Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (18): 3487-3499.doi: 10.3864/j.issn.0578-1752.2023.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis of Yield Traits in Xinjiang Winter Wheat Germplasm

MA YanMing1,2(), LOU HongYao3, ZHANG ShengJun4, WANG Wei1, GUO Ying5, NI ZhongFu2, LIU Jie2()   

  1. 1 Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
    2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
    3 Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
    4 Institute of Agricultural Sciences of Ili Prefecture, Yining 835011, Xinjiang
    5 College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong
  • Received:2023-03-27 Accepted:2023-05-25 Online:2023-09-16 Published:2023-09-21
  • Contact: LIU Jie

Abstract:

Objective】To discover new high yield genes in wheat by association analysis, which can provide technical supports for the innovation and genetic improvement of high yield germplasm resources in wheat.【Method】Totally 188 bread wheat cultivars in Xinjiang were genotyped using the wheat 55K genotyping assay. GWAS was carried out to identify the signifcant single nucleotide polymorphisms (SNPs) which were associated with 9 wheat yield traits in 6 environments. The MLM algorithm in TASSEL5.0 was used to analyze the nine traits related to wheat yield traits.【Result】Totally 1309 SNPs explained 7.259%-70.792% of the phenotypic variation. 38 SNP loci were identifed, which were significantly correlated with 5 plant height weight SNP loci, 10 spike length weight SNP loci, 10 spikelet number SNP loci, 6 fertile spikelet number SNP loci, 6 spike grain number SNP loci, and 1 thousand grain weight SNP loci. These loci can explain 9.10%-23.81% of phenotypic variations. Comparing these 38 loci with the published wheat genome loci, only 3 functional genes were found, which annotated with gene function. There genes are: TraesCS2A01G448800 on chromosome 2A, which is close to the plant height associated site AX-108794050 and is related to the metabolic synthesis of transcription factor bHLH71; TraesCS2A01G448800, located on chromosome 1A at a distance similar to the spike length associated site AX-110689765, is related to protein coding; TraesCS4B01G031100, located on the 4B chromosome at a distance similar to the 1000 grain weight associated site AX-110399975, is associated with the encoding serine/threonine protein kinase SD1-8 and is involved in regulating cell proliferation and differentiation. 【Conclusion】38 QTL loci associated with wheat yield traits were detected. After verification, it was found that the associated excellent alleles have the effect of reducing plant height, increasing spike length, spikelet number, fertile spikelet number, grain number per spike, and thousand grain weight.

Key words: wheat, yield traits, SNP, association analysis, candidate genes

Fig. 1

Population structure analysis of 188 Xingjiang wheat accessions a: The ΔK statistic for each given K; b: PCA; c: Model-based ancestries"

Fig. 2

The relative kinship and LD of 188 Xinjiang wheat materials a: The relative kinship of the wheat association panel. b: The LD of 21 chromosomes in 188 wheat association panel"

Table 1

Physical locations, P values and interpreted phenotypic variation rates of 38 repeat sites"

