Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (17): 3433-3442.doi: 10.3864/j.issn.0578-1752.2016.17.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Influences of Pax6 PAI Subdomain on MITF, TYR, TYRP1 and TYRP2 in Melanocytes

NIE Rui-qiang1, YANG Yu-jing1, XIE Jian-shan1,2, FAN Rui-wen1, XU Dong-mei1, YU Xiu-ju1, DUAN Zhi-cheng1, DONG Chang-sheng1   

  1. 1College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi
    2School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001
  • Received:2016-01-26 Online:2016-09-01 Published:2016-09-01

Abstract: 【Objective】 Highly conserved PAX family has important effects on the differentiation of melanocytes and production of melanin. It has mainly binding sites with target gene in PD domain that is included by all of PAX family, on the other hand, the PAI subdomain, which is located in amino terminal of PD domain, has most important effects on PD domain which bound with target gene. Many reports show that Pax6 has the most important effects on the differentiation of retinal pigment epithelial cells. This experiment studies the function of PD domain and PAI subdomain of PAX family by analysing the function of Pax6 PAI subdomain.【Method】The structure of Pax6 PD domain was analyzed by Psipred. The target gene binding sites of Pax6 PD domain was analyzed by NCBI. The binding sites of Pax6 PD domain to the promoter of MITF, TYR, TYRP1, and TYRP2 were analyzed by Jasper. The coding sequences of Pax6 PAI subdomain was amplified by PCR and the Pax6 PAI subdomain was cloned into the T-Vector, meanwhile, confirmed by sequencing. The fragment was then subcloned into a mammalian expression vector, resulting in a construction that contained a promoter driving the expression of green fluorescent protein (GFP). The plasmid vector was confirmed by sequencing. Then, the mouse melanocytes were transfected with the vector using Liposome 2000. Three methods were used in the result test, they were quantitative real-time PCR, western blot and melanin content measurement. 【Result】The target gene binding sites of Pax6 PD domain was mainly distributed in PAI subdomain which is located in amino terminal of PD domain. There was a binding site of Pax6 PD domain at -695 base of MITF promoter; Two binding sites of Pax6 PD domain at -873 base and -1133 base of TYR promoter; One binding site of Pax6 PD domain at -629 base of TYRP1 promoter; And one binding site of Pax6 PD domain at -655 base of TYRP2 promoter. The RT-PCR and western blot results showed that the four target genes and melanin content were significantly increased. MITF mRNA was significantly increased by 2.05 times (P<0.01), TYR mRNA was increased by 2.09 times, TYRP1 mRNA was increased by 2.93 times(P<0.05), TYRP2 mRNA was increased by 3.62 times (P<0.01). Compared with the control group, MITF protein was significantly increased by 1.7 times (P<0.01), TYR protein was increased to 2 times (P<0.05), TYRP1 protein was increased by 1.9 times(P<0.01), TYRP2 protein was increased to 1.37 times. Meanwhile, the melanin content was significantly increased by 1.33 times (P<0.001).【Conclusion】Results of the study demonstrated that the Pax6 PAI subdomain still promoted the expression of MITF, TYR, TYRP1, and TYRP2, while increased the production of melanin of melanocytes.

