Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 4125-4136.doi: 10.3864/j.issn.0578-1752.2023.20.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Establishment of Real-Time PCR Method for Detection of Extraneous Marek’s Disease Virus

SU Jia(), ZHAO Wei, LIU Dan, WANG Jia, BAI HongXu, WU HuaWei, XUE QingHong, CHEN XiaoChun()   

  1. China Institute of Veterinary Drug Control, Beijing 100081
  • Received:2022-11-11 Accepted:2023-04-04 Online:2023-10-16 Published:2023-10-31
  • Contact: CHEN XiaoChun

Abstract:

【Objective】 In order to solve the problems of low sensitivity, long detection time, and poor discrimination of existing exogenous Marek’s disease virus (MDV) testing methods, this study was designed to establish two real-time PCR detection methods for the identification of MDV serotype 1 (MDV 1) and MDV serotype 3 (MDV 3) strains, which could be used for purity control of poultry-derived biological products. 【Method】 The UL19 sequences of MDV 1, MDV serotype 2 (MDV 2) and MDV 3 strains were downloaded from the NCBI database and were used for nucleotide and amino acid homology comparison. A pair of specific primers and corresponding Taqman probe was designed from the known sequence of conserved UL19 of MDV 1 CVI988 strain and MDV 3 FC126 strain, respectively, and two real-time PCR detection methods were established. The corresponding recombinant plasmids were constructed and used as positive standards to make standard curves, and the sensitivity of gene copy number of the methods were evaluated. Other avian virus-associated biological products, virus, the full-length plasmid of UL19 of MDV 2 SB-1 strain and the raw materials for production (SPF chicken embryo allantoic fluid, embryonic body, allantoic membrane, chicken embryo fibroblasts) were detected to evaluate the specificity of the established methods. 600, 60, 6, 0.6, 0.06, 0.006 and 0.0006 PFU of CVI988 or FC126 strains were detected, respectively, and the sensitivity of the established two methods for detecting live virions was evaluated. Three repeatability tests were performed using corresponding recombinant plasmids of different dilutions, and the correlation coefficient were calculated to analyze the reproducibility of the two established detection methods. 【Result】 The nucleotide and the derived amino acid homology of MDV UL19 in the same serotype was highly conserved with 99.99%, and the nucleotide homology between different serotypes was only about 75%, while the derived amino acid homology was only about 85%. MDV 1 and MDV 3 real-time PCR detection methods were established, respectively. About the MDV 1 real-time PCR detection method, the amplification efficiency was 98.8%, the correlation coefficient was 0.992, with the standard curve : Y=-3.351X+38.828 (Y = Ct, X = lg ( copy number)). About the MDV 3 real-time PCR detection method, the amplification efficiency was 95%, the correlation coefficient was 0.998, and the standard curve: Y=-3.447X+36.496 (Y = Ct, X = lg ( copy number)). The established detection methods could specially detect MDV 1 or MDV 3 without detecting any other avian virus-associated biological products, virus, the full-length plasmid of UL19 of MDV 2 SB-1 strain, along with production materials for poultry. The sensitivity of MDV 1 real-time PCR detection method was high, with the gene copy number detection limit of 32.8 copies/μL, which could detect at least 0.006 PFU of CVI988 strain. The sensitivity of MDV 3 real-time PCR detection method was high, with the gene copy number detection limit of 10 copies/μL, which could detect at least 0.006 PFU of FC126 strain. The coefficient of variation of the repeatability test was less than 1% in MDV 1 real-time PCR detection method, and less than 1.5% in MDV 3 real-time PCR detection method, respectively. 【Conclusion】 The established real-time PCR detection methods would be beneficial for detecting exogenous MDV 1 and MDV 3 strains in poultry-derived biological products.