性状
Trait
标记
SNP
染色体
Chr.
物理位置
Position (bp)
P PVE (%)
E1 E2 E3 E4 E5 E6 BLUP E1 E2 E3 E4 E5 E6 BLUP
PH AX-108794050 2A 698175277 3.76E-06 1.08E-05 1.06E-05 11.60 11.60 10.10
AX-108838330 4B 465981233 6.31E-05 4.80E-06 9.00 12.90
AX-109467555 6A 417439944 3.11E-05 4.28E-05 9.60 11.40
AX-109857508 2A 19661854 1.41E-05 8.26E-05 2.20E-05 12.40 9.50 11.40
AX-110969164 7B 53530940 1.37E-05 5.65E-05 1.84E-05 13.80 11.30 12.80
SL AX-111524633 1A 229272328 6.67E-08 1.67E-05 26.90 12.70
AX-110359663 2A 555501466 1.81E-08 3.06E-05 24.50 14.80
AX-110956005 5A 384438157 1.19E-10 1.987-08 28.80 21.90
AX-108852957 6A 611194075 1.61E-08 6.62E-05 26.40 12.10
AX-110689765 6A 12313027 1.63E-05 9.13E-05 11.40 9.10
AX-109282231 3B 138504166 8.79E-05 1.02E-05 11.60 14.90
AX-108758415 7B 687068740 7.82E-13 5.99E-05 36.60 11.10
AX-111722527 2D 527923732 7.31E-10 1.54E-05 26.70 12.80
AX-110568577 4D 200403065 1.64E-09 9.80E-05 27.40 11.10
AX-109822039 5D 154563929 1.78E-07 1.14E-06 22.80 16.10
SN AX-108825815 3A 526860477 2.49E-05 7.23E-05 12.60 10.80
AX-108977066 3A 526923011 8.55E-05 1.43E-05 1.40E-05 10.80 13.30 12.70
AX-109365068 5A 69079172 5.43E-06 5.21E-05 11.80 9.20
AX-110105180 4A 549802334 4.76E-05 7.71E-05 14.20 12.80
AX-110123746 4D 469869704 2.33E-06 6.47E-05 15.10 11.10
AX-110419722 3A 514225494 2.29E-05 1.61E-05 13.80 16.10
AX-111073226 7A 383199757 8.41E-05 8.90E-05 10.80 10.80
SN AX-111074553 6B 610906100 3.16E-07 1.19E-05 16.60 12.50
AX-111523929 1A 516381475 3.15E-07 1.18E-05 18.70 13.50
AX-111700650 7B 548781811 3.21E-07 4.72E-06 18.10 13.40
FSN AX-110123746 4D 469869704 3.52E-07 9.72E-05 1.08E-05 17.60 10.80 13.50
AX-111073226 7A 383199757 4.54E-05 7.21E-05 3.44E-05 11.50 9.30 12.00
AX-111523929 1A 516381475 4.63E-08 5.66E-05 1.81E-06 22.50 12.60 16.60
AX-111074553 6B 610906100 2.84E-07 7.44E-06 16.60 13.00
AX-111700650 7B 548781811 1.11E-06 2.58E-06 15.90 11.70
AX-109545508 2A 324629159 7.76E-07 1.92E-05 16.70 12.90
GNPS AX-108745367 1A 554125804 4.45E-05 2.18E-08 3.82E-05 11.60 25.70 12.92
AX-110509054 6A 71539737 7.04E-05 2.27E-08 1.91E-05 11.00 22.70 12.35
AX-112290916 4B 241185348 1.65E-06 1.24E-05 16.70 12.87
AX-110270363 4D 200804203 3.53E-08 3.69E-05 21.60 11.77
AX-111523929 1A 516381475 2.92E-08 1.35E-09 22.53 23.81
AX-110123746 4D 469869704 3.69E-05 8.14E-09 11.77 22.73
TKW AX-110399975 3B 23344933 4.66E-06 9.81E-05 11.60 10.30

Fig. 3

Selected yield characters’ Manhattan and Q-Q Plot diagrams of BLUP value a: Plant height; b: Spike length; c: Spikelet number; d: Grain number per spike; e: Fertile spikelet number per spike; f: Thousand kernel weight"

[1]
何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 99-106.
HE Z H, ZHUANG Q S, CHENG S H, YU Z W, ZHAO Z D, LIU X. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(1): 99-106. (in Chinese)
[2]
吴澎, 刘娟, 田纪春. 单核苷酸多态性(SNP)分子标记在小麦遗传育种中的研究进展. 农学学报, 2019, 9(1): 54-58.

doi: 10.11923/j.issn.2095-4050.cjas17120018
WU P, LIU J, TIAN J C. Research progress of single nucleotide polymorphism (SNP) molecular markers in wheat genetic breeding. Journal of Agriculture, 2019, 9(1): 54-58. (in Chinese)

doi: 10.11923/j.issn.2095-4050.cjas17120018
[3]
HUANG X H, HAN B. Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 2014, 65: 531-551.

doi: 10.1146/annurev-arplant-050213-035715 pmid: 24274033
[4]
CAO S H, XU D A, HANIF M, XIA X C, HE Z H. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics, 2020, 133(6): 1811-1823.

doi: 10.1007/s00122-020-03562-8 pmid: 32062676
[5]
QASEEM M F, QURESHI R, MUQADDASI Q H, SHAHEEN H, KOUSAR R, RÖDER M S. Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress. PLoS ONE, 2018, 13(6): e0199121.

doi: 10.1371/journal.pone.0199121
[6]
SUKUMARAN S, DREISIGACKER S, LOPES M, CHAVEZ P, REYNOLDS M P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theoretical and Applied Genetics, 2015, 128(2): 353-363.

doi: 10.1007/s00122-014-2435-3 pmid: 25490985
[7]
CHEN G F, ZHANG H, DENG Z Y, WU R G, LI D M, WANG M Y, TIAN J C. Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Euphytica, 2016, 212(2): 173-185.