Key words: PAI subdomain, Pax6, melanin

[1]    COHEN M A, WERT K J, GOLDMANN J, MARKOULAKI S, BUGANIM Y, FU D, JAENISCH R. Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos. Proceedings of the National Academy of Sciences of the United States of America 2016, 113: 1570-1575.
[2]    CHEN Y, PAN L, SU Z, WANG J, LI H, MA X, LIU Y, LU F, QU J, HOU L. The transcription factor TBX2 regulates melanogenesis in melanocytes by repressing Oca2. Molecular and Cellular Biochemistry 2016, 415(1/2):103-109.
[3]    HEVER A M, WILLIAMSON K A, VAN HEYNINGEN V. Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clinical genetics, 2006, 69(6):459-470.
[4]    MONSORO-BURQ A H. PAX transcription factors in neural crest development. Seminars in Cell & Developmental Biology, 2015, 44: 87-96.
[5]    WEI F, LI M, CHENG S Y, WEN L, LIU M H, SHUAI J. Cloning, expression, and functional characterization of the rat Pax6 5a orthologous splicing variant. Gene, 2014, 547(1):169-174.
[6]    PAIXAO-CORTES V R, SALZANO F M, BORTOLINI M C. Origins and evolvability of the PAX family. Seminars in Cell & Developmental Biology, 2015, 44:64-74.
[7]    EPSTEIN J A, GLASER T, CAI J, JEPEAL L, WALTON D S, MAAS R L. Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes & Development, 1994, 8(17):2022-2034.
[8]    HUETTL R E, ECKSTEIN S, STAHL T, PETRICCA S, NINKOVIC J, GOTZ M, HUBER A B. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Developmental Biology, 2015,413:86-103.
[9]    BERY A, MEROT Y, RETAUX S. Genes expressed in mouse cortical progenitors are enriched in Pax, Lhx, and Sox transcription factor putative binding sites. Brain Research, 2015,1633:37-51.
[10]   FUJIMURA N, KLIMOVA L, ANTOSOVA B, SMOLIKOVA J, MACHON O, KOZMIK Z. Genetic interaction between Pax6 and β-catenin in the developing retinal pigment epithelium. Development Genes and Evolution, 2015, 225(2):121-128.
[11]   CARBE C, GARG A, CAI Z, LI H, POWERS A, ZHANG X. An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. The Journal of Biological Chemistry, 2013, 288(17):12130-12141.
[12]   ZHANG S J, LI Y F, TAN R R, TSOI B, HUANG W S, HUANG Y H, TANG X L, HU D, YAO N, YANG X. A new gestational diabetes mellitus model, hyperglycemia-induced eye malformation via inhibiting Pax6 in chick embryo. Disease Models & Mechanisms, 2016, 9:177-186.
[13]   聂瑞强, 杨玉静, 谢建山, 范瑞文, 高文俊, 董常生. 黑色素细胞中过量表达Pax610Neu基因对MITF和TYR的影响. 中国农业科学, 2016, 49(11):2214-2221.
NIE R Q, YANG Y J, XIE J S, FAN R W, GAO W J, DONG C S. The influences of over-expressing Pax610Neu on MITF and TYR in melanocytes. Scientia Agricultura Sinica, 2016, 49(11):2214-2221.(in Chinese)
[14]   FAVOR J, PETERS H, HERMANN T, SCHMAHL W, CHATTERJEE B, NEUHAUSER-KLAUS A, SANDULACHE R. Molecular characterization of Pax6(2Neu) through Pax6(10Neu): an extension of the Pax6 allelic series and the identification of two possible hypomorph alleles in the mouse Mus musculus. Genetics, 2001, 159(4): 1689-1700.
[15]   SHUKLA S, MISHRA R. Predictions on impact of missense mutations on structure function relationship of PAX6 and its alternatively spliced isoform PAX6(5a). Interdisciplinary Sciences, Computational Life Sciences, 2012, 4(1):54-73.
[16]   MARCHLER-BAUER A, DERBYSHIRE M K, GONZALES N R, LU S, CHITSAZ F, GEER L Y, GEER R C, HE J, GWADZ M, HURWITZ D I. CDD: NCBI's conserved domain database. Nucleic Acids Research, 2015, 43(Database issue):D222-226.
