Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (8): 1606-1619.doi: 10.3864/j.issn.0578-1752.2024.08.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

lincRNA Cox2 Regulates BCG-infected Macrophages Glycolysis by miR-129-5p/AMPK

XU Lei(), YU JiaLin, LIU Li, DENG GuangCun, WU XiaoLing()   

  1. School of Life Sciences, Ningxia University/Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan 750021
  • Received:2023-10-27 Accepted:2024-01-31 Online:2024-04-16 Published:2024-04-24
  • Contact: XU Lei, WU XiaoLing

Abstract:

【Objective】 The aim of this study was to investigate the regulatory role of lincRNA Cox2 in the glycolysis of RAW264.7 macrophages infected by Bacillus Calmette-Guerin (BCG), and to elucidate the interaction between Mtb and macrophages, so as to provide a new target for the diagnosis and treatment of tuberculosis. 【Method】 RNA interference technique was used to knock down the expression of lincRNA Cox2, and miR-129-5p mimics were used to overexpress miR-129-5p. QPCR was performed to measure the lincRNA Cox2, miR-129-5p and proinflammatory cytokine ( IL-1β, TNF-α, and IL-6 ) expression after BCG infection. The expression of Lactic Acid was detected by Lactic Acid assay kit. The bacterial load was measured bacterial load in BCG-infected macrophages. Dual luciferase reporter gene system validation experiments were carried out on lincRNA Cox2 and miR-129-5p, or miR-129-5p and AMPK relationships. The expression of AMPK (AMP activated protein kinase), HK1 (Hexokinase 1), PKM2 (pyruvate kinase M2), and LDHA (Lactate dehydrogenase A) were detected by Western blotting. 【Result】 The expression of lincRNA Cox2 was significantly upregulated (P=0.000013) after BCG infection in RAW264.7 macrophages for 12 h. Compared with the BCG group, the siRNA+BCG group had significantly upregulated the expression of AMPK (P=0.000771), HK1 (P=0.00323), PKM2 (P=0.000135), LDHA (P=0.002532), and the secretion of LD (P=0.020802), but the expression of IL-1β (P=0.000451), TNF-α (P=0.000147), IL-6 (P=0.0001) was significantly reduced. The lincRNA Cox2 knockdown caused a significant reduce of bacterial load in BCG-infected macrophages (P=0.000127). Dual luciferase reporter gene system were performed to the co-localized of lincRNA Cox2 and miR-129-5p, and targeting AMPK. The expression of miR-129-5p was significantly reduced (P=0.000156) after BCG infection in RAW264.7 macrophages for 12 h. Compared with the BCG group, the miR-129-5p mimics+BCG group had significantly reduced the expression of AMPK (P=0.000262), HK1 (P=0.019524), PKM2 (P=0.001658), LDHA (P=0.000887), and the secretion of LD (P=0.044952). 【Conclusion】 lincRNA Cox2 promoted BCG-infected RAW264.7 macrophages glycolysis process by sponging miR-129-5p and targeting AMPK.

Key words: lincRNA Cox2, miR-129-5p, AMPK, BCG, macrophages, glycolysis

Table 1

The sequences for the specific primers used in real time PCR"

引物名称 Primer 引物序列Sequence(5'→3')
lincRNA Cox2 F: AAGGAAGCTTGGCGTTGTGA
R: GAGAGGTGAGGAGTCTTATG
miR-129-5p F: ACACTCCAGCTGGCCTTTTTCGCCAGACC CGAA
R: TGGTGTCGTGGAGTCG
IL-1β F: CAGGCAGGCAGTATCACTCATTG
R: CGTCACACACCAGCAGGTTATC
TNF-α F: TAGCCCATGTTGTAGCAAACC
R: ATGAGGTACAGGCCCTCTGAT
IL-6 F: GACAGCCACTCACCTCTTCAG
R: CATCCATCTTTTTCAGCCATC
β-actin F: GTGCTATGTTGCTCTAGACTTCG
R: ATGCCACAGGATTCCATACC
U6 F: CTCGCTTCGGCAGCACA
R: AACGCTTCACGAATTTGCGT

Fig. 1

The expression of lincRNA Cox2 in RAW264.7 macrophages after BCG infection for different lengths of time"

Fig. 2

The expression of the vital enzymes of glycolysis in RAW264.7 macrophages after BCG infection for different lengths of time"