Key words: Marek’s disease virus, real-time PCR, extraneous virus, detection

Table 1

Sample information"

样品类型 Sample type 名称 Name 来源 Source
尿囊液生产毒
Viruses produced in allantoic fluid
鸡新城疫活疫苗 Newcastle Disease Vaccine, Live 某生产厂家A Manufacturer A
鸡传染性支气管炎活疫苗
Avian Infectious Bronchitis Vaccine, Live
某生产厂家C
Manufacturer C
禽流感病毒 Avian Influenza Virus 某生产厂家D Manufacturer D
细胞生产毒
Viruses produced in cells
鸡传染性法氏囊病活疫苗
Infectious Bursal Disease Vaccine, Live
某生产厂家B
Manufacturer B
鸡痘活疫苗 Avian Pox Vaccine, Live 某生产厂家B Manufacturer B
禽呼肠孤病毒
Avian Reovirus
中国兽医药品监察所实验室
Laboratory of China Institute of Veterinary Drug Control
禽脑脊髓炎病毒
Avian Encephalomyelitis Virus
中国兽医药品监察所实验室
Laboratory of China Institute of Veterinary Drug Control
禽腺病毒(I、III群)
Avian Adenovirus(Group I、III)
中国兽医药品监察所实验室
Laboratory of China Institute of Veterinary Drug Control
禽白血病病毒
Avian Leukosis Virus
中国兽医药品监察所实验室
Laboratory of China Institute of Veterinary Drug Control
禽网内组织增生症病毒
Avian Reticuloendotheliosis Virus
中国兽医药品监察所实验室
Laboratory of China Institute of Veterinary Drug Control
组织(胚体/尿囊膜)生产毒
Viruses produced in tissues (embryonic body/allantoic membrane)
鸭瘟活疫苗 Duck Plague Vaccine, Live 某生产厂家F Manufacturer F
鸡传染性喉气管炎活疫苗
Fowl Pox-Laryngotracheitis Vaccine, Live
某生产厂家E
Manufacturer E
MDV 1毒株
MDV 1 strains
CVI988株 Strain CVI988 某生产厂家A Manufacturer A
814株 Strain 814 某生产厂家G Manufacturer G
SC 9-1株 Strain SC 9-1 某生产厂家H Manufacturer H
Md5株
Strain Md5
中国兽医药品监察所实验室
Laboratory of China Institute of Veterinary Drug Control
MDV 3毒株
MDV 3 strains
FC126株
Strain FC126
中国兽医药品监察所实验室
Laboratory of China Institute of Veterinary Drug Control

Table 2

Primers and probes"

引物和探针
Primer and probes
序列
Sequence (5′-3′)
MDV 1-UL19-F ATTCCTGGATGCAAACCCGT
MDV 1-UL19-R TATTCCACGTTCCGTCAGCC
MDV 1-UL19-P HEX-AGCCTGCCATCAGCGCGTAT-BHQ1
MDV 3-UL19-F GCGATCACTGTCGCCTTCTA
MDV 3-UL19-R AGTAACGGCTGTGGTCATGG
MDV 3-UL19-P FAM-TGTAACGAGCGACGTCGTCCA-BHQ1

Fig. 1

Sequence alignment analysis of UL19 between different serotypes of MDV A: Nucleotide identities of UL19 gene between different serotypes of MDV; B: Amino acid identities of UL19 gene between different serotypes of MDV"

Fig. 2

Optimization of reaction system and reaction condition A: Optimization of primers and probe concentration for MDV 1 real time PCR assay; B: Optimization of primers and probe concentration for MDV 3 real time PCR assay;C: Optimization of annealing temperature for MDV 1 real time PCR assay;D: Optimization of annealing temperature for MDV 3 real time PCR assay"

Fig. 3

The gene copy number sensitivity test and generation of standard curve A: Detection of the gene copy number sensitivity by MDV 1 real-time PCR assay; B: Establishment of a standard curve for MDV 1 real-time PCR assay; C: Detection of the gene copy number sensitivity by MDV 3 real-time PCR assay; D: Establishment of a standard curve for MDV 3 real-time PCR assay"

