Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (18): 3500-3510.doi: 10.3864/j.issn.0578-1752.2023.18.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes

YU YongChao(), FAN WenJing(), LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou()   

  1. Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province/Xuzhou Sweetpotato Research Center of Jiangsu Province/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu
  • Received:2023-04-03 Accepted:2023-05-08 Online:2023-09-16 Published:2023-09-21
  • Contact: TANG ZhongHou

Abstract:

Objective】The objective of this paper was to analyze the genetic mechanisms of nitrogen use efficiency (NUE), and to explore the loci and candidate genes associated nitrogen (N) efficient traits, to provide support for the N-efficient molecular breeding and genetic improvement of sweetpotato.【Method】A total of 129 sweetpotato cultivars from all over the world were treated with N deficiency (0 mmol·L-1) and normal N (14 mmol·L-1). A hydroponic experiment was conducted to facilitate the genome-wide association study (GWAS) of six phenotypic traits (shoot biomass increment, root biomass increment, shoot N accumulation, root N accumulation, shoot N physiological utilization efficiency, and root N physiological utilization efficiency) of sweetpotato at the seedling stage. The N-efficient candidate genes were identified based on the GWAS and subsequently- verified using RT-qPCR.【Result】There were wide variations among the six traits related to NUE in sweetpotato under the normal N and N deficiency treatment conditions. The coefficient of variation (CV) of the shoot biomass increment under the N deficiency treatment condition was the greatest at 69.5%. The CV of the root N physiological utilization efficiency under N deficiency treatment condition was the smallest at 12.1%. All five traits were significantly correlated except for root N physiological utilization efficiency. The MLM model was used to conduct a GWAS of the six phenotypic trait values. A total of 134 QTL and 888 SNP loci were identified as being significantly associated with four out of the six traits, namely, shoot biomass increment, root biomass increment, root N accumulation, and shoot N physiological utilization efficiency. A total of 93 SNP markers across ten regions were significantly associated with shoot N physiological utilization efficiency with a high reliability. Six N efficiency candidate genes were obtained via gene annotation. RT-qPCR verified that the three candidate genes (itf01g08120.t1, itf01g22030.t1 and itf01g221000.t2) encoded glutamate dehydrogenase, NPH3 protein and TIP41-like protein, respectively, which warrants further research.【Conclusion】A total of 888 SNP loci associated with N utilization traits were detected in 129 sweetpotato cultivars. Among these, 93 SNP loci were significantly associated with shoot N physiological utilization efficiency, and six candidate genes were identified. Preliminary verification indicated that the itf01g08120.t1, itf01G2203.t1 and itf01g22100.t2 genes hold promising value for further research.

Key words: sweetpotato, nitrogen use efficiency, nitrogen efficient gene, GWAS, RT-qPCR

Table 1

Sequence of primers for Actin and N-efficient genes used for RT-qPCR"

基因 Gene 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
Actin AGCAGCATGAAGATTAAGGTTGTAGCAC TGGAAAATTAGAAGCACTTCCTGTGAAC
itf01g08120.t1 GGTGGATCTCTAGGCAGGGA TATCGCACCAGTGGCATCAC
itf01g22030.t1 AGACTCTGATGAAACTAGCGGT CGGGGAAAGCTTGAGACCAT
itf01g22080.t2 CTTCTGATCAGCTCCTCCGC GTCCCAGAAGGCACACACTT
itf01g22100.t2 GGAGGGCGACCAGAAAGAAT GGAGCACTTGCGAGACTCAA
itf01g22400.t1 ATGCTTCCTTCTTAACTGCCG ACTCTATCCATTTTGGCTGGC
itf01g25900.t1 TCAAGAGCATTACCCGCCAG TGGTCCACCCTCTGATGAAC

Table 2

Statistical analysis for the N use efficiency traits"

性状
Trait
正常氮处理CK 低氮处理N0
最大值
Max
最小值
Min
平均数
Mean
变异系数
CV (%)
最大值
Max
最小值
Min
平均值
Mean
变异系数
CV (%)
地上部生物增加量
Shoot biomass increment (g)
3.39 0.16 1.43 46.6 2.75 0.01 0.82 69.5
地下部生物增加量
Root biomass increment (g)
1.57 0.08 0.65 46.9 1.61 0.12 0.61 51.7
地上部氮累积量
Shoot N accumulation (g/plant)
0.247 0.030 0.108 36.2 0.120 0.012 0.043 53.6
地下部氮累积量
Root N accumulation (g/plant)
0.061 0.002 0.023 50.6 0.032 0.003 0.012 51.4
地上部氮生理利用效率
Shoot N physiological utilization efficiency (%)
21.18 2.17 12.87 21.8 40.10 0.70 18.52 42.4
地下部氮生理利用效率
Root N physiological utilization efficiency (%)
58.97 22.33 29.81 15.9 74.63 38.11 52.45 12.1

