Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3685-3694.doi: 10.3864/j.issn.0578-1752.2019.20.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Evaluation of Apparent Metabolic Energy, Nitrogen Corrected Metabolic Energy, Biological Value of Protein and Ileal Digestibility of Amino Acid of Yeast Hydrolysate for Broilers

Wei ZHANG1,JinJun DAI2,3,XueHai YANG1,JinTao WEI1,MingXin CHEN1,JunPeng HU2,3(),ShaoWen HUANG1   

  1. 1 Animal Husbandry and Veterinary Research Institute, Hubei Academy of Agricultural Sciences/Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture)/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064
    2 Angel Yeast Co., Ltd, Yichang 443000, Hubei
    3 Angel Yeast (Chongzuo) Co., Ltd., Chongzuo 532200, Guangxi
  • Received:2019-03-01 Accepted:2019-04-28 Online:2019-10-16 Published:2019-10-28
  • Contact: JunPeng HU E-mail:hujp@angelyeast.com

Abstract:

【Objective】 The purpose of this study was to evaluate the apparent metabolic energy, nitrogen-corrected apparent metabolic energy, ileal apparent amino acid digestibility, standard ileal amino acid digestibility and total intestinal apparent amino acid digestibility of yeast hydrolysate in broilers, so as to provide the reference for the wide application of yeast hydrolysate in broiler diets. 【Method】 A total of 160 Cobb white-feathered broilers at 18 days old with no difference in body weight were randomly divided into the control group and experimental group. There were 8 replicates in each group, and 10 chickens with half male and half female were in each replicate. The control group was fed a nitrogen-free diet consisting of corn starch, glucose, fiber and soybean oil, and the experimental group was fed a semi-homozygous diet using yeast hydrolysate as the sole crude protein source. Furthermore, the control group and the experimental group were fed with 0.5% titanium dioxide, respectively, as an exogenous indicator. During the whole experiment, free feeding was available for broilers, feces were collected on 22-24 days using total fecal collection method, and the feed intake of broilers was counted. Further, the apparent metabolic energy of yeast hydrolysate and nitrogen-corrected apparent metabolic energy were calculated by measuring the total energy and nitrogen content in both diets and feces of broilers. After26 days of experiment, the latter half of ileum was dissected under anesthesia, the chime was taken out, and the contents of amino acids and titanium dioxide in both diet and ileal chyme were measured to calculate the apparent amino acid digestibility, standard ileal amino acid digestibility and total intestinal apparent amino acid digestibility of yeast hydrolysate. 【Result】 (1) The total energy value of yeast hydrolysate was 18.19 MJ·kg -1, the apparent metabolic energy value was 11.22 MJ·kg -1, and the nitrogen-corrected apparent metabolic energy was 10.17 MJ·kg -1. Effective energy was equivalent to that of common soybean meal. (2) Crude protein content of yeast hydrolysate was 41.7%, and total amino acid was 36.97%. The ratio of essential amino acid to dispensable amino acid was 44:56, which was close to that of common soybean meal. The limiting amino acids of yeast hydrolysate were Met, Met+Cys, Arg, Leu, Ile, Phe+Tyr, Val, His, lys, Thr and Trp, which were different from soybean meal. (3) The ileal apparent amino acid digestibility, standard ileal amino acid digestibility and total intestinal apparent amino acid digestibility of yeast hydrolysate were all higher than 70%. The available limiting amino acids were Met, Met+Cys, Arg, Leu, Ile, Thr, Phe+Tyr, His, Lys, Val, and Trp. Methionine and arginine were the first and the second limiting amino acids, and leucine and isoleucine were the third and the fourth limiting amino acids, respectively. Threonine was poorly available, and was regarded as the fifth restrictive available amino acid. In addition, the limiting amino acids of yeast hydrolysate were quite different to soybean meal. 【Conclusion】 Yeast hydrolysate was a kind of protein feed material. Its protein content and effective energy value were similar to soybean meal, but its amino acid composition and availability were quite different to soybean meal. Therefore, in the application of yeast hydrolysate in broiler diet, it was necessary to consider the need of supplementing different amino acids or mixing different protein feeds to balance amino acids.