Fig. 3

The expression of AMPK in RAW264.7 macrophages with BCG infection A: The expression of AMPK in RAW264.7 macrophages after BCG infection for different lengths of time with Western blot; B: The silencing efficiency of lincRNA Cox2 was evaluated with qPCR detection; C: RAW264.7 macrophages were transfected with NC or si-lincRNA Cox2 for 24 h and then infected with BCG for 12 h. The expression of AMPK was detected by Western blotting; D: Immunofluorescence assay for detecting the expression level of AMPK. Green dots represent AMPK protein and blue dots represent the nucleus (630×)"

Fig. 4

Effects of lincRNA Cox2 knockdown on the process of glycolytic and the expression of proinflammatory cytokine A: RAW264.7 macrophages were transfected with si-lincRNA Cox2 for 24 h and then infected with BCG for 12 h. The expression of the key enzymes of glycolytic were detected by Western blot; B: Quantification of HK1 expression in RAW264.7 macrophages; C: Quantification of PKM2 expression in RAW264.7 macrophages; D: Quantification of LDHA expression in RAW264.7 macrophages; E: The effect of overexpression of miR-129-5p on LD secretion; F: The expression of IL-1β with qPCR detection; G: The expression of TNF-α with qPCR detection; H: The expression of IL-6 with qPCR detection"

Fig. 5

Effect of lincRNA Cox2 knockdown on RAW264.7 macrophage bacterial load *** P<0.001"

Fig. 6

lincRNA Cox2 sponges miR-129-5p in RAW264.7 macrophages A: The binding site of lincRNA Cox2 and miR-129-5p; B: Verification of the binding site of lincRNA Cox2 to miR-129-5p by dual luciferase reporter system; C: The expression of miR-129-5p in RAW264.7 macrophages after BCG infection for different lengths of time with qPCR detection; D: qPCR detection the influence of interference lincRNA Cox2 on miR-129-5p"

Fig. 7

Overexpression of miR-129-5p inhibits AMPK and t glycolytic in RAW264.7 macrophages A: The binding site of miR-129-5p and AMPK; B: Verification of the binding site of miR-129-5p to AMPK by dual luciferase reporter system; C: RAW264.7 macrophages were transfected with miR-129-5p mimics for 24 h and then infected with BCG for 12 h. The expression of AMPK and the key enzymes of glycolytic were detected by Western blot; D: Quantification of AMPK expression in RAW264.7 macrophages; E: Quantification of HK1 expression in RAW264.7 macrophages; F: Quantification of PKM2 expression in RAW264.7 macrophages; G: Quantification of LDHA expression in RAW264.7 macrophages; H: The effect of overexpression of miR-129-5p on LD secretion"

Fig. 8

The picture of lincRNA Cox2 regulates BCG-infected macrophages glycolysis by miR-129-5p/AMPK"

[1]
Global tuberculosis report 2022. Geneva: World Health Organization, 2022.
[2]
于嘉霖, 徐雅楠, 韩璐, 马沁梅, 吴晓玲, 邓光存. 脂肪酸结合蛋白4对BCG诱导巨噬细胞自噬的调控作用. 畜牧兽医学报, 2020, 51(9): 2265-2274.
YU J L, XU Y N, HAN L, MA Q M, WU X L, DENG G C. Role of fatty acid binding protein 4 in regulating macrophage autophagy induced by BCG infection. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(9): 2265-2274. (in Chinese)
[3]
毕秀欣, 韩鹏宇, 马吉雪, 李发. 新冠肺炎疫情对全球结核病防治的影响. 口岸卫生控制, 2022, 27(2): 48-51.
BI X X, HAN P Y, MA J X, LI F. Impact of COVID-19 on global tuberculosis prevention. Port Health Control, 2022, 27(2): 48-51. (in Chinese)
[4]
PEPPERELL C S. Evolution of tuberculosis pathogenesis. Annual Review of Microbiology, 2022, 76: 661-680.

doi: 10.1146/micro.2022.76.issue-1
[5]
YANG J S, REN B, YANG G, WANG H Y, CHEN G Y, YOU L, ZHANG T P, ZHAO Y P. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cellular and Molecular Life Sciences, 2020, 77(2): 305-321.

doi: 10.1007/s00018-019-03278-z pmid: 31432232
[6]
MENDONCA L E, PERNET E, KHAN N, SANZ J, KAUFMANN E, DOWNEY J, GRANT A, ORLOVA M, SCHURR E, KRAWCZYK C, JONES R G, BARREIRO L B, DIVANGAHI M. Human alveolar macrophage metabolism is compromised during Mycobacterium tuberculosis infection. Frontiers in Immunology, 2022, 13: 1044592.

