Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (3): 484-499.doi: 10.3864/j.issn.0578-1752.2024.03.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

A VSURF-CA Based Hyperspectral Disease Index Estimation Model of Wheat Stripe Rust

MEI GuangYuan1,2(), LI Rong2(), MEI Xin2, CHEN RiQiang1, FAN YiGuang1, CHENG JinPeng1, FENG ZiHeng1, TAO Ting1,2, ZHAO Qian1,2, ZHAO PeiQin1,2, YANG XiaoDong1()   

  1. 1 Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing 100097
    2 Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062
  • Received:2023-08-30 Accepted:2023-11-08 Online:2024-02-01 Published:2024-02-05

Abstract:

【Objective】Stripe rust is a serious threat to the growth and yield of wheat. Accurate monitoring and diagnostic assessment are fundamental prerequisites for effective prevention and control of stripe rust. The objective of this study is to construct a wheat stripe rust estimation model using remote sensing technology, enable the rapid and precise estimation of the disease index (DI), and to provide technical support for precise prevention and control.【Method】The hyperspectral data of wheat at different growth stages (heading period, grain-filling period, and maturity period) were acquired through the ASD spectrometer. Initially, the variable selection using random forests (VSURF) method, combined with correlation analysis (CA), was applied to select characteristic bands from the original spectrum (OR) and the first-order differential spectrum (FD). Subsequently, the random forest (RF) algorithm was utilized to compare modeling results of characteristic bands from different datasets, identifying the feature set with the most effective model. Further, models such as partial least squares regression (PLSR), extreme gradient boosting (XGBoost), and back-propagation neural network (BPNN) were employed to compare the modeling effects of different feature sets within various algorithms. This comprehensive analysis aimed to determine the optimal estimation model for wheat stripe rust DI across the entire growth period. Simultaneously, to validate the effectiveness of the feature set across different growth stages, the feature set was used to rebuild models during each of the three distinct growth periods.【Result】The comparative analysis of model effects revealed that the VSURF-CA-FD feature set (537 nm in the green range and 821, 846 nm in the near-infrared range) demonstrated the most effective estimation within the RF model, achieving an R2 value of 0.89 and an RMSE of 12.34. These feature bands also exhibited precision in models constructed with other algorithms, including XGBoost (R2: 0.87, RMSE: 13.15), BPNN (R2: 0.84, RMSE: 15.19), and PLSR (R2: 0.69, RMSE: 20.92). For models constructed during different growth stages, the early growth stage (heading period) exhibited an R2 value of 0.54, RMSE of 1.29, and NRMSE of 0.21, meeting the requirements for disease estimation. In the middle growth stage (grain-filling period), the model performed well with an R2 of 0.66, RMSE of 12.24, and NRMSE of 0.21. In the late growth stage (maturity period), the model’s effectiveness surpassed that of the previous two stages, with an R2 of 0.75, RMSE of 10.77, and NRMSE of 0.15.【Conclusion】Utilizing characteristic bands selected through the VSURF-CA method, an RF model with excellent estimation accuracy for wheat stripe rust DI can be established. The research outcomes will provide valuable insights and methodologies for predicting early and mid-stage stripe rust DI.

Key words: hyperspectral estimation model, wheat stripe rust, disease index (DI), VSURF, feature selection

Fig. 1

Digital orthophoto map (DOM) of UAV"

Fig. 2

Spectral curve graphs of different treatment methods"

Fig. 3

DI distribution of different periods"

Fig. 4

Correlation coefficients between spectral data and wheat stripe rust DI after different treatments (n=187)"

Fig. 5

Variable importance graph"

Fig. 6

Standard deviation curve for variable importance"

Fig. 7

Random forest OOB error curve for interpretation variables"

Fig. 8

Random forest OOB error curve for prediction variables"

Table 1

VSURF for different datasets"

数据集
Dataset
预测变量个数
The number of prediction variables
运行时间
Time (min)
VSURF-OR 9 30.5
VSURF-FD 17 15.3
VSURF-CA-OR 7 13.4
VSURF-CA-FD 6 8.1