Key words: hydrolyzed yeast, broiler, metabolizable energy, amino acid digestibility

Table 1

The nutrient levels and amino acid composition of yeast hydrolysate (air-dry basis, %)"

项目 Items 含量 Contents 项目 Items 含量 Contents
干物质DM 94.55 异亮氨酸 Ile 1.69
总能GE/(MJ/kg) 18.19 亮氨酸Lue 2.44
粗蛋白质CP 41.27 色氨酸Trp 0.76
粗脂肪EE 1.35 苏氨酸Thr 2.07
粗灰分Ash 9.00 精氨酸Arg 1.82
钙Ca 0.09 组氨酸 His 0.80
酸溶蛋白Mesonin 33.67 苯丙氨酸Phe 1.59
小肽Peptide 23.83 非必需氨基酸 Dispensable AA 20.73
核酸Nucleic acid 10.56 天门冬氨酸 Asp 3.72
葡聚糖Glucose 15.20 谷氨酸Glu 6.66
甘露寡糖Mannan oligosaccharide 13.95 丝氨酸Ser 1.66
总氨基酸TAA 36.97 甘氨酸Gly 2.03
必需氨基酸 Essential AA 16.24 丙氨酸Ala 3.49
赖氨酸 Lys 2.53 酪氨酸 Tyr 1.36
蛋氨酸 Met 0.50 胱氨酸Cys 0.51
缬氨酸 Val 2.04 脯氨酸 Pro 1.30

Table 2

The composition and nutrient levels of nitrogen-free diets (air-dry basis, %)"

原料Ingredients 含量Contents 原料Ingredients 含量Contents
玉米淀粉 Corn starch 20.07 石粉(轻质)CaCO3 1.30
葡萄糖 Glucose 64.00 碳酸钾 K2CO3 0.26
纤维Fibre 5.00 二氧化钛 TiO2 0.50
大豆油 Soybean oil 5.00 抗氧化剂 Antioxidant 0.01
鸡用多维 Multi-vitamin 0.02 合计Total 100.00
鸡用微量 Mineral Premix 0.20
磷酸二氢钙Ca(H2PO4)2 1.90 营养水平Nutrient levels
碳酸氢钠 NaHCO3 0.75 总能GE (MJ /kg) 14.94
氯化钾 KCl 0.29 粗蛋白质 CP (%) 0.20
氧化镁MgO 0.20 钙 Ca (%) 0.84
氯化胆碱(50%) Choline chloride 0.50 有效磷 AP (%) 0.44

Table 3

The composition and nutrient levels of semi-homozygous diets (air-dry basis, %)"

项目Items 含量Contents 项目Items 含量Contents
原料Ingredients 赖氨酸 Lys 1.17
酵母水解物Composite yeast 40.00 蛋氨酸 Met 0.00
葡萄糖 Glucose 56.29 缬氨酸 Val 1.55
磷酸氢钙CaHPO4 0.40 异亮氨酸 Ile 0.96
石粉 CaCO3 2.00 亮氨酸Lue 0.90
食盐NaCl 0.30 色氨酸Trp 0.70
氯化胆碱 (50%) Choline chloride 0.26 苏氨酸Thr 0.63
复合多维Multi-vitamin 0.02 精氨酸Arg 1.74
复合预混料Multi- Premix 0.20 组氨酸 His 0.00
二氧化钛TiO2 0.50 苯丙氨酸Phe 1.00
抗氧化剂Antioxidant 0.03 非必需氨基酸 Dispensable AA 8.89
合计Total 100.00 天门冬氨酸 Asp 1.64
营养水平Nutrient levels 谷氨酸Glu 3.14
总能 GE /(MJ /kg) 16.07 丝氨酸Ser 0.92
粗蛋白质 CP/% 17.57 甘氨酸Gly 0.66
钙 Ca/% 0.88 丙氨酸Ala 1.77
有效磷AP/% 0.46 酪氨酸 Tyr 0.76
总氨基酸TAA 17.54 胱氨酸Cys 0.00
必需氨基酸 Essential AA 8.65 脯氨酸 Pro 0.00

Table 4

The feeding and excretion of nitrogen-free and semi-homozygous diets for broilers (air-dry basis,%)"

