L, LIU S B. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 126-133, 335. (in Chinese)
[7]
JIANG J, ATKINSON P M, ZHANG J Y, LU R H, ZHOU Y Y, CAO Q, TIAN Y C, ZHU Y, CAO W X, LIU X J. Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale. European Journal of Agronomy, 2022, 138: 126537.
[8]
LEE H, WANG J F, LEBLON B. Using linear regression, random forests, and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sensing, 2020, 12(13): 2071.
[9]
KHOSRAVI I, ALAVIPANAH S K. A random forest-based framework for crop mapping using temporal, spectral, textural and polarimetric observations. International Journal of Remote Sensing, 2019, 40(18): 7221-7251.
[10]
ZHENG H B, MA J F, ZHOU M, LI D, YAO X, CAO W X, ZHU Y, CHENG T. Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from unmanned aerial vehicle (UAV) multispectral imagery. Remote Sensing, 2020, 12(6): 957.
[11]
陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究. 中国农业科学, 2019, 52(13): 2220-2229. doi: 10.3864/j.issn.0578-1752.2019.13.003.
CHEN P F, LIANG F. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle. Scientia Agricultura Sinica, 2019, 52(13): 2220-2229. doi: 10.3864/j.issn.0578-1752.2019.13.003. (in Chinese)
[12]
贾丹, 陈鹏飞. 低空无人机影像分辨率对冬小麦氮浓度反演的影响. 农业机械学报, 2020, 51(7): 164-169.
JIA D, CHEN P F. Effect of low-altitude UAV image resolution on inversion of winter wheat nitrogen concentration. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 164-169. (in Chinese)
[13]
陈鹏, 冯海宽, 李长春, 杨贵军, 杨钧森, 杨文攀, 刘帅兵. 无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量. 农业工程学报, 2019, 35(11): 63-74.
CHEN P, FENG H K, LI C C, YANG G J, YANG J S, YANG W P, LIU S B. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 63-74. (in Chinese)
[14]
魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测. 中国农业科学, 2023, 56(9): 1670-1685. doi: 10.3864/j.issn.0578-1752.2023.09.005.
WEI Y K, YANG T C, ZANG S L, HE L, DUAN J Z, XIE Y X, WANG C Y, FENG W. Monitoring wheat lodging based on UAV multi-spectral image feature fusion. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685. doi: 10.3864/j.issn.0578-1752.2023.09.005. (in Chinese)
[15]
宋晓宇, 王纪华, 杨贵军, 崔贝, 常红. 基于叶片及冠层叶绿素参数的冬小麦籽粒蛋白质含量预测研究. 光谱学与光谱分析, 2014, 34(7): 1917-1921.
SONG X Y, WANG J H, YANG G J, CUI B, CHANG H. Winter wheat GPC estimation based on leaf and canopy chlorophyll parameters. Spectroscopy and Spectral Analysis, 2014, 34(7): 1917-1921. (in Chinese)
[16]
万亮, 杜晓月, 陈硕博, 于丰华, 朱姜蓬, 许童羽, 何勇, 岑海燕. 基于无人机多源图谱融合的水稻稻穗表型监测. 农业工程学报, 2022, 38(9): 162-170.
WAN L, DU X Y, CHEN S B, YU F H, ZHU J P, XU T Y, HE Y, CEN H Y. Rice panicle phenotyping using UAV-based multi-source spectral image data fusion. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 162-170. (in Chinese)
[17]
高开秀, 高雯晗, 明金, 李岚涛, 汪善勤, 鲁剑巍. 无人机载多光谱遥感监测冬油菜氮素营养研究. 中国油料作物学报, 2019, 41(2): 232-242.

doi: 10.7505/j.issn.1007-9084.2019.02.011
GAO K X, GAO W H, MING J, LI L T, WANG S Q, LU J W. Monitoring of nitrogen nutrition in winter rapeseed using UAV - borne multispectral data. Chinese Journal of Oil Crop Sciences, 2019, 41(2): 232-242. (in Chinese)
[18]
陈震, 程千, 徐洪刚, 黄修桥. 不同水肥处理下夏玉米株高、生物量响应特征及光谱反演. 干旱地区农业研究, 2023, 41(4): 198-207.
CHEN Z, CHENG Q, XU H G, HUANG X Q. Inversion model of summer maize plant height and biomass under different water and fertilizer treatments based on UAV spectra. Agricultural Research in the Arid Areas, 2023, 41(4): 198-207. (in Chinese)
[19]
魏青, 张宝忠, 魏征, 韩信, 段晨斐. 基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究. 麦类作物学报, 2020, 40(3): 365-372.