[17]   DONG Y, WANG H, CAO J, REN J, FAN R, HE X, SMITH G W, DONG C. Nitric oxide enhances melanogenesis of alpaca skin melanocytes in vitro by activating the MITF phosphorylation. Molecular and Cellular Biochemistry, 2011, 352(1/2):255-260.
[18]   SINGH R K, MALLELA R K, CORNUET P K, REIFLER A N, CHERVENAK A P, WEST M D, WONG K Y, NASONKIN I O. Characterization of three-dimensional retinal tissue derived from human embryonic stem cells in adherent monolayer cultures. Stem Cells and Development, 2015, 24(23):2778-2795.
[19]   PARVINI M, PARIVAR K, SAFARI F, TONDAR M. Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions. In vitro Cellular & Developmental Biology Animal, 2015, 51(3): 310-318.
[20]   朱芷葳, 贺俊平, 于秀菊, 程志学, 董常生. Mitf-M在羊驼皮肤组织的表达与序列分析及免疫组织化学定位. 中国农业科学,2012, 45(4):794-800.
ZHU Z W, HE J P, YU X J, CHENG Z X, DONG C S. Expression, sequence analysis and immunohistochemical localization of Mitf-M transcription factor in alpaca skin. Scientia Agricultura Sinica, 2012, 45(4):794-800. (in Chinese)
[21]   SUZUKI K T, ISOYAMA Y, KASHIWAGI K, SAKUMA T, OCHIAI H, SAKAMOTO N, FURUNO N, KASHIWAGI A, YAMAMOTO T. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biology Open, 2013, 2(5): 448-452.
[22]   YAHALOM C, SHARON D, DALIA E, SIMHON S B, SHEMESH  E, BLUMENFELD A. Combined occurrence of autosomal dominant aniridia and autosomal recessive albinism in several members of a family. Ophthalmic Genetics, 2015, 36(2):175-179.
[23]   RAVIV S, BHARTI K, RENCUS-LAZAR S, COHEN-TAYAR Y, SCHYR R, EVANTAL N, MESHORER E, ZILBERBERG A, IDELSON M, REUBINOFF B. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genetics, 2014, 10(5):e1004360.
[24]   马淑慧, 薛霖莉, 徐刚, 侯亚琴, 耿建军, 曹靖, 赫晓燕, 王海东, 董常生. 黑色素细胞中过量表达miR-137对TYRP-1和TYRP-2的影响. 中国农业科学,2013, 46(16):3452-3459.
MA S H, XUE L L, XU G, HOU Y Q, GENG J J, CAO J, HE X Y, WANG H D, DONG C S. The Influences of over-expressing miR-137 on TYRP-1 and TYRP-2 in melanocytes. Scientia Agricultura Sinica, 2013, 46(16): 3452-3459. (in Chinese)
[25]   YANG S, ZHANG J, JI K, JIAO D, FAN R, DONG C. Characterization and expression of soluble guanylate cyclase in skins and melanocytes of sheep. Acta Histochemica, 2016,118:219-224.
[26]   ZEMKE M, DRAGANOVA K, KLUG A, SCHOLER A, ZURKIRCHEN L, GAY M H, CHENG P, KOSEKI H, VALENTA T, SCHUBELER D. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biology, 2015, 13:103.
[27]   CANTU C, ZIMMERLI D, HAUSMANN G, VALENTA T, MOOR A, AGUET M, BASLER K. Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes & Development, 2014, 28(17):1879-1884.
[28]   贾小云, 金雷皓, 苗潋涓, 丁娜, 范瑞文, 董常生. miR-663通过靶向TGF-β1调控羊驼黑色素细胞的黑色素生成. 中国农业科学,2015,48(1):165-173.
JIA X Y, JIN L H, MIAO L J, DING N, FAN R W, DONG C S. Melanin synthesis of alpaca melanocytes regulated by miR-663 through targeting TGF-β1. Scientia Agricultura Sinica, 2015, 48(1): 165-173. (in Chinese)
[29]   PLANQUE N, LECONTE L, COQUELLE FM, MARTIN P, SAULE S. Specific Pax-6/microphthalmia transcription factor interactions involve their DNA-binding domains and inhibit transcriptional properties of both proteins. The Journal of Biological Chemistry, 2001, 276(31):29330-29337.
[30]   YASUMOTO K, YOKOYAMA K, TAKAHASHI K, TOMITA Y, SHIBAHARA S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. The Journal of Biological Chemistry 1997, 272(1):503-509.
[1] NIE Rui-qiang, YANG Yu-jing, XIE Jian-shan, FAN Rui-wen, GAO Wen-jun, DONG Chang-sheng. The Influences of Over-Expressing Pax610Neu on MITF and TYR in Melanocytes [J]. Scientia Agricultura Sinica, 2016, 49(11): 2214-2221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!