Fig. 4

The live virions sensitivity test A: Detection of the live virions sensitivity by MDV 1 real-time PCR assay; B: Detection of the live virions sensitivity by MDV 3 real-time PCR assay"

Fig. 5

The amplification curve of specificity test A: Specific detection of MDV 1 real-time PCR assay; B: Specific detection of MDV 3 real-time PCR assay"

Table 3

Duplication test of MDV 1 real-time PCR assay"

浓度(拷贝/μL)
Content (copies/μL)
Ct值 Ct value 均值
X
标准差
SD
变异系数
CV (%)
1 2 3
3.28×107 14.41 14.16 14.33 14.30 0.13 0.91%
3.28×106 16.23 16.22 16.25 16.23 0.01 0.09%
3.28×105 19.66 19.48 19.69 19.61 0.11 0.57%
3.28×104 24.17 24.14 24.16 24.16 0.01 0.05%
3.28×103 27.83 27.76 27.91 27.83 0.07 0.27%
3.28×102 30.96 31.11 31.09 31.05 0.08 0.27%
3.28×101 32.69 32.84 32.96 32.83 0.13 0.41%

Table 4

Duplication test of MDV 3 real-time PCR assay"

浓度(拷贝/μL)
Content (copies/μL)
Ct值 Ct value 均值
X
标准差
SD
变异系数
CV (%)
1 2 3
1.00×108 12.50 12.18 12.20 12.29 0.18 1.48%
1.00×107 15.86 15.60 15.63 15.70 0.14 0.90%
1.00×106 19.27 19.12 19.08 19.16 0.10 0.50%
1.00×105 23.10 23.14 23.12 23.12 0.02 0.08%
1.00×104 26.84 26.18 26.51 26.51 0.33 1.25%
1.00×103 30.88 30.41 30.31 30.53 0.30 0.99%
1.00×102 33.42 33.26 33.03 33.23 0.20 0.59%
[1]
范学政, 李翠, 宁宜宝, 曲鸿飞. 病毒类疫苗中外源病毒污染、检测方法与控制措施. 中国兽药杂志, 2014, 48(11): 57-61.
FAN X Z, LI C, NING Y B, QU H F. Contamination of extraneous virus in viral vaccine and detection methods, purification control strategies. Chinese Journal of Veterinary Drug, 2014, 48(11): 57-61. (in Chinese)
[2]
PASTORET P P. Human and animal vaccine contaminations. Biologicals, 2010, 38(3): 332-334.

doi: 10.1016/j.biologicals.2010.02.015
[3]
SU Q, LIU X F, LI Y, MENG F F, CUI Z Z, CHANG S, ZHAO P. The intracorporal interaction of fowl adenovirus type 4 and LaSota strain significantly aggravates the pathogenicity of one another after using contaminated Newcastle disease virus-attenuated vaccine. Poultry Science, 2019, 98(2): 613-620.

doi: 10.3382/ps/pey129 pmid: 30358868
[4]
SU Q, MENG F, LI Y, ZHANG Y, ZHANG Z, CUI Z, CHANG S, ZHAO P. Chicken infectious anemia virus helps fowl adenovirus break the protection of maternal antibody and cause inclusion body hepatitis-hydropericardium syndrome in layers after using co-contaminated Newcastle disease virus-attenuated vaccine. Poultry Science, 2019, 98(2): 621-628.