Fig. 9

Comparison of predicted and actual values in the RF model across different datasets"

Table 2

Feature bands after removing adjacent bands"

数据集
Dataset
预测变量中的波段
Bands in the predictor
variable (nm)
本研究最终
选择波段
Selected bands in
this study (nm)
VSURF-CA-FD 821、846、845、820、537、849 821、846、537

Fig. 10

Comparison of predicted and actual values for the VSURF-CA-FD dataset across four models a: PLSR; b: RF; c: XGBoost; d: BPNN"

Fig. 11

Scatter plots of the validation set at different growth stages"

[1]
冷伟锋. 小麦条锈病遥感监测及网络信息平台构建[D]. 北京: 中国农业大学, 2015.
LENG W F. Remote sensing monitoring of wheat yellow rust and development of network platform for the disease information[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[2]
陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46(20): 4254-4262. doi: 10.3864/j.issn.0578-1752.2013.20.008.
CHEN W Q, KANG Z S, MA Z H, XU S C, JIN S L, JIANG Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254-4262. doi: 10.3864/j.issn.0578-1752.2013.20.008. (in Chinese)
[3]
万安民, 赵中华, 吴立人. 2002年我国小麦条锈病发生回顾. 植物保护, 2003, 29(2): 5-8.
WAN A M, ZHAO Z H, WU L R. Reviews of occurrence of wheat stripe rust disease in 2002 in China. Plant Protection, 2003, 29(2): 5-8. (in Chinese)
[4]
万安民. 小麦条锈病的发生状况和研究现状. 世界农业, 2000(5): 39-40.
WAN A M. Occurrence and research status of wheat stripe rust. World Agriculture, 2000(5): 39-40. (in Chinese)
[5]
孙瑞琳, 孙全, 孙成明, 刘涛, 李冬双, 吴峰峰. 基于不同平台的小麦病虫害遥感监测研究进展. 中国农机化学报, 2021, 42(3): 142-150.

doi: 10.13733/j.jcam.issn.2095-5553.2021.03.020
SUN R L, SUN Q, SUN C M, LIU T, LI D S, WU F F. Recent advances in remote sensing monitoring on wheat pests and diseases based on different platforms. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 142-150. (in Chinese)
[6]
江静. 基于冠层和区域尺度的小麦条锈病遥感监测[D]. 合肥: 安徽大学, 2020.
JIANG J. Remote sensing monitoring of wheat yellow rust based on canopy and regional scale[D]. Hefei: Anhui University, 2020. (in Chinese)
[7]
郭安廷. 基于成像遥感的小麦条锈病监测方法研究[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021.
GUO A T. Research on the methods of wheat yellow rust monitoring based on imaging remote sensing[D]. Beijing: University of Chinese Academy of Sciences (Aerospace Information Research Institute, Chinese Academy of Sciences), 2021. (in Chinese)
[8]
DUBEY S R, JALAL A S. Apple disease classification using color, texture and shape features from images. Signal, Image and Video Processing, 2016, 10: 819-826.

doi: 10.1007/s11760-015-0821-1
[9]
ABDU A M, MOKJI M M, SHEIKH U U. Deep learning for plant disease identification from disease region images//Intelligent Robotics and Applications:13th International Conference, ICIRA 2020. Kuala Lumpur, Malaysia, 2020: 65-75.
[10]
FERENTINOS K P. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 2018, 145: 311-318.

doi: 10.1016/j.compag.2018.01.009
[11]
孙刚, 黄文江, 陈鹏飞, 高帅, 王秀. 轻小型无人机多光谱遥感技术应用进展. 农业机械学报, 2018, 49(3): 1-17.
SUN G, HUANG W J, CHEN P F, GAO S, WANG X. Advances in UAV-based multispectral remote sensing applications. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 1-17. (in Chinese)
[12]
NEBIKER S, LACK N, ABÄCHERLI M, LÄDERACH S. Light-weight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 41: 963-970.
[13]
XIAO D Q, PAN Y Q, FENG J Z, YIN J J, LIU Y F, HE L. Remote sensing detection algorithm for apple fire blight based on UAV multispectral image. Computers and Electronics in Agriculture, 2022, 199: 107137.