doi: 10.1007/s10681-016-1750-y
[8]
SUN C W, ZHANG F Y, YAN X F, ZHANG X F, DONG Z D, CUI D Q, CHEN F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnology Journal, 2017, 15(8): 953-969.

doi: 10.1111/pbi.12690 pmid: 28055148
[9]
WANG S X, ZHU Y L, ZHANG D X, SHAO H, LIU P, HU J B, ZHANG H, ZHANG H P, CHANG C, LU J, XIA X C, SUN G L, MA C X. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS ONE, 2017, 12(11): e0188662.

doi: 10.1371/journal.pone.0188662
[10]
YE X L, LI J, CHENG Y K, YAO F J, LONG L, WANG Y Q, WU Y, LI J, WANG J R, JIANG Q T, KANG H Y, LI W, QI P F, LAN X J, MA J, LIU Y X, JIANG Y F, WEI Y M, CHEN X M, LIU C J, ZHENG Y L, CHEN G Y. Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm under stripe rust stress. BMC Genomics, 2019, 20(1): 640.

doi: 10.1186/s12864-019-6005-6 pmid: 31395029
[11]
翟俊鹏, 李海霞, 毕惠惠, 周思远, 罗肖艳, 陈树林, 程西永, 许海霞. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45(10): 1488-1502.

doi: 10.3724/SP.J.1006.2019.91002
ZHAI J P, LI H X, BI H H, ZHOU S Y, LUO X Y, CHEN S L, CHENG X Y, XU H X. Genome-wide association study for main agronomic traits in common wheat. Acta Agronomica Sinica, 2019, 45(10): 1488-1502. (in Chinese)
[12]
赵丹阳, 朱婷, 王卫东, 张思妮, 夏雪姣, 翟晓光, 丁勤, 马翎健. 黄淮麦区部分小麦品种(系)重要产量性状全基因组关联分析. 麦类作物学报, 2018, 38(11): 1320-1329.
ZHAO D Y, ZHU T, WANG W D, ZHANG S N, XIA X J, ZHAI X G, DING Q, MA L J. Genome-wide association study of yield traits in some wheat varieties (lines) of Huang-Huai area. Journal of Triticeae Crops, 2018, 38(11): 1320-1329. (in Chinese)
[13]
顾晶晶, 余慷, 陈树林, 朱保磊, 王冬至, 张爱民, 刘冬成, 詹克慧. 河南小麦品种穗粒数性状的动态变化及全基因组关联分析. 分子植物育种, 2017, 15(10): 4143-4158.
GU J J, YU K, CHEN S L, ZHU B L, WANG D Z, ZHANG A M, LIU D C, ZHAN K H. Dynamic variation and genome-wide association analysis of grain number related traits in Henan wheat (Triticum aestivum). Molecular Plant Breeding, 2017, 15(10): 4143-4158. (in Chinese)
[14]
马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析. 作物学报, 2020, 46(10): 1539-1556.

doi: 10.3724/SP.J.1006.2020.91077
MA Y M, LOU H Y, CHEN Z Y, XIAO J, XU L, NI Z F, LIU J. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis. Acta Agronomica Sinica, 2020, 46(10): 1539-1556. (in Chinese)
[15]
李立会, 李秀全, 杨欣明. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
LI L H, LI X Q, YANG X M. Descriptors and Data Standard for Wheat (Triticum aestivum L.). Beijing: China Agriculture Press, 2006. (in Chinese)
[16]
SAGHAI-MAROOF M A, SOLIMAN K M, JORGENSEN R A, ALLARD R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(24): 8014-8018.
[17]
PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.

doi: 10.1093/genetics/155.2.945 pmid: 10835412
[18]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.

doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739
[19]
JAKOBSSON M, ROSENBERG N A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23(14): 1801-1806.

doi: 10.1093/bioinformatics/btm233 pmid: 17485429
[20]
YU J M, BUCKLER E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.

doi: 10.1016/j.copbio.2006.02.003 pmid: 16504497
[21]
AUDIC S, CLAVERIE J M. The significance of digital gene expression profiles. Genome Research, 1997, 7(10): 986-995.

doi: 10.1101/gr.7.10.986 pmid: 9331369
[22]
YANG N, LU Y L, YANG X H, HUANG J, ZHOU Y, ALI F, WEN W W, LIU J, LI J S, YAN J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10(9): e1004573.