doi: 10.3382/ps/pey153 pmid: 30358862
[5]
张帆帆, 宋德平, 周信荣, 黄冬艳, 李安琪, 彭棋, 陈燕君, 吴琼, 何后军, 唐玉新. 新现猪Delta冠状病毒RT-PCR检测方法的建立及其应用. 中国农业科学, 2016, 49(7): 1408-1416. doi: 10.3864/j. issn.0578-1752.2016.07.016.
ZHANG F F, SONG D P, ZHOU X R, HUANG D Y, LI A Q, PENG Q, CHEN Y J, WU Q, HE H J, TANG Y X. Establishment and application of a RT-PCR assay for detection of newly emerged Porcine deltacoronavirus. Scientia Agricultura Sinica, 2016, 49(7): 1408-1416. doi: 10.3864/j.issn.0578-1752.2016.07.016. (in Chinese)
[6]
王涛, 韩玉, 潘力, 王冰, 孙茂文, 王翌, 罗玉子, 仇华吉, 孙元.针对非洲猪瘟病毒MGF360-13L基因的TaqMan荧光定量PCR的建立. 中国农业科学, 2021, 54(5): 1073-1080. doi: 10.3864/j.issn. 0578-1752.2021.05.018.
WANG T, HAN Y, PAN L, WANG B, SUN M W, WANG Y, LUO Y Z, QIU H J, SUN Y.Development of a TaqMan real-time PCR targeting the MGF360-13 L gene of African swine fever virus. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080. doi: 10.3864/j.issn.0578- 1752.2021.05.018. (in Chinese)
[7]
YIN D, GENG R H, LV H, BAO C H, SHAO H X, YE J Q, QIAN K, QIN A J. Development of real-time PCR based on A137R gene for the detection of African swine fever virus. Frontiers in Veterinary Science, 2021, 8: 753967.

doi: 10.3389/fvets.2021.753967
[8]
BANKO A, PETROVIC G, MILJANOVIC D, LONCAR A, VUKCEVIC M, DESPOT D, CIRKOVIC A. Comparison and sensitivity evaluation of three different commercial real-time quantitative PCR kits for SARS-CoV-2 detection. Viruses, 2021, 13(7): 1321.

doi: 10.3390/v13071321
[9]
SWAYNE D E, GLISSON J R, MCDOUGALD L R, NOLAN L K, SUAREZ D L, NAIR V L. Diseases of Poultry. 13th edition. New Jersey: Wiley-Blackwell, 2013
[10]
ROZINS C, DAY T, GREENHALGH S. Managing Marek’s disease in the egg industry. Epidemics, 2019, 27: 52-58.

doi: 10.1016/j.epidem.2019.01.004
[11]
崔治中, 苏帅, 罗俊, 钱琨, 庄国庆, 孙爱军, 滕蔓. 鸡马立克病毒的研究进展. 微生物学通报, 2019, 46(7): 1812-1826.
CUI Z Z, SU S, LUO J, QIAN K, ZHUANG G Q, SUN A J, TENG M. Progress in Marek’s disease virus. Microbiology China, 2019, 46(7): 1812-1826. (in Chinese)
[12]
SHI M Y, LI M, WANG W W, DENG Q M, LI Q H, GAO Y L, WANG P K, HUANG T, WEI P. The emergence of a vv + MDV can break through the protections provided by the current vaccines. Viruses, 2020, 12(9): 1048.

doi: 10.3390/v12091048
[13]
AFONSO C L, TULMAN E R, LU Z, ZSAK L, ROCK D L, KUTISH G F. The genome of Turkey herpesvirus. Journal of Virology, 2001, 75(2): 971-978.

doi: 10.1128/JVI.75.2.971-978.2001 pmid: 11134310
[14]
中国兽药典委员会. 中华人民共和国兽药典-三部: 2020年版. 北京: 中国农业出版社, 2020.
Chinese Veterinary Pharmacopoeia Commission. People’s republic of China PRC veterinary medicine code-part III: 2020 edition. Beijing: China Agriculture Press, 2020. (in Chinese)
[15]
European Pharmacopoeia Commission. European pharmacopoeia (6th Edition), 2007.
[16]
BRUCKNER L, OTTIGER H P. Pre-validation study for testing of avian viral vaccines for extraneous agents by PCR. Pharmeuropa Bio, 2007, 2007(1): 15-18.
[17]
OTTIGER H P. Development, standardization and assessment of PCR systems for purity testing of avian viral vaccines. Biologicals, 2010, 38(3): 381-388.

