Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (4): 663-678.doi: 10.3864/j.issn.0578-1752.2024.04.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Remote Sensing Monitoring of Cropping Patterns Based on Phenology Information Atlas

TAO JianBin1(), WANG Yun1, ZHANG XinYue1, JIANG QiYue1, WU WenBin2()   

  1. 1 College of Urban and Environmental Sciences, Central China Normal University/Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Wuhan 430079
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing 100081
  • Received:2023-03-16 Accepted:2023-07-10 Online:2024-02-16 Published:2024-02-20
  • Contact: WU WenBin

Abstract:

【Objective】 Cropping patterns are a summary of crop sequence which reflects the use patterns and efficiency of cropland resources. Through analyzing the phenological differences of different cropping patterns, the cropland phenology information atlas and cropping pattern spectrum for croplands on the Jianghan Plain were constructed, and the major cropping patterns in this area were mapped. 【Method】 The cropland phenology information atlas including different cropland use patterns was formed through expressing graphically the spatial difference between vegetation index states and cropland use patterns, according to the prior knowledge of crop planting and the phenological differences of different cropping patterns under the framework of geo-information atlas. Taking the major cropping patterns on the Jianghan Plain as the study cases, the vegetation index states in the key phenological periods were arranged and combined to establish the information remapping rule from the vegetation index states to the cropping patterns, their phenological characteristics were explored, and the cropping pattern spectrum was constructed. Then the data during the key phenological periods and phenological knowledge were integrated to map cropping patterns on the Jianghan Plain by using the Naive Bayes Networks. The vegetation index states of the key phenological periods were quantitatively expressed by using the knowledge probability coding method.【Result】The cropping pattern spectrum on the Jianghan Plain was constructed, and it was found that the cropping pattern spectrum on the Jianghan Plain was composed of eight cropping patterns: Spring single-cropping, Summer single-cropping, Spring-and-Summer double-cropping, Summer-and-Autumn double-cropping, double-cropping paddy-rice, cash crops, aquaculture ponds, trees or abandoned croplands. The results showed that the proposed cropping pattern spectrum and the method of mapping cropping patterns based on the key phenological periods and the Naive Bayesian Networks could extract all cropping patterns accurately, at the same time, which had good performance and suitability. There was a significant trend of the expansion of Summer-and-Autumn double-cropping and the shrink of Spring-and-Summer double-cropping and the Summer single-cropping on the Jianghan Plain during the study period.【Conclusion】The cropping pattern spectrum gave a picture of the overall situation of intensive utilization of croplands on the Jianghan Plain, for improving the accuracy of monitoring the use of croplands and enriching the connotation of the use of cropland resources.

Key words: phenology information atlas, cropping pattern, cropping pattern spectrum, Bayesian Network, the Jianghan Plain

Fig. 1

The major land-cover types (a) and sampling point (b) on the Jianghan Plain a: The data was sourced from FROM-GLC 2017 land-cover data; b: The data was sourced from NASA SRTM Digital Elevation data. A-E were the five validation areas representing typical cropping patterns"

Fig. 2

Phenology information atlas for croplands"

Fig. 3

Information remapping rules"

Fig. 4

Three-dimensional scatter points on different combinations of phenological features a: For different cropping patterns and trees or abandoned croplands on GS1-TG1-GS2; b: For Summer-and-Autumn double-cropping, double-cropping paddy-rice and trees or abandoned croplands on GS2-TG2-GS3"

Fig. 5

Cropping pattern spectrum on the Jianghan Plain A: The false color composite image of three phenological periods (GS1-TG1-GS2); B: Triangular RGB color space"

Fig. 6

Bayesian Network model for cropping patterns mapping CP: Represents cropping pattern node. SingleSpring: Spring single-cropping; SingleSummer: Summer single-cropping; DoubleSpringSummer: Spring-and- Summer double-cropping; DoubleSummerAutumn: Summer-and-Autumn double-cropping; DoubleCroppingRice: Double-cropping paddy-rice. GS1, TG1, GS2, TG2 and GS3 represent the features of the key phenological periods respectively"