WEI Q, ZHANG B Z, WEI Z, HAN X, DUAN C F. Estimation of canopy chlorophyll content in winter wheat by UAV multispectral remote sensing. Journal of Triticeae Crops, 2020, 40(3): 365-372. (in Chinese)
[20]
王来刚, 贺佳, 郑国清, 郭燕, 张彦, 张红利. 基于无人机多光谱遥感的玉米FPAR估算. 农业机械学报, 2022, 53(10): 202-210.
WANG L G, HE J, ZHENG G Q, GUO Y, ZHANG Y, ZHANG H L. Estimation of maize FPAR based on UAV multispectral remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 202-210. (in Chinese)
[21]
WANG X L, LU Y L, HE G Z, HAN J Y, WANG T Y. Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake: a 5-year study. Journal of Environmental Sciences (China), 2007, 19(8): 920-927.
[22]
郭燕, 井宇航, 王来刚, 黄竞毅, 贺佳, 冯伟, 郑国清. 基于无人机影像特征的冬小麦植株氮含量预测及模型迁移能力分析. 中国农业科学, 2023, 56(5): 850-865. doi: 10.3864/j.issn.0578-1752.2023.05.004.
GUO Y, JING Y H, WANG L G, HUANG J Y, HE J, FENG W, ZHENG G Q. UAV multispectral image-based nitrogen content prediction and the transferability analysis of the models in winter wheat plant. Scientia Agricultura Sinica, 2023, 56(5): 850-865. doi: 10.3864/j.issn.0578-1752.2023.05.004. (in Chinese)
[23]
张伏, 王新月, 崔夏华, 曹炜桦, 张晓东, 张亚坤. 可见/近红外光谱结合GWO-SVM对千禧番茄的分类鉴别. 光谱学与光谱分析, 2022, 42(10): 3291-3297.
ZHANG F, WANG X Y, CUI X H, CAO W H, ZHANG X D, ZHANG Y K. Classification of Qianxi tomatoes by visible/near infrared spectroscopy combined with GMO-SVM. Spectroscopy and Spectral Analysis, 2022, 42(10): 3291-3297. (in Chinese)
[24]
尹航, 李斐, 杨海波, 李渊. 基于无人机高光谱影像的马铃薯叶绿素含量估测. 植物营养与肥料学报, 2021, 27(12): 2184-2195.
YIN H, LI F, YANG H B, LI Y. Estimation of canopy chlorophyll in potato based on UAV hyperspectral images. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2184-2195. (in Chinese)
[25]
王娇娇, 宋晓宇, 梅新, 杨贵军, 李振海, 李贺丽, 孟炀. 基于高斯回归分析的水稻氮素敏感波段筛选及含量估算. 光谱学与光谱分析, 2021, 41(6): 1722-1729.
WANG J J, SONG X Y, MEI X, YANG G J, LI Z H, LI H L, MENG Y. Sensitive bands selection and nitrogen content monitoring of rice based on Gaussian regression analysis. Spectroscopy and Spectral Analysis, 2021, 41(6): 1722-1729. (in Chinese)
[26]
张东彦, 韩宣宣, 林芬芳, 杜世州, 张淦, 洪琪. 基于多源无人机影像特征融合的冬小麦LAI估算. 农业工程学报, 2022, 38(9): 171-179.
ZHANG D Y, HAN X X, LIN F F, DU S Z, ZHANG G, HONG Q. Estimation of winter wheat leaf area index using multi-source UAV image feature fusion. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 171-179. (in Chinese)
[27]
YANG H B, HU Y H, ZHENG Z Z, QIAO Y C, HOU B R, CHEN J. A new approach for nitrogen status monitoring in potato plants by combining RGB images and SPAD measurements. Remote Sensing, 2022, 14(19): 4814.
[28]
万亮, 岑海燕, 朱姜蓬, 张佳菲, 杜晓月, 何勇. 基于纹理特征与植被指数融合的水稻含水量无人机遥感监测. 智慧农业, 2020, 2(1): 58-67.
WAN L, CEN H Y, ZHU J P, ZHANG J F, DU X Y, HE Y. Using fusion of texture features and vegetation indices from water concentration in rice crop to UAV remote sensing monitor. Smart Agriculture, 2020, 2(1): 58-67. (in Chinese)

doi: 10.12133/j.smartag.2020.2.1.201911-SA002
[29]
XU S Z, XU X G, ZHU Q Z, MENG Y, YANG G J, FENG H K, YANG M, ZHU Q L, XUE H Y, WANG B B. Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV. Precision Agriculture, 2023, 24(6): 2327-2349.
[30]
FU Z P, YU S S, ZHANG J Y, XI H, GAO Y, LU R H, ZHENG H B, ZHU Y, CAO W X, LIU X J. Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat. European Journal of Agronomy, 2022, 132: 126405.