项目Items 无氮日粮N-free diet 半纯合日粮Semi-purified diet
总能 Feed GE (MJ·kg-1) 14.94±0.17 16.07±0.02
试验饲粮中粗蛋白质 CP (%) 0.20±0.00 17.57±0.06
日均采食量 ADFI (g·d -1) 46.70±1.10 50.50±1.78
粪能 Fecal energy (MJ·d -1) 14.66±0.14 15.35±0.14
粪中蛋白质Fecal CP (%) 16.87±0.45 39.75±0.06
日均排粪总量Fecal output (g·d -1) 10.25±1.67 14.50±1.44

Table 5

The apparent metabolizable energy and apparent metabolic rate of nitrogen of yeast hydrolysate (air-dry basis, %)"

项目Items 酵母水解物Yeast
表观代谢能AME (MJ·kg-1) 11.22±0.33
氮校正表观代谢能AMEn (MJ·kg-1) 10.17±0.35
氮表观代谢率 (%) 35.05±1.56

Table 6

The digestibility of AA of yeast hydrolysate (air-dry basis, %)"

项目
Items
回肠表观氨基酸消化率
AIDAA
标准回肠氨基酸消化率
SIDAA
全肠道表观氨基酸消化率
TEDAA
天冬氨酸Asp 73.15±1.37 76.38±1.36 77.53±0.55
苏氨酸Thr 60.66±0.50 64.33±0.46 61.45±1.11
丝氨酸Ser 69.83±1.15 77.31±1.14 72.44±1.07
谷氨酸Glu 78.75±0.96 82.16±1.11 78.34±0.81
脯氨酸Pro 77.55±0.56 81.84±0.96 75.07±0.67
甘氨酸Gly 74.44±0.93 77.68±0.93 69.78±1.04
丙氨酸Ala 74.05±0.80 79.87±0.91 76.90±0.94
胱氨酸Cys 75.47±0.88 80.36±0.80 76.56±1.23
缬氨酸Val 87.48±0.83 92.41±0.90 78.17±0.62
蛋氨酸Met 81.87±1.03 87.48±0.83 80.90±0.55
异亮氨酸Ile 66.59±1.10 70.76±1.06 65.55±0.63
亮氨酸Lue 69.50±1.06 72.28±1.06 70.67±0.59
酪氨酸Tyr 66.41±1.14 72.85±0.98 70.75±1.14
苯丙氨酸Phe 76.65±0.78 81.23±1.08 81.08±0.40
组氨酸His 76.01±0.55 80.06±0.74 74.40±1.23
赖氨酸Lys 79.34±0.41 83.73±0.41 77.55±0.67
精氨酸Arg 79.58±0.68 84.28±0.66 81.25±0.98
色氨酸Trp 73.56±1.12 79.75±1.84 80.75±2.03
平均值 Means 73.75 81.60 76.18
[1] 白晓婷 . 酵母类产品在饲料中的研究与应用. 中国饲料, 2005(2):8-10.
BAI X T . Research and application of yeast products in feed. Chinese Feed, 2005(2):8-10. (in Chinese)
[2] 杨凡, 易建华, 聂琴, 胡俊鹏 . 酵母水解物在水产饲料中的应用. 中国饲料, 2016(16):41-43.
YANG F, YI J H, NIE Q, HU J P . Application of yeast hydrolysate in aquatic feed. Chinese Feed, 2016(16):41-43. (in Chinese)
[3] 贺淼, 黄鑫, 陈中平, 李彪 . 酵母水解物的消化吸收及营养作用. 中国饲料, 2014(9):38-41.
HE M, HUANG X, CHEN Z P, LI B . The digestion and absorption of yeast hydrolysate. Chinese Feed, 2014(9):38-41. (in Chinese)
[4] YUAN X Y, LIU W B, LIANG C, SUN C X, XUE Y F, WAN Z D, JIANG G Z . Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian). Fish & Shellfish Immunology, 2017,67:312-321.
[5] 何远法, 郁欢欢, 迟淑艳, 杨奇慧, 刘泓宇, 章双, 王嘉, 谭北平, 董晓慧 . 酵母培养物对凡纳滨对虾生长性能、非特异性免疫力和抗病力的影响. 动物营养学报, 2016,28(12):4063-4072.
HE Y F, YU H H, CHI S Y, YANG Q H, LIU H Y, ZHANG S, WANG J, TAN B P, DONG X H, JIN M, XIONG J, ZHOU Q C, YUAN Y, WANG X X, SUN P . Effects of yeast culture on growth performance, nonspecific immunity and disease resistance of Penaeus vannamei. Journal of Animal Nutrition, 2016,28(12):4063-4072. (in Chinese)
[6] JIN M, XIONG J, ZHOU Q C, YUAN Y, WANG X X, SUN P . Dietary yeast hydrolysate and brewer's yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei). Fish & Shellfish Immunology, 2018,82:121-129.