Table 1

Probability map of the child nodes"

GS1 TG1 GS2 TG2 GS3
春单季 Spring single-cropping
夏单季 Summer single-cropping
双季稻 Double-cropping paddy-rice
春夏双季 Spring-and-Summer double-cropping
夏秋双季 Summer-and-Autumn double-cropping

Fig. 7

Schematic diagram of knowledge probability coding for vegetation index states"

Fig. 8

Forward and backword inference of Bayesian Network a: Forward inference: when the parent node is specified as "DoubleSpringSummer", the probability is passed to the child node, and GS1-TG1-GS2 changes to a state combination of "high-low-high". Since TG2 and GS3 nodes are only effective for DoubleCroppingRice, its probability does not change at this time. b: Backword inference: when the combination of GS1-TG1-GS2 is specified as "high-low-high", the probability is transferred to the parent node, and the probability of "DoubleSpringSummer" is the highest, reaching 93.8%"

Fig. 9

Comparison between the false color composite images of phenological features and the cropping pattern map in the validation areas a-e correspond to the validation areas A-E. a1-e1 are the false-color composite images of the three phenological features; a2-e2 are the cropping pattern maps"

Table 2

Accuracies for the cropping patterns in 2017"

类型
Type
春单季
Spring
single-cropping
夏单季
Summer
single-cropping
春夏双季
Spring-and-Summer
double-cropping
双季稻
Double-cropping
paddy-rice
夏秋双季
Summer-and-Autumn
double-cropping
其他
Others
总计
Total
用户精度
User’s
accuracy (%)
春单季
Spring single-cropping
47 1 1 0 0 1 50 94.00
夏单季
Summer single-cropping
0 190 1 6 1 11 209 90.91
春夏双季
Spring-and-Summer
double-cropping
3 13 244 0 0 0 260 93.85
双季稻
Double-cropping
paddy-rice
0 0 0 84 2 0 86 97.67
夏秋双季
Summer-and-Autumn
double-cropping
0 0 0 7 73 2 82 89.02
其他 Others 1 24 10 4 2 164 205 80.00
总计 Total 51 228 256 101 78 178 892
生产者精度
Producer’s accuracy (%)
92.16 83.33 95.31 83.17 93.59 92.13 OA = 0.899
Kappa=0.872

Table 3

Accuracies for the cropping patterns in 2018"

类型
Type
春单季
Spring
single-cropping
夏单季
Summer
single-cropping
春夏双季
Spring-and-Summer
double-cropping
双季稻
Double-cropping
paddy-rice
夏秋双季
Summer-and-Autumn
double-cropping
其他
Others
总计
Total
用户精度
User’s
accuracy (%)
春单季
Spring single-cropping
45 0 0 0 0 0 45 100.00
夏单季
Summer single-cropping
0 197 3 2 0 12 214 92.06
春夏双季
Spring-and-Summer
double-cropping
3 1 235 0 1 3 243 96.71
双季稻
Double-cropping
paddy-rice
0 0 0 85 0 0 85 100.00
夏秋双季
Summer-and-Autumn
double-cropping
0 0 0 1 123 3 127 96.85
其他 Others 4 4 0 14 7 143 172 83.14
总计 Total 52 202 238 102 131 161 886
生产者精度
Producer’s accuracy (%)
86.54 97.52 98.74 83.33 93.89 88.82 OA = 0.935
Kappa=0.918

Table 4

Accuracies for the cropping patterns in 2019"