doi: 10.1016/j.compag.2022.107137
[14]
SU J Y, LIU C J, HU X P, XU X M, GUO L, CHEN W H. Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery. Computers and Electronics in Agriculture, 2019, 167: 105035.

doi: 10.1016/j.compag.2019.105035
[15]
张竞成, 袁琳, 王纪华, 罗菊花, 杜世州, 黄文江. 作物病虫害遥感监测研究进展. 农业工程学报, 2012, 28(20): 1-11.
ZHANG J C, YUAN L, WANG J H, LUO J H, DU S Z, HUANG W J. Research progress of crop diseases and pests monitoring based on remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20): 1-11. (in Chinese)
[16]
刘良云, 黄木易, 黄文江, 王纪华, 赵春江, 郑兰芬, 童庆禧. 利用多时相的高光谱航空图像监测冬小麦条锈病. 遥感学报, 2004, 8(3): 275-281.
LIU L Y, HUANG M Y, HUANG W J, WANG J H, ZHAO C J, ZHENG L F, TONG Q X. Monitoring stripe rust disease of winter wheat using multi-temporal hyperspectral airborne data. Journal of Remote Sensing, 2004, 8(3): 275-281. (in Chinese)
[17]
蒋金豹, 陈云浩, 黄文江. 用高光谱微分指数监测冬小麦病害的研究. 光谱学与光谱分析, 2007, 27(12): 2475-2479.
JIANG J B, CHEN Y H, HUANG W J. Using hyperspectral derivative index to monitor winter wheat disease. Spectroscopy and Spectral Analysis, 2007, 27(12): 2475-2479. (in Chinese)
[18]
蔡成静, 王海光, 安虎, 史延春, 黄文江, 马占鸿. 小麦条锈病高光谱遥感监测技术研究. 西北农林科技大学学报(自然科学版), 2005, 33(S1): 31-36.
CAI C J, WANG H G, AN H, SHI Y C, HUANG W J, MA Z H. Remote sensing research on monitoring technology of wheat stripe rust. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(S1): 31-36. (in Chinese)
[19]
蒋金豹, 陈云浩, 黄文江, 李京. 冬小麦条锈病严重度高光谱遥感反演模型研究. 南京农业大学学报, 2007, 30(3): 63-67.
JIANG J B, CHEN Y H, HUANG W J, LI J. Study on hyperspectral remote sensing retriveral models about winter wheat stripe rust severity. Journal of Nanjing Agricultural University, 2007, 30(3): 63-67. (in Chinese)
[20]
刘佳, 王利民, 杨福刚, 杨玲波. 基于高光谱微分指数监测春玉米大斑病的研究. 中国农学通报, 2019, 35(6): 143-150.

doi: 10.11924/j.issn.1000-6850.casb18090024
LIU J, WANG L M, YANG F G, YANG L B. Spring corn leaf blight monitoring based on hyperspectral derivative index. Chinese Agricultural Science Bulletin, 2019, 35(6): 143-150. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb18090024
[21]
REN Y, HUANG W J, YE H C, ZHOU X F, MA H Q, DONG Y Y, SHI Y, GENG Y, HUANG Y R, JIAO Q J, XIE Q Y. Quantitative identification of yellow rust in winter wheat with a new spectral index: Development and validation using simulated and experimental data. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102384.

doi: 10.1016/j.jag.2021.102384
[22]
HUANG W J, LAMB D W, NIU Z, ZHANG Y J, LIU L Y, WANG J H. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 2007, 8: 187-197.

doi: 10.1007/s11119-007-9038-9
[23]
CAO C L, WANG T L, GAO M F, LI Y, LI D D, ZHANG H J. Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms. Computers and Electronics in Agriculture, 2021, 190: 106461.