Table 3

Correlation of the N use efficiency traits"

性状
Trait
地上部生物
增加量
Shoot biomass increment
地下部生物
增加量
Root biomass increment
地上部氮
累积量
Shoot N accumulation
地下部氮
累积量
Root N accumulation
地上部氮生理
利用效率
Shoot N physiological utilization efficiency
地下部氮生理
利用效率
Root N physiological utilization efficiency
地上部生物增加量 Shoot biomass increment 1.000
地下部生物增加量 Root biomass increment 0.620** 1.000
地上部氮累积量 Shoot N accumulation 0.686** 0.711** 1.000
地下部氮累积量 Root N accumulation 0.643** 0.986** 0.753** 1.000
地上部氮生理利用效率
Shoot N physiological utilization efficiency
0.806** 0.316** 0.226** 0.312** 1.000
地下部氮生理利用效率
Root N physiological utilization efficiency
-0.230** -0.129 -0.356** -0.261** -0.050 1.000

Fig. 1

Manhattan plot for GWAS of N use efficiency traits A: Shoot biomass increment; B: Root biomass increment; C: Root N accumulation; D: Shoot N physiological utilization efficiency"

Fig. 2

Q-Q plot for GWAS of N use efficiency traits A: Shoot biomass increment; B: Root biomass increment; C: Root N accumulation; D: Shoot N physiological utilization efficiency"

Table 4

Shoot N physiological utilization efficiency associated loci"

染色体
Chromosome
物理位置
Position (Mb)
SNP个数
No. of SNPs
P
Chr.1 6.6806—6.8006 1 8.95904493533599
22.0211—22.0411 2 9.25247697926448
22.5536—22.7536 11
22.8065—23.1636 48
23.7800—24.0800 6
24.6486—24.6686 1
25.5962—25.8837 3
Chr.8 4.5428—4.7648 7 10.16845708524990
Chr.13 20.3201—20.3592 3 8.80255904945633
20.8716—20.9597 11

Fig. 3

Relative expression of N efficient candidate genes under low N treatment N0: Low N; CK: Normal N. * and **indicate difference significant at the 0.05 and 0.01 level, respectively"

[1]
王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 483-492.

doi: 10.3864/j.issn.0578-1752.2021.03.003
WANG X, LI Q, CAO Q H, MA D F. Current status and future prospective of sweetpotato production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 483-492. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.03.003
[2]
唐忠厚, 李洪民, 张爱君, 史新敏, 魏猛, 陈晓光, 丁艳锋. 甘薯叶光合特性与块根主要性状对氮素供应形态的响应. 植物营养与肥料学报, 2013, 19(6): 1494-1501.
TANG Z H, LI H M, ZHANG A J, SHI X M, WEI M, CHEN X G, DING Y F. Responses of nitrogen supply forms on leaf photosynthetic characteristics and root characters of sweetpotato. Plant of Nutrition and Fertilizer Science, 2013, 19(6): 1494-1501. (in Chinese)
[3]
HAN X, WU K, FU X D, LIU Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. aBIOTECH, 2020, 1(4): 255-275.

doi: 10.1007/s42994-020-00027-w pmid: 36304130
[4]
赵鹏, 刘明, 靳容, 陈晓光, 张爱君, 唐忠厚, 魏猛. 长期施用有机肥对潮土区甘薯碳氮积累与分配的影响. 中国农业科学, 2021, 54(10): 2142-2153.

doi: 10.3864/j.issn.0578-1752.2021.10.010
ZHAO P, LIU M, JIN R, CHEN X G, ZHANG A J, TANG Z H, WEI M. Effects of long-term application of organic fertilizer on carbon and nitrogen accumulation and distribution of sweetpotato in fluvoaquic soil area. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153. (in Chinese)
[5]
LI P C, CHEN F J, CAI H G, LIU J C, PAN Q C, LIU Z G, GU R L, MI G H, ZHANG F S, YUAN L X. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. Journal of Experimental Botany, 2015, 66(11): 3175-3188.