类型
Type
春单季
Spring
single-cropping
夏单季
Summer
single-cropping
春夏双季
Spring-and-Summer
double-cropping
双季稻
Double-cropping
paddy-rice
夏秋双季
Summer-and-Autumn
double-cropping
其他
Others
总计
Total
用户精度
User’s
accuracy (%)
春单季
Spring single-cropping
41 0 1 0 0 0 42 97.62
夏单季
Summer single-cropping
0 402 6 1 0 14 423 95.04
春夏双季
Spring-and-Summer
double-cropping
1 3 498 0 1 0 503 99.01
双季稻
Double-cropping
paddy-rice
0 0 0 87 0 1 88 98.86
夏秋双季
Summer-and-Autumn
double-cropping
0 0 0 1 120 5 126 95.24
其他 Others 0 9 2 7 9 152 179 84.92
总计 Total 42 414 507 96 130 172 1361
生产者精度
Producer’s accuracy (%)
97.62 97.10 98.22 90.63 92.31 88.37 OA = 0.955
Kappa=0.939

Table 5

Accuracies for the cropping patterns in 2020"

类型
Type
春单季
Spring
single-cropping
夏单季
Summer
single-cropping
春夏双季
Spring-and-Summer
double-cropping
双季稻
Double-cropping
paddy-rice
夏秋双季
Summer-and-Autumn
double-cropping
其他
Others
总计
Total
用户精度
User’s
accuracy (%)
春单季
Spring single-cropping
67 0 10 0 0 2 79 84.81
夏单季
Summer single-cropping
0 329 2 9 0 3 343 95.92
春夏双季
Spring-and-Summer
double-cropping
0 3 424 0 0 1 428 99.07
双季稻
Double-cropping
paddy-rice
0 0 0 98 0 0 98 100.00
夏秋双季
Summer-and-Autumn
double-cropping
1 0 1 0 164 4 170 96.47
其他 Others 1 9 11 5 7 174 207 84.06
总计 Total 69 341 448 112 171 184 1325
生产者精度
Producer’s accuracy (%)
97.10 96.48 94.64 87.50 95.91 94.57 OA = 0.948
Kappa=0.933

Table 6

Accuracies for the cropping patterns in 2021"

类型
Type
春单季
Spring
single-cropping
夏单季
Summer
single-cropping
春夏双季
Spring-and-Summer
double-cropping
双季稻
Double-cropping
paddy-rice
夏秋双季
Summer-and-Autumn
double-cropping
其他
Others
总计
Total
用户精度
User’s
accuracy (%)
春单季
Spring single-cropping
51 0 3 0 0 1 55 92.73
夏单季
Summer single-cropping
0 431 47 1 8 25 512 84.18
春夏双季
Spring-and-Summer
double-cropping
1 3 611 0 1 11 627 97.45
双季稻
Double-cropping
paddy-rice
0 0 1 85 12 2 100 85.00
夏秋双季
Summer-and-Autumn
double-cropping
0 1 3 2 199 7 212 93.87
其他 Others 2 30 18 15 13 205 283 72.44
总计 Total 54 465 683 103 233 251 1789
生产者精度
Producer’s accuracy (%)
94.44 92.69 89.46 82.52 85.41 81.67 OA = 0.884
Kappa=0.846

Fig. 10

Spatial distributions and area proportions of cropping patterns on the Jianghan Plain from 2017 to 2021"

[1]
黄国勤. 中国南方耕作制度. 北京: 中国农业出版社, 1997.
HUANG G Q. Farming System in Southern China. Beijing: China Agriculture Press, 1997. (in Chinese)
[2]
TAO J B, WU W B, LIU W B.Spatial-temporal dynamics of cropping frequency in Hubei Province over 2001-2015. Sensors, 2017, 17(11): 2622.

doi: 10.3390/s17112622
[3]
李怡, 方斌, 李裕瑞, 璩路路, 李冬杰. 城镇化进程中耕地多功能权衡/协同关系演变及其驱动机制. 农业工程学报, 2022, 38(8): 244-254.
LI Y, FANG B, LI Y R, QU L L, LI D J. Trade-off and synergy evolution of farmland functions and its dynamic mechanism in the process of urbanization. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 244-254. (in Chinese)
[4]
李欣宇, 方斌, 李怡, 李冬杰, 何莎莎. 中国粮耕价值比与种植结构时空耦合演化及分区调控. 地理学报, 2022, 77(11): 2721-2737.