doi: 10.1016/j.compag.2021.106461
[24]
ZHANG J C, LIN Y, WANG J H, HUANG W J, CHEN L P, ZHANG D Y. Spectroscopic leaf level detection of powdery mildew for winter wheat using continuous wavelet analysis. Journal of Integrative Agriculture, 2012, 11(9): 1474-1484.

doi: 10.1016/S2095-3119(12)60147-6
[25]
ZHANG J, JING X, SONG X Y, ZHANG T, DUAN W N, SU J. Hyperspectral estimation of wheat stripe rust using fractional order differential equations and Gaussian process methods. Computers and Electronics in Agriculture, 2023, 206: 107671.

doi: 10.1016/j.compag.2023.107671
[26]
TIAN L, XUE B W, WANG Z Y, LI D, YAO X, CAO Q, ZHU Y, CAO W X, CHENG T. Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection. Remote Sensing of Environment, 2021, 257: 112350.

doi: 10.1016/j.rse.2021.112350
[27]
ZHANG J C, WANG N, YUAN L, CHEN F N, WU K H. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements. Biosystems Engineering, 2017, 162: 20-29.

doi: 10.1016/j.biosystemseng.2017.07.003
[28]
高媛, 竞霞, 刘良云, 白宗璠. 基于多核支持向量机的小麦条锈病遥感监测研究. 麦类作物学报, 2020, 40(1): 118-126.
GAO Y, JING X, LIU L Y, BAI Z F. Remote sensing monitoring of wheat stripe rust based on multiple kernel SVM. Journal of Triticeae Crops, 2020, 40(1): 118-126. (in Chinese)
[29]
MUSTAFA G, ZHENG H, LI W, YIN Y, WANG Y, ZHOU M, LIU P, BILAL M, JIA H, LI G, et al. Fusarium head blight monitoring in wheat ears using machine learning and multimodal data from asymptomatic to symptomatic periods. Frontiers in Plant Science, 2023, 13: 1102341.

doi: 10.3389/fpls.2022.1102341
[30]
HUANG L S, LIU Y, HUANG W J, DONG Y Y, MA H Q, WU K, GUO A T. Combining random forest and XGBoost methods in detecting early and mid-term winter wheat stripe rust using canopy level hyperspectral measurements. Agriculture, 2022, 12(1): 74.

doi: 10.3390/agriculture12010074
[31]
黄木易, 王纪华, 黄文江, 黄义德, 赵春江, 万安民. 冬小麦条锈病的光谱特征及遥感监测. 农业工程学报, 2003, 19(6): 154-158.
HUANG M Y, WANG J H, HUANG W J, HUANG Y D, ZHAO C J, WAN A M. Hyperspectral character of stripe rust on winter wheat and monitoring by remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(6): 154-158. (in Chinese)
[32]
ZHENG H B, CHENG T, ZHOU M, LI D, YAO X, TIAN Y C, CAO W X, ZHU Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precision Agriculture, 2019, 20: 611-629.

doi: 10.1007/s11119-018-9600-7
[33]
SPEISER J L, MILLER M E, TOOZE J, IP E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 2019, 134: 93-101.

doi: 10.1016/j.eswa.2019.05.028 pmid: 32968335
[34]
GENUER R, POGGI J M, TULEAU-MALOT C. Variable selection using random forests. Pattern Recognition Letters, 2010, 31(14): 2225-2236.

doi: 10.1016/j.patrec.2010.03.014
[35]
HUANG W L, MIN W K, DING J Q, LIU Y C, HU Y, NI W J, SHEN H F. Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern China. Forest Ecosystems, 2022, 9: 100006.