doi: 10.1093/jxb/erv127 pmid: 25873660
[6]
YANG X H, XIA X Z, ZHANG Z Q, NONG B X, ZENG Y, XIONG F Q, WU Y Y, GAO J, DENG G F, LI D T. QTL mapping by whole genome re-sequencing and analysis of candidate genes for nitrogen use efficiency in rice. Frontiers in Plant Science, 2017, 8: 1634.

doi: 10.3389/fpls.2017.01634 pmid: 28983307
[7]
SINGH R, SARIPALLI G, KUMAR A, GAUTAM T, SINGH S K, GAHLAUT V, KUMAR S, MEHER P K, MISHRA R P, SINGH V K, SHARMA P K, BALYAN H S, GUPTA P K. QTL analysis for nitrogen use efficiency in wheat (Triticum aestivum L.). Euphytica, 2022, 219(1): 1-22.

doi: 10.1007/s10681-022-03130-9
[8]
SAINI D K, CHOPRA Y, PAL N, CHAHAL A, SRIVASTAVA P, GUPTA P K. Meta-QTLs, ortho-MQTLs and candidate genes for nitrogen use efficiency and root system architecture in bread wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2021, 27(10): 2245-2267.

doi: 10.1007/s12298-021-01085-0
[9]
SUN H Y, QIAN Q, WU K, LUO J J, WANG S S, ZHANG C W, MA Y F, LIU Q, HUANG X Z, YUAN Q B, HAN R X, ZHAO M, DONG G J, GUO L B, ZHU X D, GOU Z H, WANG W, WU Y J, LIN H X, FU X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 2014, 46(6): 652-656.

doi: 10.1038/ng.2958 pmid: 24777451
[10]
WANG Q, SU Q M, NIAN J Q, ZHANG J, GUO M, DONG G J, HU J, WANG R S, WEI C S, LI G W, WANG W, GUO H S, LIN S Y, QIAN W F, XIE X Z, QIAN Q, CHEN F, ZUO J R. The Ghd7 Transcription Factor Represses the ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14(6): 1012-1023.

doi: 10.1016/j.molp.2021.04.012
[11]
WANG Q, NIAN J Q, XIE X Z, YU H, ZHANG J, BAI J T, DONG G J, HU J, BAI B, CHEN L C, XIE Q J, FENG J, YANG X L, PENG J L, CHEN F, QIAN Q, LI J Y, ZUO J R. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nature Communications, 2018, 9(1): 735.

doi: 10.1038/s41467-017-02781-w
[12]
曹志斌, 李瑶, 曾博虹, 毛凌华, 蔡耀辉, 吴晓峰, 袁林峰. 非洲栽培稻垩白粒率耐热性QTL的定位. 中国水稻科学, 2020, 34(2): 135-142.

doi: 10.16819/j.1001-7216.2020.9086
CAO Z B, LI Y, ZENG B H, MAO L H, CAI Y H, WU X F, YUAN L F. QTL mapping for heat tolerance of chalky grain rate of Oryza glaberrima steud. Chinese Journal of Rice Science, 2020, 34(2): 135-142. (in Chinese)
[13]
XU Y F, WANG R F, TONG Y P, ZHAO H T, XIE Q G, LIU D C, ZHANG A M, LI B, XU H X, AN D G. Mapping QTLs for yield and nitrogen-related traits in wheat: Influence of nitrogen and phosphorus fertilization on QTL expression. Theoretical and Applied Genetics, 2014, 127(1): 59-72.

doi: 10.1007/s00122-013-2201-y pmid: 24072207
[14]
LIAN X M, XING Y Z, YAN H, XU C G, LI X H, ZHANG Q F. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics, 2005, 112(1): 85-96.

pmid: 16189659
[15]
MARQUEZ-CEDILLO L A, HAYES P M, JONES B L, KLEINHOFS A, LEGGE W G, ROSSNAGEL B G, SATO K, ULLRICH S E, WESENBERG D M, NORTH AMERICAN BARLEY GENOME MAPPING PROJECT. QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theoretical and Applied Genetics, 2000, 101: 173-184.

doi: 10.1007/s001220051466
[16]
TAM V, PATEL N, TURCOTTE M, BOSSÉ Y, PARÉ G, MEYRE D. Benefits and limitations of genome-wide association studies. Nature Reviews Genetics, 2019, 20(8): 467-484.