[7] JANG Y D, KANG K W, PIAO L G, JEONG T S, AUCLAIR E, JONVEL S, D’INCA R, KIM Y Y . Effects of live yeast supplementation to gestation and lactation diets on reproductive performance, immunological parameters and milk composition in sows. Livestock Science, 2013,152(2-3):167-173.
[8] HASAN S, JUNNIKKALA S, PELTONIEMI O, PAULIN L, LYYSKI A, VUORENMAA J, OLIVIERO C . Dietary supplementation with yeast hydrolysate in pregnancy influences colostrum yield and gut microbiota of sows and piglets after birth. PLoS One, 2018,13(5):e0197586.
[9] 尹敬博, 郜陆敏, 万丹, 李彪, 赵艳平, 舒绪刚, 黄运茂, 吴信 . 酵母水解物在母猪生产中的应用. 中国饲料, 2018(23):87-91.
YIN J B, GAO L M, WANG D, LI B, ZHAO Y P, SHU X G, HUANG Y M, WU X . Application of yeast hydrolysate in sow production. Chinese Feed, 2018(23):87-91. (in Chinese)
[10] 郭小云, 吴信, 谢春艳, 李彪, 周慧琦, 姚娟, 印遇龙 . 酵母水解物对早期断奶仔猪生长性能、血清生理生化指标和激素水平以及肠道黏膜形态的影响. 饲料工业, 2015,36(8):61-64.
GUO X Y, WU X, XIE C Y, LI B, ZHOU H Q, YAO J, YING Y L . Effects of yeast hydrolysate on growth performance, serum physiological and biochemical indices, hormone levels and intestinal mucosa morphology of early weaned piglets. Feed Industry, 2015,36(8):61-64. (in Chinese)
[11] 伏润奇, 陈代文, 郑萍, 何军, 毛湘冰, 虞洁, 罗玉衡, 罗钧秋, 黄志清, 余冰 . 酵母水解物对断奶仔猪生长性能、血清免疫和抗氧化能力及粪便菌群的影响. 动物营养学报, 2019,31(1):351-359.
FU R Q, CHEN D W, ZHENG P, HE J, MAO X B, YU J, LUO Y H, LUO J Q, HUAGN Z Q, YU B . Effects of yeast hydrolysate on growth performance, serum immunity and antioxidant capacity and fecal flora of Weaned Piglets. Journal of Animal Nutrition, 2019,31(1):351-359. (in Chinese)
[12] 徐晓明, 余冰, 贺淼, 黄鑫 . 酵母水解物对肉鸡生长性能、肠道、发育免疫及屠宰性能的影响. 饲料研究, 2014(5):33-35.
XU X M, YU B, HE M, HUANG X . Effects of yeast hydrolysate on growth performance, intestinal tract, developmental immunity and slaughter performance of Broilers. Feed Research, 2014(5):33-35. (in Chinese)
[13] 贺淼, 黄鑫, 戴晋军, 李彪, 胡骏鹏 . 两种不同类型酵母水解物对肉鸡生长性能、肠黏膜形态的影响. 饲料工业, 2015,36(16):60-63.
HE M, HUAGN X, DAI J J, LI B, HU J P . Effects of two different types of yeast hydrolysates on growth performance and intestinal mucosal morphology of broilers. Feed Industry, 2015,36(16):60-63. (in Chinese)
[14] MUTHUSAMY N, HALDAR S, GHOSH T K, BEDFORD M R . Effects of hydrolysed Saccharomyces cerevisiae yeast and yeast cell wall components on live performance, intestinal histo-morphology and humoral immune response of broilers. British Poultry Science, 2011,52(6):694-703.
[15] MORALES-LÓPEZ R, AUCLAIR E, VAN IMMERSEEL F, DUCATELLE R, GARCÍA F, BRUFAU J . Effects of different yeast cell wall supplements added to maize- or wheat-based diets for broiler chickens. British Poultry Science, 2010,51(3):399-408.
[16] MUKHOPADHYA A, O'DOHERTY J V, SWEENEY T . A combination of yeast beta-glucan and milk hydrolysate is a suitable alternative to zinc oxide in the race to alleviate post-weaning diarrhoea in piglets. Scientific Reports, 2019,9(1):616-671.