doi: 10.1371/journal.pgen.1004573
[23]
HARDY O J, VEKEMANS X. Spagedi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2002, 2(4): 618-620.

doi: 10.1046/j.1471-8286.2002.00305.x
[24]
STICH B, MELCHINGER A E, FRISCH M, MAURER HANS P, HECKENBERGER M, REIF J C. Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theoretical & Applied Genetics, 2005, 111(4): 723-730.
[25]
董玉琛, 郑殿升. 中国小麦遗传资源. 北京: 中国农业出版社, 2000.
DONG Y C, ZHENG D S. Chinese Wheat Genetic Resources. Beijing: China Agriculture Press, 2000. (in Chinese)
[26]
刘三才, 郑殿升, 曹永生, 宋春华, 陈梦英. 中国小麦选育品种与地方品种的遗传多样性中国农业科学, 2000, 33(4): 20-24.
LIU S C, ZHENG D S, CAO Y S, SONG C H, CHEN M Y. Genetic diversity of landrace and bred varieties of wheat in China. Scientia Agricultura Sinica, 2000, 33(4): 20-24. (in Chinese)
[27]
李煦征. 江苏省小麦品种更替过程中生态型演化与区域差异分析[D]. 南京: 南京农业大学, 2007.
LI X Z. Research on the evolution of ecotypes of wheat cultvars and differences of regions in Jiangsu[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese)
[28]
马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析. 作物学报, 2020, 46(12): 1997-2007.

doi: 10.3724/SP.J.1006.2020.01034
MA Y M, FENG Z Y, WANG W, ZHANG S J, GUO Y, NI Z F, LIU J. Genetic diversity analysis of winter wheat landraces and cultivars in Xinjiang based on agronomic traits. Acta Agronomica Sinica, 2020, 46(12): 1997-2007. (in Chinese)
[29]
RISCH N, MERIKANGAS K. The future of genetic studies of complex human diseases. Science, 1996, 273(5281): 1516-1517.

doi: 10.1126/science.273.5281.1516 pmid: 8801636
[30]
MORA F, CASTILLO D, LADO B, MATUS I, POLAND J, BELZILE F, VON ZITZEWITZ J, DEL POZO A. Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Molecular Breeding, 2015, 35(2): 69.

doi: 10.1007/s11032-015-0264-y
[31]
INGVARSSON P K, NATHANIEL R S. Association genetics of complex traits in plants. New Phytologist, 2011, 189: 909-922.

doi: 10.1111/j.1469-8137.2010.03593.x pmid: 21182529
[32]
ZHU C, GORE M, BUCKLER E S, YU J. Status and prospects of asso-ciation mapping in plants. Plant Genome, 2008, 1: 5-20.
[33]
易腾飞. 中国冬麦区小麦品种农艺性状与品质性状的全基因组关联分析[D]. 保定: 河北农业大学, 2018.
YI T F. Genome-wide association study of agronomic traits and quality traits of wheat varieties in the winter wheat region of China[D]. Baoding: Hebei Agricultural University, 2018. (in Chinese)
[34]
CARDON L R, PALMER L J. Population stratification and spurious allelic association. Lancet, 2003, 361(9357): 598-604.

doi: 10.1016/S0140-6736(03)12520-2 pmid: 12598158
[35]
郭玉华, 朱四光, 张龙步, 都华. 不同栽培条件对水稻茎秆材料学特性的影响. 沈阳农业大学学报, 2003, 34(1): 4-7.
GUO Y H, ZHU S G, ZHANG L B, DU H. Influence on the material characteristics of rice culms in different cultivation conditions. Journal of Shenyang Agricultural University, 2003, 34(1): 4-7. (in Chinese)
[36]
LI F J, WEN W E, LIU J D, ZHANG Y, CAO S H, HE Z H, RASHEED A, JIN H, ZHANG C, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 2019, 19(1): 1-19.

doi: 10.1186/s12870-018-1600-2
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[4] LIN YuNong, WANG ZeZhao, CHEN Yan, ZHU Bo, GAO Xue, ZHANG LuPei, GAO HuiJiang, XU LingYang, CAI WenTao, LI YingHao, LI JunYa, GAO ShuXin. Comparison of Imputation Accuracy for Different Low-Density SNP Selection Strategies [J]. Scientia Agricultura Sinica, 2023, 56(8): 1585-1593.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[8] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[9] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[10] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[11] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[12] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[13] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[14] YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994.
[15] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!