doi: 10.1016/j.fecs.2022.100006
[36]
EZENARRO J, SCHORN-GARCÍA D, ACEÑA L, MESTRES M, BUSTO O, BOQUÉ R. J-Score: A new joint parameter for PLSR model performance evaluation of spectroscopic data. Chemometrics and Intelligent Laboratory Systems, 2023: 104883.
[37]
SMIGAJ M, GAULTON R, SUÁREZ J C, BARR S L. Canopy temperature from an unmanned aerial vehicle as an indicator of tree stress associated with red band needle blight severity. Forest Ecology and Management, 2019, 433: 699-708.

doi: 10.1016/j.foreco.2018.11.032
[38]
DOS SANTOS F R, DE OLIVEIRA J F, BONA E, DOS SANTOS J V F, BARBOZA G M, MELQUIADES F L. EDXRF spectral data combined with PLSR to determine some soil fertility indicators. Microchemical Journal, 2020, 152: 104275.

doi: 10.1016/j.microc.2019.104275
[39]
YUAN L, HUANG Y B, LORAAMM R W, NIE C W, WANG J H, ZHANG J C. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Research, 2014, 156: 199-207.

doi: 10.1016/j.fcr.2013.11.012
[40]
GUO A T, HUANG W J, DONG Y Y, YE H C, MA H Q, LIU B, WU W B, REN Y, RUAN C, GENG Y. Wheat yellow rust detection using UAV-based hyperspectral technology. Remote Sensing, 2021, 13(1): 123.

doi: 10.3390/rs13010123
[41]
AZADBAKHT M, ASHOURLOO D, AGHIGHI H, RADIOM S, ALIMOHAMMADI A. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques. Computers and Electronics in Agriculture, 2019, 156: 119-128.

doi: 10.1016/j.compag.2018.11.016
[42]
RUAN C, DONG Y Y, HUANG W J, HUANG L S, YE H C, MA H Q, GUO A T, SUN R Q. Integrating remote sensing and meteorological data to predict wheat stripe rust. Remote Sensing, 2022, 14(5): 1221.

doi: 10.3390/rs14051221
[43]
JING X, ZOU Q, YAN J M, DONG Y Y, LI B Y. Remote sensing monitoring of winter wheat stripe rust based on mRMR-XGBoost algorithm. Remote Sensing, 2022, 14(3): 756.

doi: 10.3390/rs14030756
[44]
SHAFI U, MUMTAZ R, HAQ I U, HAFEEZ M, IQBAL N, SHAUKAT A, ZAIDI S M H, MAHMOOD Z. Wheat yellow rust disease infection type classification using texture features. Sensors, 2021, 22(1): 146.

doi: 10.3390/s22010146
[45]
YAO Z F, LEI Y, HE D J. Early visual detection of wheat stripe rust using visible/near-infrared hyperspectral imaging. Sensors, 2019, 19(4): 952.

doi: 10.3390/s19040952
[46]
RUAN C, DONG Y Y, HUANG W J, HUANG L S, YE H C, MA H Q, GUO A T, REN Y. Prediction of wheat stripe rust occurrence with time series sentinel-2 images. Agriculture, 2021, 11(11): 1079.

doi: 10.3390/agriculture11111079
[47]
JU C X, CHEN C, LI R, ZHAO Y Y, ZHONG X C, SUN R L, LIU T, SUN C M. Remote sensing monitoring of wheat leaf rust based on UAV multispectral imagery and the BPNN method. Food and Energy Security, 2023: e477.
[48]
FUSHIKI T. Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 2011, 21: 137-146.
[49]
竞霞, 白宗璠, 高媛, 刘良云. 利用随机森林法协同SIF和反射率光谱监测小麦条锈病. 农业工程学报, 2019, 35(13): 154-161.
JING X, BAI Z F, GAO Y, LIU L Y. Wheat stripe rust monitoring by random forest algorithm combined with SIF and reflectance spectrum. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 154-161. (in Chinese)
[50]
PALLATHADKA H, RAVIPATI P, SAJJA G S, PHASINAM K, KASSANUK T, SANCHEZ D T, PRABHU P. Application of machine learning techniques in rice leaf disease detection. Materials Today: Proceedings, 2022, 51: 2277-2280.
[51]
JACKULIN C, MURUGAVALLI S. A comprehensive review on detection of plant disease using machine learning and deep learning approaches. Measurement: Sensors, 2022, 24: 100441.