doi: 10.3389/fimmu.2022.1044592
[7]
GLEESON L E, O’LEARY S M, RYAN D, MCLAUGHLIN A M, SHEEDY F J, KEANE J. Cigarette smoking impairs the bioenergetic immune response to Mycobacterium tuberculosis infection. American Journal of Respiratory Cell and Molecular Biology, 2018, 59(5): 572-579.

doi: 10.1165/rcmb.2018-0162OC
[8]
HUANG L, NAZAROVA E V, TAN S M, LIU Y C, RUSSELL D G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. The Journal of Experimental Medicine, 2018, 215(4): 1135-1152.

doi: 10.1084/jem.20172020
[9]
HACKETT E E, CHARLES-MESSANCE H, O’LEARY S M, GLEESON L E, MUÑOZ-WOLF N, CASE S, WEDDERBURN A, JOHNSTON D G W, WILLIAMS M A, SMYTH A, OUIMET M, MOORE K J, LAVELLE E C, CORR S C, GORDON S V, KEANE J, SHEEDY F J. Mycobacterium tuberculosis limits host glycolysis and IL-1β by restriction of PFK-M via microRNA-21. Cell Reports, 2020, 30(1): 124-136.e4.

doi: 10.1016/j.celrep.2019.12.015
[10]
BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation: lncRNA localization and function. The Journal of Cell Biology, 2021, 220(2): e202009045.

doi: 10.1083/jcb.202009045
[11]
于志瑞, 张旭, 牛莎莎, 邓光存, 吴晓玲. LncRNA NR003508通过海绵吸附miR-483-3p并靶向MLKL调控BCG感染小鼠巨噬细胞坏死. 畜牧兽医学报, 2022, 53(9): 3149-3159.
YU Z R, ZHANG X, NIU S S, DENG G C, WU X L. LncRNA NR003508 regulates BCG-infected mouse macrophages necrosis by the sponge adsorption of miR-483-3p and targeting MLKL. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3149-3159. (in Chinese)
[12]
YAO Q L, XIE Y, XU D D, QU Z L, WU J, ZHOU Y Y, WEI Y Y, XIONG H, ZHANG X L. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cellular & Molecular Immunology, 2022, 19(8): 883-897.
[13]
LIU L, YU Z R, MA Q M, YU J L, GONG Z Q, DENG G C, WU X L. LncRNA NR_003508 suppresses Mycobacterium tuberculosis- induced programmed necrosis via sponging miR-346-3p to regulate RIPK1. International Journal of Molecular Sciences, 2023, 24(9): 8016.

doi: 10.3390/ijms24098016
[14]
ROBINSON E K, WORTHINGTON A, POSCABLO D, SHAPLEIGH B, SALIH M M, HALASZ H, SENINGE L, MOSQUEIRA B, SMALIY V, FORSBERG E C, CARPENTER S. lincRNA-Cox2 functions to regulate inflammation in alveolar macrophages during acute lung injury. Journal of Immunology, 2022, 208(8): 1886-1900.

doi: 10.4049/jimmunol.2100743 pmid: 35365562
[15]
LIU Q, JIANG J W, FU Y, LIU T, YU Y, ZHANG X F. MiR-129-5p functions as a tumor suppressor in gastric cancer progression through targeting ADAM9. Biomedicine & Pharmacotherapy, 2018, 105: 420-427.

doi: 10.1016/j.biopha.2018.05.105
[16]
GAO B, WANG L J, ZHANG N, HAN M M, ZHANG Y B, LIU H C, SUN D L, XIAO X L, LIU Y F. MiR-129-5p inhibits clear cell renal cell carcinoma cell proliferation, migration and invasion by targeting SPN. Cancer Cell International, 2021, 21(1): 263.

doi: 10.1186/s12935-021-01820-3 pmid: 34001147
[17]
SEN K, PATI R, JHA A, MISHRA G P, PRUSTY S, CHAUDHARY S, SWETALIKA S, PODDER S, SEN A, SWAIN M, NANDA R K, RAGHAV S K. NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biology, 2023, 59: 102575.

doi: 10.1016/j.redox.2022.102575
[18]
DE JESUS A, KEYHANI-NEJAD F, PUSEC C M, GOODMAN L, GEIER J A, STOOLMAN J S, STANCZYK P J, NGUYEN T, XU K, SURESH K V, CHEN Y H, RODRIGUEZ A E, SHAPIRO J S, CHANG H C, CHEN C L, SHAH K P, BEN-SAHRA I, LAYDEN B T, CHANDEL N S, WEINBERG S E, ARDEHALI H. Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Molecular Cell, 2022, 82(7): 1261-1277.e9.