doi: 10.1016/j.biologicals.2010.01.015
[18]
世界动物卫生组织. OIE陆生动物诊断试验和疫苗手册(哺乳动物、禽鸟与蜜蜂)第五版. 农业部兽医局译, 北京: 中国农业出版社, 2017.
World Organization for Animal Health. and Vaccines for Terrestrial Animals Mammals, Birds and Bees 5th Edition.OIE Manual of Diagnostic Tests Veterinary Bureau of the Ministry of Agriculture translate, Beijing: China Agriculture Press, 2017. (in Chinese)
[19]
国家市场监督管理总局, 国家标准化管理委员会. 中华人民共和国国家标准GB/T 18648- 2020.
State Administration for Market Regulation, Standardization Administration. National standards of People's Republic of China GB/T 18648- 2020. (in Chinese)
[20]
KUT E, RASSCHAERT D. Assembly of Marek’s disease virus (MDV) capsids using recombinant baculoviruses expressing MDV capsid proteins. The Journal of General Virology, 2004, 85(Pt 4): 769-774.

doi: 10.1099/vir.0.19725-0
[21]
BARFOED A M, ØSTERGAARD E, FRANDSEN P L, NIELSEN E B, SANDBERG E, RASMUSSEN T B. Development of a primer-probe energy transfer based real-time PCR for detection of Marek’s disease virus. Journal of Virological Methods, 2010, 165(1): 21-26.

doi: 10.1016/j.jviromet.2009.12.012
[22]
MOODY M, ALVES W, VARGHESE J, KHAN F. Mouse minute virus (MMV) contamination: a case study: detection, root cause determination, and corrective actions. PDA Journal of Pharmaceutical Science and Technology, 2011, 65(6): 580-588.

doi: 10.5731/pdajpst.2011.00824
[23]
LI Q C, ZHANG Y B, MENG F F, JIANG H, XU G L, DING J B, ZHANG Y W, DONG G W, TIAN S B, CHANG S, ZHAO P. A new strategy for the detection of chicken infectious Anemia virus contamination in attenuated live vaccine by droplet digital PCR. BioMed Research International, 2019, 2019: 2750472.
[24]
MOTITSCHKE A, OTTIGER H P, JUNGBÄCK C. Evaluation of the sensitivity of PCR methods for the detection of extraneous agents and comparison with in vivo testing. Biologicals, 2010, 38(3): 389-392.

doi: 10.1016/j.biologicals.2010.01.002
[25]
尚宏华, 郭建平, 谢秋梅. 猪瘟活疫苗外源病毒BVDV细胞培养与PCR检测的比较. 江西畜牧兽医杂志, 2014(6): 8-10.
SHANG H H, GUO J P, XIE Q M. Comparison of BVDV cell culture and PCR detection of classical swine fever live vaccine. Jiangxi Journal of Animal Husbandry & Veterinary Medicine, 2014(6): 8-10. (in Chinese)
[26]
MACKAY D, KRIZ N. Current challenges in viral safety and extraneous agent testing. Biologicals, 2010, 38(3): 335-337.