[17] LIU Y, ESPINOSA C D, ABELILLA J J, CASSAS G A, VANESSA LAGOS L, LEE S A, KWON W B, MATHAI J K, NAVARRO D M D L, JAWORSKI N W, STEIN H H . Non-antibiotic feed additives in diets for pigs: a review. Animal Nutrition, 2018,4(2):113-125.
[18] Ghosh T K, Haldar S, Bedford M R, Muthusami N, Samanta I . Assessment of yeast cell wall as replacements for antibiotic growth promoters in broiler diets: effects on performance, intestinal histo- morphology and humoral immune responses. Journal of Animal Physiology and Animal Nutrition (Berl), 2012,96(2):275-284.
[19] Ganner A, Schatzmayr G . Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. Applied Microbiology and Biotechnology, 2012,95(2):289-297.
[20] 贺淼 . 复合酵母的营养价值评定[D]. 雅安:四川农业大学, 2013.
HE M . Nutritional value assessment of compound yeast[D]. Yaan: Sichuan Agricultural University, 2013. ( in Chinese)
[21] 应琳琳, 张杨, 陈中平, 李彪 . 酵母水解物替代血浆蛋白粉对断奶仔猪生产性能的影响. 中国饲料, 2014(13):18-19.
YING L L, ZHAGN Y, CHEN Z P, LI B . Effect of yeast hydrolysate instead of plasma protein powder on performance of weaned piglets. Chinese Feed, 2014(13):18-19. (in Chinese)
[22] 文超越, 李勇, 邢伟刚, 李彪, 刘佳, 马向东, 张宇喆, 李凤娜 . 酵母水解物与复合酶制剂或微生态制剂组合替代血浆蛋白粉对保育猪生长性能和血清生化指标的影响. 动物营养学报, 2016,28(12):3988-3995.
WEN C Y, LI Y, XING W G, LI B, LIU J, MA X D, ZHANG Y J, LI F N . Effects of combination of yeast hydrolysate and complex enzyme preparation or microecological preparation on growth performance and serum biochemical indices of conservation pigs. Journal of Animal Nutrition, 2016,28(12):3988-3995. (in Chinese)
[23] 迟淑艳, 聂琴, 黄吴文, 揭雨, 谭北平, 杨凡, 胡骏鹏, 董晓慧, 杨奇慧, 刘泓宇, 章双 . 凡纳滨对虾饲料中酵母水解物替代鱼粉适宜比例的研究. 水生生物学报, 2016,40(4):728-735.
doi: 10.7541/2016.96
CHI S Y, NIE Q, HUANG W W, JIE Y, TAN B P, YANG F, HU J P, DONG X H, YANG Q H, LIU H Y, ZHANG S . Study on the optimum ratio of yeast hydrolysate replacing fish meal in feed of Litopenaeus vannamei. Acta Hydrobiologica Sinica, 2016,40(4):728-735. (in Chinese)
doi: 10.7541/2016.96
[24] 王武刚 . 酵母提取物替代鱼粉在凡纳滨对虾饲料中的应用研究[D]. 上海:上海海洋大学, 2012.
WANG W G . Application of yeast extract instead of fish meal in feed of Penaeus vannamei[D]. SHAGN HAI: Shanghai Ocean University, 2012. ( in Chinese)
[25] 邓雪娟 . 肉仔鸡饲料原料可消化氨基酸和代谢能的生物学评定及可加性研究[D]. 北京:中国农业科学院畜牧兽医研究所, 2008.
DENG X J . Study of biological assessment and additivity of digestible amino acids and metabolic energy of broiler feed materials[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. ( in Chinese)
[26] 邓雪娟, 刘国华, 蔡辉益, 王永伟, 王凤红 . 分光光度计法测定家禽饲料和食糜中二氧化钛. 饲料工业, 2008,29(2):57-58.
DENG X J, LIU G H, CAI H Y, WANG Y W, WANG F H . Spectrophotometric determination of titanium dioxide in poultry feed and chyme. Feed Industry, 2008,29(2):57-58. (in Chinese)
[27] 贺淼, 周安国, 王之盛, 陈中平, 张海波, 邹华围, 申俊华 . 复合酵母的营养价值评定. 动物营养学报, 2013,25(08):1904-1910.