doi: 10.11821/dlxb202211003
LI X Y, FANG B, LI Y, LI D J, HE S S. Spatio-temporal coupling evolution and zoning regulation of grain-to-arable value ratio and cropping structures in China. Acta Geographica Sinica, 2022, 77(11): 2721-2737. (in Chinese)

doi: 10.11821/dlxb202211003
[5]
吴郁玲, 张佩, 于亿亿, 谢锐莹. 粮食安全视角下中国耕地“非粮化”研究进展与展望. 中国土地科学, 2021, 35(9): 116-124.
WU Y L, ZHANG P, YU Y Y, XIE R Y. Progress review on and prospects for non-grain cultivated land in China from the perspective of food security. China Land Science, 2021, 35(9): 116-124. (in Chinese)
[6]
QIU B W, JIANG F C, CHEN C C, TANG Z H, WU W B, BERRY J. Phenology-pigment based automated peanut mapping using sentinel-2 images. GIScience & Remote Sensing, 2021, 58(8): 1335-1351.
[7]
HU Q, MA Y X, XU B D, SONG Q A, TANG H J, WU W B. Estimating sub-pixel soybean fraction from time-series MODIS data using an optimized geographically weighted regression model. Remote Sensing, 2018, 10(4): 491.

doi: 10.3390/rs10040491
[8]
HAN J C, ZHANG Z, LUO Y C, CAO J, ZHANG L L, CHENG F, ZHUANG H M, ZHANG J. AsiaRiceMap10m: High-resolution annual paddy rice maps for Southeast and Northeast Asia from 2017 to 2019. Earth System Science Data Discussions, 2021, 211: 1-27.
[9]
刘文斌, 陶建斌, 徐猛, 陈瑞卿, 郭洋. 基于人工神经网络多源数据融合的子像元冬油菜提取: 以两湖平原为例. 自然资源学报, 2019, 34(5): 1079-1092.

doi: 10.31497/zrzyxb.20190514
LIU W B, TAO J B, XU M, CHEN R Q, GUO Y. A study of winter rape extraction at sub-pixel fusing multi-source data based on Artificial Neural Networks: A case study of Jianghan and Dongting Lake Plain. Journal of Natural Resources, 2019, 34(5): 1079-1092. (in Chinese)

doi: 10.31497/zrzyxb.20190514
[10]
杨靖雅, 胡琼, 魏浩东, 蔡志文, 张馨予, 宋茜, 徐保东.基于Sentinel-1/2数据的中国南方单双季稻识别结果一致性分析. 中国农业科学, 2022, 55(16): 3093-3109. doi: 10.3864/j.issn.0578-1752. 2022.16.003.
YANG J Y, HU Q, WEI H D, CAI Z W, ZHANG X Y, SONG Q, XU B D.Consistency analysis of classification results for single and double cropping rice in Southern China based on sentinel-1/2 imagery. Scientia Agricultura Sinica, 2022, 55(16): 3093-3109. doi: 10.3864/ j.issn.0578-1752.2022.16.003. (in Chinese)
[11]
HU Q, YIN H, FRIEDL M A, YOU L Z, LI Z L, TANG H J, WU W B. Integrating coarse-resolution images and agricultural statistics to generate sub-pixel crop type maps and reconciled area estimates. Remote Sensing of Environment, 2021, 258: 112365.

doi: 10.1016/j.rse.2021.112365
[12]
YOU N S, DONG J W, HUANG J X, DU G M, ZHANG G L, HE Y L, YANG T, DI Y Y, XIAO X M.The 10-m crop type maps in Northeast China during 2017-2019. Scientific Data, 2021, 8: 41.