doi: 10.1038/s41576-019-0127-1 pmid: 31068683
[17]
TIBBS CORTES L, ZHANG Z W, YU J M. Status and prospects of genome‐wide association studies in plants. The Plant Genome, 2021, 14(1): e20077.

doi: 10.1002/tpg2.v14.1
[18]
WANG Q, TANG J L, HAN B, HUANG X H. Advances in genome-wide association studies of complex traits in rice. Theoretical and Applied Genetics, 2020, 133: 1415-1425.

doi: 10.1007/s00122-019-03473-3 pmid: 31720701
[19]
LIU C, CHEN K, ZHAO X Q, WANG X Q, SHEN C C, ZHU Y J, DAI M L, QIU X J, YANG R W, XING D Y, PANG Y, XU J L. Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice, 2019, 12: 1-13.

doi: 10.1186/s12284-018-0262-x
[20]
YOUSEF R, REZA B M, ALIREZA T, HADI A, INGVARSSON PÄR K. Genome-wide association study of agronomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biology, 2019, 19(1): 541.

doi: 10.1186/s12870-019-2165-4 pmid: 31805861
[21]
SINGH B D, SINGH A K. Marker-assisted selection//Marker- Assisted Plant Breeding:Principles and Practices. New Delhi: Springer India, 2015: 259-293.
[22]
LI Q, LU X L, WANG C J, SHEN L, DAI L P, HE J L, YANG L, LI P Y, HONG Y F, ZHANG Q, DONG G J, HU J, ZHANG G H, REN D Y, GAO Z Y, GUO L B, QIAN Q, ZHU L, ZENG D L. Genome-wide association study and transcriptome analysis reveal new QTL and candidate genes for nitrogen‐deficiency tolerance in rice. The Crop Journal, 2022, 10(4): 942-951.

doi: 10.1016/j.cj.2021.12.006
[23]
LIU Y Q, WANG H R, JIANG Z M, WANG W, XU R N, WANG Q H, ZHANG Z H, LI A F, LIANG Y, OU S J, LIU X J, CAO S Y, TONG H N, WANG Y H, ZHOU F, LIAO H, HU B, CHU C C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605.

doi: 10.1038/s41586-020-03091-w
[24]
SASAI R M, TABUCHI H, SHIRASAWA K, KISHIMOTO K, SATO S, OKADA Y, KURAMOTO A, KOBAYASHI A, ISOBE S, TAHARA M, MONDEN Y. Development of molecular markers associated with resistance to meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato. DNA Research, 2019, 26(5): 399-409.

doi: 10.1093/dnares/dsz018 pmid: 31377774
[25]
马猛. 紫甘薯SSR标记遗传图谱构建及主要农艺性状QTL定位[D]. 北京: 中国农业科学院, 2021.
MA M. Construction of SSR marker genetic map and QTL mapping of main agronomic traits in purple sweet potato[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[26]
宁运旺, 马洪波, 张辉, 汪吉东, 许仙菊, 张永春. 甘薯源库关系建立、发展和平衡对氮肥用量的响应. 作物学报, 2015, 41(3): 432-439.
NING Y W, MA H B, ZHANG H, WANG J D, XU X J, ZHANG Y C. Response of sweetpotato in source-sink relationship establishment, expanding, and balance to nitrogen application rates. Acta Agronomica Sinica, 2015, 41(3): 432-439. (in Chinese)

doi: 10.3724/SP.J.1006.2015.00432
[27]
刘明, 李洪民, 张爱君, 陈晓光, 靳容, 蒋薇, 唐忠厚. 不同氮肥与密度水平对鲜食甘薯产量和品质的影响. 华北农学报, 2020, 35(1): 122-130.

doi: 10.7668/hbnxb.20190278
LIU M, LI H M, ZHANG A J, CHEN X G, JIN R, JIANG W, TANG Z H. Effects of nitrogen fertilizer and density on yield and quality of fresh edible type sweetpotato. Acta Agriculturae Boreali-Sinica, 2020, 35(1): 122-130. (in Chinese)

doi: 10.7668/hbnxb.20190278
[28]
范文静, 刘明, 赵鹏, 张强强, 吴德祥, 郭鹏宇, 朱晓亚, 靳容, 张爱君, 唐忠厚. 甘薯苗期耐低氮基因型筛选及不同氮效率类型综合评价. 中国农业科学, 2022, 55(10): 1891-1902.