HE M, ZHOU A G, WANG Z S, CHEN Z P, ZHANG H B, ZOU H W, SHEN J H . Nutritional value assessment of compound yeast. Journal of Animal Nutrition, 2013,25(08):1904-1910. (in Chinese)
[28] BAKER K M, UTTERBACK P L, PARSONS C M, STEIN H H . Nutritional value of soybean meal produced from conventional, high-protein, or low-oligosaccharide varieties of soybeans and fed to broiler chicks. Poultry Science, 2011,90:390-395.
[29] 娄瑞颍, 刘国华, 张玉萍, 汝应俊 . 玉米理化品质及其鸡代谢能的变异研究. 饲料工业, 2011,32(16):34-38.
LOU R Y, LIU G H, ZHANG Y P, RU Y J . Study on physicochemical quality of maize and variation of metabolic energy of chicken. Feed Industry, 2011,32(16):34-38. (in Chinese)
[30] 王庆, 王志跃, 杨海明, 李小娟, 王信喜 . 鹅和鸡4种常用饲料原料的代谢能比较. 动物营养学报, 2012,24(07):1224-1228.
WANG Q, WANG Z Y, YANG H M, LI X J, WANG X X . Metabolic energy comparison of four common feed materials for goose and chicken. Journal of Animal Nutrition, 2012,24(07):1224-1228. (in Chinese)
[31] 赵峰, 张宏福 . 对家禽饲料有效能评定理论及实践中若干问题的探讨. 中国家禽, 2009,31(15):35-39.
ZHAO F, ZHANG H F . Discussion on the theory and practice of available energy assessment of poultry feed. China Poultry, 2009,31(15):35-39. (in Chinese)
[32] 陈代文 . 家禽饲料评定的代谢能体系及其有效性评价. 四川农业大学学报, 1994,12(4):524-529.
CHEN D W . Metabolic energy system for poultry feed evaluation and its effectiveness. Journal of Sichuan Agricultural University, 1994,12(4):524-529. (in Chinese)
[33] 陈雪秀, 张子仪 . 常用鸡饲料的真代谢能与表观代谢能值比较. 中国畜牧杂志, 1983(6):4-6.
CHEN X X, ZHANG Z Y . Comparison of real metabolic energy and apparent metabolic energy of common chicken feed. Chinese Journal of Animal Science, 1983(6):4-6. (in Chinese)
[34] 张子仪, 吴克谦, 吴同礼 . 应用回归分析评定鸡饲料表观代谢能值的研究. 畜牧兽医学报, 1981,12(4):223-229.
ZHANG Z Y, WU K Q, WU T L . Study on apparent metabolic energy value of chicken feed by regression analysis. Acta Veterinaria et Zootechnica Sinica, 1981,12(4):223-229. (in Chinese)
[35] 周克, 刘国华, 年芳, 蔡辉益, 常文环, 张姝 . 套算法和强饲法测定肉鸡玉米有效能值的比较. 动物营养学报, 2015,27(05):1461-1467.
ZHOU K, LIU G H, NIAN F, CAI H Y, CHANG W H, ZHANG Z . Comparisons between nested algorithm and forced feeding method for determining the effective energy value of corn in broiler chickens. Journal of Animal Nutrition, 2015,27(05):1461-1467. (in Chinese)
[36] 王永伟 . 肉仔鸡小麦表观有效能值测定[D]. 北京:中国农业科学院, 2009.
WANG Y W . Determination of apparent available energy value of broiler wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. ( in Chinese)
[37] 张婵娟, 王建萍, 丁雪梅, 曾秋凤, 白世平, 张克英 . 不同来源豆粕对大恒肉鸡的能量和氨基酸营养价值评定. 动物营养学报, 2018,30(4):1320-1332.
ZHANG C J, WANG J P, DING X M, ZENG Q F, BAI S P, ZHANG K Y . Evaluation of energy and amino acid nutritional value of Daheng broiler with soybean meal from different sources. Journal of Animal Nutrition, 2018,30(4):1320-1332. (in Chinese)
[38] 雷廷, 呙于明, 王耀辉, 宁冬, 罗璇 . 饼粕类饲料原料中添加果胶酶对肉鸡回肠氨基酸消化率和代谢能的影响. 动物营养学报, 2014,26(02):453-465.