doi: 10.1038/s41597-021-00827-9
[13]
LUO C, LIU H J, LU L P, LIU Z R, KONG F C, ZHANG X L. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. Journal of Integrative Agriculture, 2021, 20(7): 1944-1957.

doi: 10.1016/S2095-3119(20)63329-9
[14]
LUO Y C, ZHANG Z, ZHANG L L, HAN J C, CAO J A, ZHANG J. Developing high-resolution crop maps for major crops in the European union based on transductive transfer learning and limited ground data. Remote Sensing, 2022, 14(8): 1809.

doi: 10.3390/rs14081809
[15]
BLICKENSDÖRFER L, SCHWIEDER M, PFLUGMACHER D, NENDEL C, ERASMI S, HOSTERT P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 2022, 269: 112831.

doi: 10.1016/j.rse.2021.112831
[16]
QIU B W, HU X, CHEN C C, TANG Z H, YANG P, ZHU X L, YAN C, JIAN Z Y.Maps of cropping patterns in China during 2015-2021. Scientific Data, 2022, 9: 479.

doi: 10.1038/s41597-022-01589-8
[17]
WANG Y H, FAN L, TAO R T, ZHANG L T, ZHAO W. Research on cropping intensity mapping of the Huai River Basin (China) based on multi-source remote sensing data fusion. Environmental Science and Pollution Research, 2022, 29(9): 12661-12679.

doi: 10.1007/s11356-021-15387-z
[18]
YAN H M, LIU F, QIN Y W, NIU Z E, DOUGHTY R, XIAO X M.Tracking the spatio-temporal change of cropping intensity in China during 2000-2015. Environmental Research Letters, 2019, 14(3): 035008.

doi: 10.1088/1748-9326/aaf9c7
[19]
LIU L, XIAO X M, QIN Y W, WANG J, XU X L, HU Y M, QIAO Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 2020, 239: 111624.

doi: 10.1016/j.rse.2019.111624
[20]
LIU X X, ZHENG J P, YU L, HAO P Y, CHEN B, XIN Q C, FU H H, GONG P. Annual dynamic dataset of global cropping intensity from 2001 to 2019. Scientific Data, 2021, 8: 283.

doi: 10.1038/s41597-021-01065-9 pmid: 34711845
[21]
XIE H L, LIU G Y.Spatiotemporal differences and influencing factors of multiple cropping index in China during 1998-2012. Journal of Geographical Sciences, 2015, 25(11): 1283-1297.

doi: 10.1007/s11442-015-1234-3
[22]
李宇, 邱炳文, 何玉花, 陈功, 叶智燕. 基于MODIS数据的2001-2018年中国耕地复种指数反演研究. 地理科学进展, 2020, 39(11): 1874-1883.

doi: 10.18306/dlkxjz.2020.11.008
LI Y, QIU B W, HE Y H, CHEN G, YE Z Y.Cropping intensity based on MODIS data in China during 2001-2018. Progress in Geography, 2020, 39(11): 1874-1883. (in Chinese)
[23]
ESTEL S, KUEMMERLE T, LEVERS C, BAUMANN M, HOSTERT P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environmental Research Letters, 2016, 11(2): 024015.

doi: 10.1088/1748-9326/11/2/024015
[24]
CHEN B. Globally increased crop growth and cropping intensity from the long-term satellite-based observations. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, IV-3: 45-52.

doi: 10.5194/isprs-annals-IV-3-45-2018
[25]
冀正欣, 王秀丽, 李玲, 关小克, 蔚霖, 许月卿. 南阳盆地区耕地利用效率演变及其影响因素. 自然资源学报, 2021, 36(3): 688-701.