doi: 10.1016/j.measen.2022.100441
[52]
SARKAR C, GUPTA D, GUPTA U, HAZARIKA B B. Leaf disease detection using machine learning and deep learning: Review and challenges. Applied Soft Computing, 2023, 145: 110534.

doi: 10.1016/j.asoc.2023.110534
[53]
竞霞, 张腾, 邹琴, 闫菊梅, 董莹莹. 基于分数阶微分光谱指数的小麦条锈病遥感监测模型构建. 农业工程学报, 2021, 37(17): 142-151.
JING X, ZHANG T, ZOU Q, YAN J M, DONG Y Y. Construction of remote sensing monitoring model of wheat stripe rust based on fractional-order differential spectral index. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 142-151. (in Chinese)
[54]
蒋金豹, 陈云浩, 黄文江. 利用高光谱红边与黄边位置距离识别小麦条锈病. 光谱学与光谱分析, 2010, 30(6): 1614-1618.
JIANG J B, CHEN Y H, HUANG W J. Using the distance between hyperspectral red edge position and yellow edge position to identify wheat yellow rust disease. Spectroscopy and Spectral Analysis, 2010, 30(6): 1614-1618. (in Chinese)
[55]
竞霞, 闫菊梅, 邹琴, 李冰玉, 杜凯奇. 基于CC-MPA特征优选算法的小麦条锈病遥感监测. 农业机械学报, 2022, 53(9): 217-225, 304.
JING X, YAN J M, ZOU Q, LI B Y, DU K Q. Remote sensing monitoring of wheat stripe rust based on CC-MPA feature optimization algorithm. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 217-225, 304. (in Chinese)
[56]
BREIMAN L. Random forests. Machine Learning, 2001, 45: 5-32.