doi: 10.1016/j.biologicals.2010.01.014 pmid: 20338787
[27]
吕红超, 张艳萍, 孙国荣, 高玉龙, 李志杰, 郑惠文, 包珂岩, 王笑梅, 刘长军. 鸡马立克氏病强弱病毒株PCR鉴别检测方法在诊断中的应用评价. 中国预防兽医学报, 2016, 38(7): 567-571.
H C, ZHANG Y P, SUN G R, GAO Y L, LI Z J, ZHENG H W, BAO K Y, WANG X M, LIU C J. Assessments of a PCR method for detection and identification of virulent Marek’s disease virus and vaccine strain for Marek’s disease diagnosis. Chinese Journal of Preventive Veterinary Medicine, 2016, 38(7): 567-571. (in Chinese)
[28]
周冬玉, 李国红, 靳泽华, 徐巧霞, 徐蓉, 张安定. 鸡马立克氏病病毒和疫苗毒株PCR诊断方法的建立及其应用. 现代畜牧兽医, 2022(8): 50-54.
ZHOU D Y, LI G H, JIN Z H, XU Q X, XU R, ZHANG A D. Establishment and application of PCR diagnosis method for chicken Marek’s disease virus and vaccine virus. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(8): 50-54. (in Chinese)
[29]
李学伍, 刘媛, 王丽, 邓瑞广, 赵东, 杨继飞, 柴书军. 鸡3种主要DNA病毒多重感染复合PCR检测方法的建立. 河南农业科学, 2017, 46(7): 101-105.
LI X W, LIU Y, WANG L, DENG R G, ZHAO D, YANG J F, CHAI S J. Establishment of multiplex PCR detection method for three kinds of main DNA viruses in chicken. Journal of Henan Agricultural Sciences, 2017, 46(7): 101-105. (in Chinese)
[30]
屈素洁, 施开创, 胡杰, 张步娴, 尹彦文, 粟艳琼, 莫胜兰, 李军, 邹联斌. 荧光定量PCR检测鸡马立克氏病血清1型病毒方法的建立及应用. 上海畜牧兽医通讯, 2015(4): 19-21.
QU S J, SHI K C, HU J, ZHANG B X, YIN Y W, SU Y Q, MO S L, LI J, ZOU L B. Establishment and application of fluorescence quantitative PCR method for detecting Marek’s disease serum type 1 virus in chickens. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2015(4): 19-21. (in Chinese)
[31]
闫彩虹. 江苏地区家禽4种免疫抑制病病原检测及致瘤病毒三重荧光定量PCR检测方法的建立与应用[D]. 扬州: 扬州大学, 2020.
YAN C H. Establishment and application of triple fluorescence quantitative PCR method for detection of pathogens of four immunosuppressive diseases in poultry in Jiangsu Province[D]. Yangzhou: Yangzhou University, 2020. (in Chinese)
[32]
汪最, 李丽, 刘鹏, 刘丽娜, 汪琛, 周康, 罗青平. ALV-J、 REV和MDV多重荧光定量PCR检测方法的建立. 中国动物传染病学报, 2020, 28(6): 73-78.
WANG Z, LI L, LIU P, LIU L N, WANG C, ZHOU K, LUO Q P. Establishment of a triple real-time pcr for detecting alv-j, rev and mdv. Chinese Journal of Animal Infectious Diseases, 2020, 28(6): 73-78. (in Chinese)
[33]
LÓPEZ-OSORIO S, VILLAR D, PIEDRAHITA D, RAMÍREZ- NIETO G, NAIR V, BAIGENT S, CHAPARRO-GUTIÉRREZ J. Molecular detection of Marek’s disease virus in feather and blood samples from young laying hens in Colombia. Acta Virologica, 2019, 63(4): 380-391.

doi: 10.4149/av_2019_402
[34]
ZHANG Z J, LIU S Q, MA C T, ZHAO P, CUI Z Z. Absolute quantification of a very virulent Marek’s disease virus dynamic quantity and distributions in different tissues 1. Poultry Science, 2015, 94(6): 1150-1157.

doi: 10.3382/ps/pev063
[35]
SU S, CUI N, ZHOU Y, CHEN Z M, LI Y P, DING J B, WANG Y X, DUAN L T, CUI Z Z. A recombinant field strain of Marek’s disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD. Vaccine, 2015, 33(5): 596-603.
[36]
WAJID S J, KATZ M E, RENZ K G, WALKDEN-BROWN S W. Prevalence of Marek’s disease virus in different chicken populations in Iraq and indicative virulence based on sequence variation in the ecoRI-q (meq) gene. Avian Diseases, 2013, 57(2 Suppl.): 562-568.

doi: 10.1637/10342-083112-Reg.1
[37]
MESCOLINI G, LUPINI C, FELICE V, GUERRINI A, SILVEIRA F, CECCHINATO M, CATELLI E. Molecular characterization of the meq gene of Marek’s disease viruses detected in unvaccinated backyard chickens reveals the circulation of low- and high-virulence strains. Poultry Science, 2019, 98(8): 3130-3137.