doi: 10.1016/j.molcel.2022.02.028 pmid: 35305311
[19]
WIESE E K, HITOSUGI S, LOA S T, SREEDHAR A, ANDRES-BECK L G, KURMI K, PANG Y P, KARNITZ L M, GONSALVES W I, HITOSUGI T. Enzymatic activation of pyruvate kinase increases cytosolic oxaloacetate to inhibit the Warburg effect. Nature Metabolism, 2021, 3(7): 954-968.

doi: 10.1038/s42255-021-00424-5 pmid: 34226744
[20]
DING J, KARP J E, EMADI A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: Interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomarkers, 2017, 19(4): 353-363.

doi: 10.3233/CBM-160336 pmid: 28582845
[21]
MURALEEDHARAN R, DASGUPTA B. AMPK in the brain: its roles in glucose and neural metabolism. The FEBS Journal, 2022, 289(8): 2247-2262.

doi: 10.1111/febs.v289.8
[22]
杨舟, 林书典, 詹宇威, 肖璐, 符克英, 黄小蝶. LncRNA MIR22HG 通过海绵吸附miR-22-5p对类风湿关节炎成纤维样滑膜细胞增殖、凋亡和炎性反应的影响. 安徽医科大学学报, 2023, 58(3): 405-412.
YANG Z, LIN S D, ZHAN Y W, XIAO L, FU K Y, HUANG X D. Effects of lncRNA MIR22HG on proliferation, apoptosis and inflammatory response of rheumatoid arthritis fibroblast-like synoviocytes by sponge adsorption of miR-22-5p. Acta Universitatis Medicinalis Anhui, 2023, 58(3): 405-412. (in Chinese)
[23]
BOSEDASGUPTA S, PIETERS J. Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathogens, 2014, 10(1): e1003879.

doi: 10.1371/journal.ppat.1003879
[24]
HOWARD N C, KHADER S A. Immunometabolism during Mycobacterium tuberculosis infection. Trends in Microbiology, 2020, 28(10): 832-850.

doi: 10.1016/j.tim.2020.04.010
[25]
RANSOHOFF J D, WEI Y N, KHAVARI P A. The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology, 2018, 19(3): 143-157.

doi: 10.1038/nrm.2017.104 pmid: 29138516
[26]
NELSON B R, MAKAREWICH C A, ANDERSON D M, WINDERS B R, TROUPES C D, WU F F, REESE A L, MCANALLY J R, CHEN X W, KAVALALI E T, CANNON S C, HOUSER S R, BASSEL- DUBY R, OLSON E N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270): 271-275.

doi: 10.1126/science.aad4076 pmid: 26816378
[27]
WEI L, LIU K, JIA Q Z, ZHANG H, BIE Q L, ZHANG B. The roles of host noncoding RNAs in Mycobacterium tuberculosis infection. Frontiers in Immunology, 2021, 12: 664787.

doi: 10.3389/fimmu.2021.664787
[28]
冉宏标, 赵丽玲, 王会, 柴志欣, 王吉坤, 王嘉博, 武志娟, 钟金城. LncFAM200B对牦牛肌内前体脂肪细胞脂质沉积的影响. 中国农业科学, 2022, 55(13): 2654-2666. doi: 10.3864/j.issn.0578-1752.2022.13.014.
RAN H B, ZHAO L L, WANG H, CHAI Z X, WANG J K, WANG J B, WU Z J, ZHONG J C. Effects of lnc FAM200B on the lipid deposition in intramuscular preadipocytes of yak. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666. doi: 10.3864/j.issn.0578-1752.2022.13.014. (in Chinese)
[29]
禹保军, 邓占钊, 辛国省, 蔡正云, 顾亚玲, 张娟. 静原鸡肌肉组织肌苷酸特异性沉积相关LNC_003828-gga-miR-107-3p-MINPP1的关联分析. 中国农业科学, 2021, 54(19): 4229-4242. doi: 10.3864/j.issn.0578-1752.2021.19.017.
YU B J, DENG Z Z, XIN G S, CAI Z Y, GU Y L, ZHANG J. Correlation analysis of inosine monophosphate specific deposition related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan chicken muscle tissue. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242. doi: 10.3864/j.issn.0578-1752.2021.19.017. (in Chinese)
[30]
JIANG F, LOU J, ZHENG X M, YANG X Y. LncRNA MIAT regulates autophagy and apoptosis of macrophage infected by Mycobacterium tuberculosis through the miR-665/ULK1 signaling axis. Molecular Immunology, 2021, 139: 42-49.