doi: 10.31497/zrzyxb.20210312
JI Z X, WANG X L, LI L, GUAN X K, YU L, XU Y Q. The evolution of cultivated land utilization efficiency and its influencing factors in Nanyang Basin. Journal of Natural Resources, 2021, 36(3): 688-701. (in Chinese)

doi: 10.31497/zrzyxb.20210312
[26]
陈述彭. 地学信息图谱刍议. 地理研究, 1998, 17(增刊): 5-8.
CHEN S P. On the map of geo-science information. Geographical Research, 1998, 17(Suppl.): 5-8. (in Chinese)
[27]
杨存建. 地学信息图谱思想与实践探索. 地球信息科学学报, 2020, 22(4): 697-704.

doi: 10.12082/dqxxkx.2020.200173
YANG C J. The idea of geo-information tupu and its practices. Journal of Geo-Information Science, 2020, 22(4): 697-704. (in Chinese)
[28]
唐常春, 李亚平. 多中心城市群土地利用/覆被变化地学信息图谱研究: 以长株潭城市群为例. 地理研究, 2020, 39(11): 2626-2641.

doi: 10.11821/dlyj020200207
TANG C C, LI Y P. Geo-information Tupu process of land use/cover change in polycentric urban agglomeration: A case study of Changsha- Zhuzhou-Xiangtan urban agglomeration. Geographical Research, 2020, 39(11): 2626-2641. (in Chinese)
[29]
张韵, 彭建东, 王晶晶, 杨红. 基于地学信息图谱的江汉平原土地利用时空变化分析. 水土保持研究, 2020, 27(4): 85-92, 2.
ZHANG Y, PENG J D, WANG J J, YANG H. Analysis on spatial and temporal change of land use in Jianghan plain based on geo-information atlas. Research of Soil and Water Conservation, 2020, 27(4): 85-92, 2. (in Chinese)
[30]
刘卫东. 江汉平原土地类型与综合自然区划. 地理学报, 1994, 49(1): 73-83.

doi: 10.11821/xb199401009
LIU W D. Land types and comprehensive physical regionalization in the Jianghan plain. Acta Geographica Sinica, 1994, 49(1): 73-83. (in Chinese)

doi: 10.11821/xb199401009
[1] ZHANG YongLi, ZHANG Ning, XU Jiao, XU DouDou, CHENG Fang, ZHANG ChengLong, WU BiBo, GONG YangCang, HE YunXin, WEI ShangZhi, TU XiaoJu, LIU AiYu, ZHOU ZhongHua. Effects of Different Strip Intercropping Patterns on the Growth and Productivity in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(22): 4444-4458.
[2] . Characteristics of High-Yield Double Rice Varieties in Rice-Rice-Rapeseed Cropping System [J]. Scientia Agricultura Sinica, 2018, 51(1): 37-48.
[3] ZHAO QianXu, SHI Jing, XIA YunSheng, ZHANG NaiMing, NING DongWei, YUE XianRong, YANG HaiHong. Effect of AMF Inoculation on N Uptake of Interspecific Competition Between Maize and Soybean Growing on the Purple Soil [J]. Scientia Agricultura Sinica, 2017, 50(14): 2696-2705.
[4] SUN XinSu, LONG ZhiWei, SONG GuangPeng, CHEN ChangQing. Effects of Climate Change on Cropping Pattern and Yield of Summer Maize-Winter Wheat in Huang-Huai-Hai Plain [J]. Scientia Agricultura Sinica, 2017, 50(13): 2476-2487.
[5] YANG Jun-xiang, WANG He-liang, JIAO Hong-chao, LIN Hai. Stock Capacity in Different Cropping Systems [J]. Scientia Agricultura Sinica, 2016, 49(2): 339-347.
[6] TANG Hua-jun,WU Wen-bin,YANG Peng,ZHOU Qing-bo,CHEN Zhong-xin
. Recent Progresses in Monitoring Crop Spatial Patterns by Using Remote Sensing Technologies
[J]. Scientia Agricultura Sinica, 2010, 43(14): 2879-2888 .
[7] ,. Quantitative Evaluation of Output Efficiency in Different Cropping Patterns [J]. Scientia Agricultura Sinica, 2005, 38(04): 709-713 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!