doi: 10.3864/j.issn.0578-1752.2022.10.002
FAN W J, LIU M, ZHAO P, ZHANG Q Q, WU D X, GUO P Y, ZHU X Y, JIN R, ZHANG A J, TANG Z H. Screening of sweetpotato varieties tolerant to low nitrogen at seedling stage and evaluation of different nitrogen efficiencies. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.10.002
[29]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262
[30]
KANG H M, SUL J H, SERVICE S K, ZAITLEN N A, KONG S Y, FREIMER N B, SABATTI C, ESKIN E. Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 2010, 42(4): 348-354.

doi: 10.1038/ng.548 pmid: 20208533
[31]
LI Y, CAO K, ZHU G R, FANG W C, CHEN C W, WANG X W, ZHAO P, GUO J, DING T Y, GUAN L P, ZHANG Q, GUO W W, FEI Z J, WANG L R. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biology, 2019, 20(1): 36.

doi: 10.1186/s13059-019-1648-9 pmid: 30791928
[32]
贵会平, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松, 付小琼, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30(4): 326-337.
GUI H P, DONG Q, ZHANG H H, WANG X R, PANG N C, WANG Z, LIU J, ZHENG C S, FU X Q, ZHANG X L, SONG M Z. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage. Cotton Science, 2018, 30(4): 326-337. (in Chinese)
[33]
房增国, 高璐阳. 8个鲜食型甘薯品种的氮营养差异研究. 作物杂志, 2015(1): 86-90.
FANG Z G, GAO L Y. Differences of nitrogen nutrition of eight fresh-eating sweet potato cultivars. Crops, 2015(1): 86-90. (in Chinese)
[34]
李强, 赵海, 靳艳玲, 朱金城, 马代夫. 中国甘薯产业助力国家粮食安全的分析与展望. 江苏农业学报, 2022, 38(6): 1484-1491.
LI Q, ZHAO H, JIN Y L, ZHU J C, MA D F. Analysis and perspectives of sweetpotato industry contributing to national food security in China. Jiangsu Journal of Agricultural Sciences, 2022, 38(6): 1484-1491. (in Chinese)
[35]
严勇亮, 张恒, 张金波, 时晓磊, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦主要籽粒性状的全基因组关联分析. 麦类作物学报, 2022, 42(10): 1182-1191.
YAN Y L, ZHANG H, ZHANG J B, SHI X L, GENG H W, XIAO J, LU Z F, NI Z F, CONG H. Genome-wide association study of grain traits of spring wheat. Journal of Triticeae Crops, 2022, 42(10): 1182-1191. (in Chinese)
[36]
WANG S B, FENG J Y, REN W L, HUANG B, ZHOU L, WEN Y J, ZHANG J, DUNWELL J M, XU S Z, ZHANG Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 2016, 6(1):19444.

doi: 10.1038/srep19444
[37]
KWINTA J, BIELAWSKI W. Glutamate dehydrogenase in higher plants. Acta Physiologiae Plantarum, 1998, 20(4):453-463.

doi: 10.1007/s11738-998-0033-1
[38]
邱旭华. 水稻氮代谢基础研究: 谷氨酸脱氢酶作用的分子机理[D]. 武汉: 华中农业大学, 2009.
QIU X H. Basic research on nitrogen metabolism in rice: molecular mechanism of glutamate dehydrogenase[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)
[39]
DU C Q, LIN J Z, DONG L A, LIU C, TANG D Y, YAN L, CHEN M D, LIU S, LIU X M. Overexpression of an NADP (H)-dependent glutamate dehydrogenase gene, TrGDH, from Trichurus improves nitrogen assimilation, growth status and grain weight per plant in rice. Breeding Science, 2019, 69(3): 429-438.

doi: 10.1270/jsbbs.19014
[40]
NOLTE S A, YOUNG B G, MUNGUR R, LIGHTFOOT D A. The glutamate dehydrogenase gene gdhA increased the resistance of tobacco to glufosinate. Weed Research, 2004, 44(4): 335-339.