LEI T, GUO Y M, WANG Y H, NING D, LUO X . Effects of pectinase on amino acid digestibility and metabolic energy in ileum of broilers. Journal of Animal Nutrition, 2014,26(02):453-465.(in Chinese)
[39] 呙于明 . 家禽营养学. 第二版. 北京, 中国农业出版社, 2004: 50.
GUO Y M, . Poultry Nutrition. The second edition. Beijing, China Agricultural Press, 2004: 50. (in Chinese)
[1] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[2] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[3] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[4] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[5] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[6] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[7] Zhen LI,ShiXiong YANG,Sheng NIU,Ning ZHANG,Xin LI,YangYang ZHANG,YunFei JIA,ZhiXiong TIAN,GuanBao NING,Ding ZHANG,WenXia TIAN. Effect of Recombinant GSTA3 Protein on Expression of the Anti-Apoptotic Gene BAG-3 in Thiram-Induced Tibial Chondrodysplasia [J]. Scientia Agricultura Sinica, 2020, 53(9): 1921-1930.
[8] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[9] Shuang XING,JingHai FENG. Effects of Lactobacillus Supplements on Growth Performance of Broilers: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(1): 183-190.
[10] YANG YuYan,WANG XueJie,ZHANG MinHong,FENG JingHai. The Upper Limit Temperature of Thermoneutral Zone Estimated by the Changes of Temperature and Respiration Rate of the Broilers [J]. Scientia Agricultura Sinica, 2019, 52(3): 550-557.
[11] SUN YongBo,WANG Ya,SA RenNa,ZHANG HongFu. Effects of Different Relative Humidities on Growth Performance, Antioxidant Capacity and Immune Function of Broilers [J]. Scientia Agricultura Sinica, 2018, 51(24): 4720-4728.
[12] CHANG ShuangShuang,LI Meng,LI XiuMei,SHI YuXiang,ZHANG MinHong,FENG JingHai. Effects of the Daily Cycle Variation of the Moderate Ambient Temperatures on the Serum Brain Gut Peptide and the Diversity of Caecal Microflora in Broilers [J]. Scientia Agricultura Sinica, 2018, 51(22): 4364-4372.
[13] ZHANG LiLan, CHEN Liang, ZHONG RuQing, ZHANG HongFu. Effect of Exogenous Protease on in vitro Dry Matter Digestibility and Enzymatic Hydrolysate Gross Energy of Diets for Broilers [J]. Scientia Agricultura Sinica, 2017, 50(7): 1326-1333.
[14] PENG Qian-qian, WANG Xue-min, ZHANG Min-hong, FENG Jing-hai, ZHEN Long, ZHANG Shao-shuai . Effects of Constant Moderate Temperatures on the Diversity of the Intestinal Microbial Flora of Broilers [J]. Scientia Agricultura Sinica, 2016, 49(1): 186-194.
[15] LI Hong, DONG Shuo, XIONG Ying, GU Ming-can, GUO Kai-jun. Effect of Chestnut Involucres Polyphenols on Growth Performance and Antioxidant Properties of AA Broilers [J]. Scientia Agricultura Sinica, 2015, 48(4): 788-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!