[31]
石浩磊, 曹红霞, 张伟杰, 朱珊, 何子建, 张泽. 基于无人机多光谱的棉花多生育期叶面积指数反演. 中国农业科学, 2024, 57(1): 80-95. doi: 10.3864/j.issn.0578-1752.2024.01.007.
SHI H L, CAO H X, ZHANG W J, ZHU S, HE Z J, ZHANG Z. Leaf area index inversion of cotton based on drone multi-spectral and multiple growth stages. Scientia Agricultura Sinica, 2024, 57(1): 80-95. doi: 10.3864/j.issn.0578-1752.2024.01.007. (in Chinese)
[32]
沈思聪, 张靖雪, 陈鸣晖, 李志威, 孙盛楠, 严学兵. 基于无人机多光谱估测不同品种紫花苜蓿的地上生物量和叶绿素含量. 光谱学与光谱分析, 2023, 43(12): 3847-3852.
SHEN S C, ZHANG J X, CHEN M H, LI Z W, SUN S N, YAN X B. Estimation of above-ground biomass and chlorophyll content of different alfalfa varieties based on UAV multi-spectrum. Spectroscopy and Spectral Analysis, 2023, 43(12): 3847-3852. (in Chinese)
[33]
李华森, 夏晨真, 张星宇, 王寅, 张月. 基于无人机多光谱影像的完熟期玉米倒伏信息提取. 干旱地区农业研究, 2023, 41(5): 198-206, 216.
LI H S, XIA C Z, ZHANG X Y, WANG Y, ZHANG Y. Extraction of maize lodging information at mature stage based on UAV multispectral images. Agricultural Research in the Arid Areas, 2023, 41(5): 198-206, 216. (in Chinese)
[34]
杭艳红, 苏欢, 于滋洋, 刘焕军, 官海翔, 孔繁昌. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算. 农业工程学报, 2021, 37(9): 64-71.
HANG Y H, SU H, YU Z Y, LIU H J, GUAN H X, KONG F C. Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 64-71. (in Chinese)
[35]
边明博, 马彦鹏, 樊意广, 陈志超, 杨贵军, 冯海宽. 融合无人机多源传感器的马铃薯叶绿素含量估算. 农业机械学报, 2023, 54(8): 240-248.
BIAN M B, MA Y P, FAN Y G, CHEN Z C, YANG G J, FENG H K. Estimation of potato chlorophyll content based on UAV multi-source sensor. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 240-248. (in Chinese)
[36]
ZHENG H B, CHENG T, ZHOU M, LI D, YAO X, TIAN Y C, CAO W X, ZHU Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precision Agriculture, 2019, 20(3): 611-629.
[37]
张泽, 马露露, 洪帅, 林皎, 张立福, 吕新. 滴灌棉田植株氮营养指数的高光谱诊断研究. 棉花学报, 2020, 32(5): 392-403.

doi: 10.11963/1002-7807.zzlx.20200716
ZHANG Z, MA L L, HONG S, LIN J, ZHANG L F, X. Study on hyperspectral diagnosis of nitrogen nutrition index among different cotton varieties under drip irrigation. Cotton Science, 2020, 32(5): 392-403. (in Chinese)
[38]
张晓东, 毛罕平. 油菜氮素光谱定量分析中水分胁迫与光照影响及修正. 农业机械学报, 2009, 40(2): 164-169.
ZHANG X D, MAO H P. Effect and correction of water stress and lighting factor on rape nitrogen content spectral analysis. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(2): 164-169. (in Chinese)
[39]
凌琪涵, 孔发明, 宁强, 魏勇, 柳展, 代明珠, 张跃强, 石孝均, 王洁, 周宇. 基于无人机多光谱影像的水稻氮营养监测. 农业工程学报, 2023, 39(13): 160-170.
LING Q H, KONG F M, NING Q, WEI Y, LIU Z, DAI M Z, ZHANG Y Q, SHI X J, WANG J, ZHOU Y. Rice nitrogen nutrition monitoring based on unmanned aerial vehicle multispectral image. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(13): 160-170. (in Chinese)
[1] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[2] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[3] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[6] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[7] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[8] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[9] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[10] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[11] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[12] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[13] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[14] SUN ZhaoAn, ZHANG YiWen, JIANG LiHua, LI ZhaoJun, GUO Xin, CAO Hui, MENG FanQiao. Effects of Tomato Grafting and Nitrogen Fertilization on Fertilizer Nitrogen Fate and Nitrogen Balance [J]. Scientia Agricultura Sinica, 2024, 57(4): 755-764.
[15] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!