doi: 10.1016/j.molimm.2021.07.023
[31]
LI D Y, GAO C Y, ZHAO L, ZHANG Y M. Inflammatory response is modulated by lincRNACox2 via the NF-κB pathway in macrophages infected by Mycobacterium tuberculosis. Molecular Medicine Reports, 2020, 21(6): 2513-2521.
[32]
HE Y N, WANG Y T, JIA X B, LI Y X, YANG Y, PAN L F, ZHAO R, HAN Y, WANG F, GUAN X Y, HOU T Z. Glycolytic reprogramming controls periodontitis-associated macrophage pyroptosis via AMPK/ SIRT1/NF-κB signaling pathway. International Immunopharmacology, 2023, 119: 110192.

doi: 10.1016/j.intimp.2023.110192
[33]
CHIN W Y, HE C Y, CHOW T W, YU Q Y, LAI L C, MIAW S C. Adenylate kinase 4 promotes inflammatory gene expression via Hif1α and AMPK in macrophages. Frontiers in Immunology, 2021, 12: 630318.

doi: 10.3389/fimmu.2021.630318
[34]
GAUTHIER T, YAO C, DOWDY T, JIN W W, LIM Y J, PATIÑO L C, LIU N, OHLEMACHER S I, BYNUM A, KAZMI R, BEWLEY C A, MITROVIC M, MARTIN D, MORELL R J, ECKHAUS M, LARION M, TUSSIWAND R, O’SHEA J J, CHEN W J. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Science Signaling, 2023, 16(797): eade0385.

doi: 10.1126/scisignal.ade0385
[35]
Ó MAOLDOMHNAIGH C, COX D J, PHELAN J J, MITERMITE M, MURPHY D M, LEISCHING G, THONG L, O’LEARY S M, GOGAN K M, MCQUAID K, COLEMAN A M, GORDON S V, BASDEO S A, KEANE J. Lactate alters metabolism in human macrophages and improves their ability to kill Mycobacterium tuberculosis. Frontiers in Immunology, 2021, 12: 663695.

doi: 10.3389/fimmu.2021.663695
[36]
方舒. LncRNA-Cox2对BCG诱导RAW264.7细胞自噬的调控作用[D]. 西宁: 宁夏大学, 2021.
FANG S. Regulation of LncRINA-Cox2 on autophagy of RAW264.7 induced by Bacillus Calmette-Guérin[D]. Xining: Ningxia University, 2021. (in Chinese)
[37]
XU Y N, YU J L, MA C J, GONG Z Q, WU X L, DENG G C. Impact of knockdown LincRNA-Cox2 on apoptosis of macrophage infected with Bacillus Calmette-Guérin. Molecular Immunology, 2021, 130: 85-95.

doi: 10.1016/j.molimm.2020.11.008
[1] HAO RuiJie, QIU Chen, GENG XiaoYun, JIA HaoTian, ZHANG YaJing, CHANG Jun, FENG XinXin. The Function of PmABCG9 Transporter Related to the Volatilization of Benzyl Alcohol in Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(13): 2574-2585.
[2] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[3] ZHANG Yi, WANG Hong-yun, NIU Fu-xiang, SUN Jian, XU Fei, ZHU Hong, YUE Rui-xue. Identification of Purple Sweet Potato Color of Cultivar Ningzi No. 1 by HPLC-QTOF/MS and Its Effect on Preventing Obesity in High-Fat-Diet-Treated Rats [J]. Scientia Agricultura Sinica, 2016, 49(9): 1787-1802.
[4]
KANG Yun-yan ; YANG Xian ; GUO Shi-rong ; ZHANG Ying-ying
. Effects of 24-Epibrassinolide on Carbohydrate Metabolism and Enhancement of Tolerance to Root-Zone Hypoxia in Cucumber (Cucumis sativus L.) [J]. Scientia Agricultura Sinica, 2011, 44(12): 2495-2503 .
[5] MIAO Jin-feng,MA Hai-tian,JIA Xue-bo,FAN Hong-jie,ZOU Si-xiang
. The Mechanism of Polysaccharide Nucleic Acid Fraction of Bacillus Calmette Guerin Alleviate the Injury of Endotoxin-Induced Rat Mastitis
[J]. Scientia Agricultura Sinica, 2010, 43(18): 3869-3875 .
[6] . Effect of fucoidan and fraction isolated from Laminaria japonica on immunity of broiler macrophages under oxidation stress condition [J]. Scientia Agricultura Sinica, 2008, 41(5): 1482-1488 .
[7] . Protection of Polysaccharide Nucleic Acid Fraction Bacillus Guerin to Mammary Tissue of Goat Experimental Mastitis Induced by Endotoxin [J]. Scientia Agricultura Sinica, 2007, 40(3): 608-613 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!