doi: 10.1111/wre.2004.44.issue-4
[41]
乔新荣, 陈琼. 植物向光素信号通路中NPH3蛋白的研究进展. 植物生理学报, 2015, 51(6): 829-834.
QIAO X R, CHEN Q. Advances of NPH3 in plant phototropin signaling. Plant Physiology Communications, 2015, 51(6): 829-834. (in Chinese)
[42]
ZHANG S Y, ZHU L M, SHEN C B, JI Z, ZHANG H P, ZHANG T, LI Y, YU J P, YANG N, HE Y B, TIAN Y N, WU K, WU J Y, HARBERD N P, ZHAO Y D, FU X D, WANG S K, LI S. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. The Plant Cell, 2021, 33(3): 566-580.

doi: 10.1093/plcell/koaa037
[43]
CHEN H I, LI P F, YANG C H. NAC-like gene GIBBERELLIN SUPPRESSING FACTOR regulates the gibberellin metabolic pathway in response to cold and drought stresses in Arabidopsis. Scientific Reports, 2019, 9: 19226.

doi: 10.1038/s41598-019-55429-8
[44]
WU K, WANG S N, SONG W Z, ZHANG J Q, WANG Y, LIU Q, YU J P, YE Y F, LI S, CHEN J F, ZHAO Y, WANG J, WU X K, WANG M Y, ZHANG Y J, LIU B M, WU Y J, HARBERD N P, FU X D. Enhanced sustainable green revolution yield via nitrogen- responsive chromatin modulation in rice. Science, 2020, 367(6478): eaaz2046.
[45]
TIAN X L, XIA X C, XU D G, LIU Y Q, XIE L, HASSAN M A, SONG J, LI F J, WANG D S, ZHANG Y, HAO Y F, LI G Y, CHU C C, HE Z H, CAO S H. Rht24b, an ancient variation of TaGA2ox‐A9, reduces plant height without yield penalty in wheat. New Phytologist, 2022, 233(2): 738-750.

doi: 10.1111/nph.v233.2
[46]
BECK T, HALL M N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 1999, 402(6762): 689-692.

doi: 10.1038/45287
[47]
LIU Y L, DUAN X L, ZHAO X D, DING W L, WANG Y W, XIONG Y. Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabidopsis. Developmental Cell, 2021, 56(9): 1283-1295.

doi: 10.1016/j.devcel.2021.03.022
[48]
梁喜欢, 龚丝雨, 尼金玉, 杨帅强, 王子璇, 王俊, 刘齐元. 不同基因型烟草氮代谢关键酶活性对低氮胁迫的响应. 分子植物育种, 2020, 18(22): 7554-7561.
LIANG X H, GONG S Y, NI J Y, YANG S Q, WANG Z X, WANG J, LIU Q Y. Response of key enzymes activity of nitrogen metabolism to low nitrogen stress in different genotypes tobacco. Molecular Plant Breeding, 2020, 18(22): 7554-7561. (in Chinese)
[1] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[2] JIANG Dong, WANG Xu, LI RenJing, ZHAO XiaoDong, DAI XiangSheng, LIU ZhengWei. Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2023, 56(8): 1547-1560.
[3] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[4] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[5] WANG YongLiang, XU ZiHang, LI Shen, LIANG ZheMing, XUE XiaoRong, BAI Ju, YANG ZhiPing. Straw Returning and Post-Silking Irrigating Improve the Grain Yield and Utilization of Water and Nitrogen of Spring Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3599-3614.
[6] CHENG Li, YANG ShengNan, ZHU YanSong, WANG Xu, ZHAO WanTong, LI RenJing, LI Pei, YUAN ZhongJie, JIANG Dong. Genetic Variation Analysis and Candidate Genes Mining of Regulating Flesh Color in Pomelo [J]. Scientia Agricultura Sinica, 2023, 56(17): 3420-3434.
[7] GUO XinHu, MA Jing, LI ZhongFeng, CHU JinPeng, XU HaiCheng, JIA DianYong, DAI XingLong, HE MingRong. Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2262-2273.
[8] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[9] YIN YanZhen, HOU LiMing, LIU Hang, TAO Wei, SHI ChuanZong, LIU KaiYue, ZHANG Ping, NIU PeiPei, LI Qiang, LI PingHua, HUANG RuiHua. Identifying Quantitative Trait Loci Associated with Teat Number of Pig by Genomic Analysis [J]. Scientia Agricultura Sinica, 2023, 56(10): 1994-2006.
[10] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[11] SANG ShiFei, CAO MengYu, WANG YaNan, WANG JunYi, SUN XiaoHan, ZHANG WenLing, JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[12] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[13] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[14] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[15] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!