doi: 10.1023/A:1010933404324
[57]
张春兰, 杨贵军, 李贺丽, 汤伏全, 刘畅, 张丽妍. 基于随机森林算法的冬小麦叶面积指数遥感反演研究. 中国农业科学, 2018, 51(5): 855-867. doi: 10.3864/j.issn.0578-1752.2018.05.005.
ZHANG C L, YANG G J, LI H L, TANG F Q, LIU C, ZHANG L Y. Remote sensing inversion of leaf area index of winter wheat based on random forest algorithm. Scientia Agricultura Sinica, 2018, 51(5): 855-867. doi: 10.3864/j.issn.0578-1752.2018.05.005. (in Chinese)
[58]
王丽爱, 周旭东, 朱新开, 郭文善. 基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演. 农业工程学报, 2016, 32(3): 149-154.
WANG L A, ZHOU X D, ZHU X K, GUO W S. Inverting wheat leaf area index based on HJ-CCD remote sensing data and random forest algorithm. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 149-154. (in Chinese)
[59]
樊意广, 冯海宽, 刘杨, 边明博, 孟炀, 杨贵军. 基于冠层光谱特征和株高的马铃薯植株氮含量估算. 农业机械学报, 2022, 53(6): 202-208, 294.
FAN Y G, FENG H K, LIU Y, BIAN M B, MENG Y, YANG G J. Estimation of potato plant nitrogen content based on canopy spectral characteristics and plant height. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 202-208, 294. (in Chinese)
[60]
夏天, 吴文斌, 周清波, 周勇. 冬小麦叶面积指数高光谱遥感反演方法对比. 农业工程学报, 2013, 29(3): 139-147.
XIA T, WU W B, ZHOU Q B, ZHOU Y. Comparison of two inversion methods for winter wheat leaf area index based on hyperspectral remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 139-147. (in Chinese)
[61]
王圆圆, 李贵才, 张立军, 范锦龙. 利用偏最小二乘回归从冬小麦冠层光谱提取叶片含水量. 光谱学与光谱分析, 2010, 30(4): 1070-1074.
WANG Y Y, LI G C, ZHANG L J, FAN J L. Retrieva of leaf water content of winter wheat from canopy hyperspectral data using partial least square regression. Spectroscopy and Spectral Analysis, 2010, 30(4): 1070-1074. (in Chinese)
[62]
蒋小敏. 小麦条锈病严重度近地面遥感估算方法研究[D]. 淮南: 安徽理工大学, 2021.
JIANG X M. Study on the estimation method of the severity of wheat stripe rust by near-ground remote sensing[D]. Huainan: Anhui University of Science and Technology, 2021. (in Chinese)
[63]
冯子恒, 宋莉, 张少华, 井宇航, 段剑钊, 贺利, 尹飞, 冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测. 中国农业科学, 2022, 55(5): 890-906. doi: 10.3864/j.issn.0578-1752.2022.05.005.
FENG Z H, SONG L, ZHANG S H, JING Y H, DUAN J Z, HE L, YIN F, FENG W. Wheat powdery mildew monitoring based on information fusion of multi-spectral and thermal infrared images acquired with an unmanned aerial vehicle. Scientia Agricultura Sinica, 2022, 55(5): 890-906. doi: 10.3864/j.issn.0578-1752.2022.05.005. (in Chinese)
[1] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[2] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[3] GAO XinPei, ZHAO Jun, LIU BoFan, GUO Yi, KANG ZhenSheng, ZHAN GangMing. Population Genetic Analysis of Puccinia striiformis tritici in Main Winter-Increasing Areas Based on Virulent Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2023, 56(14): 2629-2642.
[4] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[5] ZHAO Jing,LI ZhiMing,LU LiQun,JIA Peng,YANG HuanBo,LAN YuBin. Weed Identification in Maize Field Based on Multi-Spectral Remote Sensing of Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555.
[6] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[7] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[8] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[9] ZHOU Xin-li, ZHAN Gang-ming, HUANG Li-li, HAN De-jun, KANG Zhen-sheng. Evaluation of Resistance to Stripe Rust in Eighty Abroad Spring Wheat Germplasms [J]. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526.
[10] WANG Tu-hong, GUO Qing-yun, LIN Rui-ming, YAO Qiang, FENG Jing, WANG Feng-tao, CHEN Wan-quan, XU Shi-chang. Postulation of Stripe Rust Resistance Genes in Chinese 40 Wheat Landraces and 40 Commercial Cultivars in the Southern Region of Gansu Province [J]. Scientia Agricultura Sinica, 2015, 48(19): 3834-3847.
[11] HAN De-Jun, ZHANG Pei-Yu, WANG Qi-Lin, ZENG Qing-Dong, WU Jian-Hui, ZHOU Xin-Li, WANG Xiao-Jie, HUANG Li-Li, KANG Zhen-Sheng. Identification and Evaluation of Resistance to Stripe Rust in 1980 Wheat Landraces and Abroad Germplasm [J]. Scientia Agricultura Sinica, 2012, 45(24): 5013-5023.
[12] HAN Guo-Fei, WANG Hai-Guang, MA Zhan-Hong. Effects of Elevated CO2 and Enhanced UV-B on Epidemic Components of Wheat Stripe Rust [J]. Scientia Agricultura Sinica, 2011, 44(20): 4326-4332.
[13] ZHU Hua-zhong,WANG Zhong-wei,WU Ling,Ravi P. SINGH,J. HUERTA-ESPINO,HE Zhong-hu, HU Jia,CHEN Fang,XIA Xian-chun
. QTL Mapping for Adult-Plant Resistance to Stripe Rust in Wheat Cultivar Chuanmai 107
[J]. Scientia Agricultura Sinica, 2010, 43(4): 706-712 .
[14] . SSR Molecular Tapping of Stripe Rust Resistance Gene YrVir1 in Chinese Wheat Differential Host Virgilio [J]. Scientia Agricultura Sinica, 2008, 41(4): 1023-1029 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!