doi: 10.3382/ps/pez095
[38]
MURATA S, HASHIGUCHI T, HAYASHI Y, YAMAMOTO Y, MATSUYAMA-KATO A, TAKASAKI S, ISEZAKI M, ONUMA M, KONNAI S, OHASHI K. Characterization of Meq proteins from field isolates of Marek’s disease virus in Japan. Infection, Genetics and Evolution, 2013, 16: 137-143.

doi: 10.1016/j.meegid.2012.12.032
[39]
MURATA S, YAMAMOTO E, SAKASHITA N, MAEKAWA N, OKAGAWA T, KONNAI S, OHASHI K. Research Note: characterization of S-Meq containing the deletion in Meq protein’s transactivation domain in a Marek’s disease virus strain in Japan. Poultry Science, 2021, 100(11): 101461.

doi: 10.1016/j.psj.2021.101461
[40]
MOHAMED M H A, EL-SABAGH I M, AL-HABEEB M A, AL-HAMMADY Y M. Diversity of Meq gene from clinical Marek’s disease virus infection in Saudi Arabia. Veterinary World, 2016, 9(6): 572-578.

doi: 10.14202/vetworld.
[41]
GUPTA M, DEKA D. Sequence analysis of Meq oncogene among Indian isolates of Marek’s disease herpesvirus. Meta Gene, 2016, 9: 230-236.

doi: 10.1016/j.mgene.2016.07.009
[42]
GIMENO I M, DUNN J R, CORTES A L, EL-GOHARY A E G, SILVA R F. Detection and differentiation of CVI988 (Rispens vaccine) from other serotype 1 Marek’s disease viruses. Avian Diseases, 2014, 58(2): 232-243.

doi: 10.1637/10666-091713-Reg.1
[43]
BAIGENT S J, NAIR V K, LE GALLUDEC H. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus. Journal of Virological Methods, 2016, 233: 23-36.

doi: 10.1016/j.jviromet.2016.03.002
[44]
CORTES A L, MONTIEL E R, LEMIERE S, GIMENO I M. Comparison of blood and feather pulp samples for the diagnosis of Marek’s disease and for monitoring Marek’s disease vaccination by real time-PCR. Avian Diseases, 2011, 55(2): 302-310.

doi: 10.1637/9578-101510-ResNote.1
[45]
ISLAM A, CHEETHAM B F, MAHONY T J, YOUNG P L, WALKDEN-BROWN S W. Absolute quantitation of Marek’s disease virus and Herpesvirus of turkeys in chicken lymphocyte, feather tip and dust samples using real-time PCR. Journal of Virological Methods, 2006, 132(1/2): 127-134.
[46]
李冬冬. 重组火鸡疱疹病毒rHVT-VP2实时荧光定量PCR检测方法的建立及应用[D]. 南京: 南京农业大学, 2017.
LI D D. Establishment and application of real-time fluorescence quantitative PCR detection method for recombinant Turkey herpesvirus rHVT-VP2[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[1] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
[2] TANG Wei, ZHANG ChengLing, YANG DongJing, MA JuKui, CHEN JingWei, GAO FangYuan, XIE YiPing, SUN HouJun. Complete Genomic Sequence Characteristics and Establishment of qPCR Detection Technique of Sweet Potato Virus E in China [J]. Scientia Agricultura Sinica, 2023, 56(20): 4010-4020.
[3] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[4] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[5] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[6] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[7] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[8] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[9] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[10] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[11] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[12] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
[13] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[14] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[15] MA ZhiMin,XU JianJian,DUAN Yu,WANG ChunQing,SU Yue,ZHANG Qi,BIN Yu,ZHOU ChangYong,SONG Zhen. Establishment of RT-RPA for Citrus Yellow Vein Clearing Virus (CYVCV) Detection [J]. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!