Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3124-3139.doi: 10.3864/j.issn.0578-1752.2023.16.007

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of StCYP83 Gene Family in Potato and Analysis of Its Function in Resistance Against Late Blight

KONG LeHui(), ZONG DeQian, SHI QingYao, YIN PanPan, WU WenYu, TIAN Peng, SHAN WeiXing(), QIANG XiaoYu()   

  1. College of Agronomy, Northwest A & F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2023-06-08 Accepted:2023-06-14 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】The objective of this study is to identify StCYP83 gene family in potato and analyze their expression patterns in response to Phytophthora infestans infection, so as to mine the StCYP83 genes with potential function in resistance to late blight and provide novel resistance gene resources for molecular resistance breeding in potato.【Method】The members of StCYP83 gene family were identified by bidirectional BLAST method. The basic information of StCYP83 protein sequence, subcellular localization and conserved motifs were analyzed by ExPASy Prot Param, Cell-Ploc 2.0 and ESPript, etc. The qRT-PCR was used to analyze the expression pattern of StCYP83 genes in response to P. infestans infection. The immune function of candidate gene StCYP83B1 against P. infestans was analyzed in either Agrobacterium tumefaciens-mediated transient transformation in leaves of Nicotiana benthamiana or stably transformed potato lines with overexpression (OE) of StCYP83B1.【Result】A total of 10 StCYP83 genes were identified in the potato genome, which were named StCYP83B1-StCYP83B10, respectively, with the encoded protein lengths ranging from 387 to 503 aa and molecular weights ranging from 44 to 57 kDa. The subcellular localization of StCYP83 proteins was predicted in the endoplasmic reticulum. The qRT-PCR confirmed that members of StCYP83 could be induced in response to P. infestans infection, suggesting that StCYP83 genes might play a role in the interaction between potato and P. infestans. Accordingly, StCYP83B1 with the highest homology to AtCYP83B1 was selected as a candidate gene for subsequent immune functional analysis. The pathogenicity assay on N. benthamiana leaves showed that overexpression of StCYP83B1 could enhance plant resistance against P. infestans. In accordance with this, overexpression of StCYP83B1 could significantly promote the up-regulation expression of PTI marker genes (NbWRKY7 and NbWRKY8), SA signaling marker genes (NbPR1 and NbPR2), JA signaling marker genes (NbPR3 and NbLOX) and enhance the reactive oxygen species (ROS) burst induced by flg22. In addition, cysteine site in the conserved motif of StCYP83B1 protein was required for its immune function. StCYP83B1 overexpression (StCYP83B1-OE) lines showed enhanced resistance to P. infestans. In accordance with this, StCYP83B1-OE could enhance PTI immune responses, including the increased level of ROS induced by flg22 and the significantly up-regulated expression of PTI marker genes (StWRKY7, StWRKY8 and StACRE31) as well as SA-mediated signaling marker genes (StPR1, StPR2, StPR5 and StPAL2) and JA-mediated signaling marker genes (StLOX, StAOS and StOPR3) in response to P. infestans infection.【Conclusion】A total of 10 members of StCYP83 family were identified, which could be induced by P. infestans infection in different degrees. StCYP83B1 regulates plant resistance to P. infestans by activating PTI, SA and JA signaling pathways. The cysteine site in the heme binding domain of StCYP83B1 is required for its immune function.

Key words: potato (Solanum tuberosum), StCYP83 gene family, Phytophthora infestans, plant resistance, late blight

Table 1

Physiochemical properties of StCYP83 gene family"

基因名
Gene name
基因ID
Gene ID
蛋白长度
Length (aa)
分子量
Molecular weight (Da)
等电点
pI
StCYP83B1 PGSC0003DMG400016616 496 56706.30 9.00
StCYP83B2 PGSC0003DMG400031519 491 56113.44 8.53
StCYP83B3 PGSC0003DMG401031520 497 57164.85 8.85
StCYP83B4 PGSC0003DMG402031520 496 56749.34 9.10
StCYP83B5 PGSC0003DMG400011325 476 54658.53 8.79
StCYP83B6 PGSC0003DMG401021057 420 47673.35 5.45
StCYP83B7 PGSC0003DMG400026778 503 57072.21 7.12
StCYP83B8 PGSC0003DMG402021057 461 52325.37 9.00
StCYP83B9 PGSC0003DMG400006024 473 54683.80 7.56
StCYP83B10 PGSC0003DMG400019899 387 44732.72 6.63

Fig. 1

Analysis on the structure of StCYP83 gene family"

Fig. 2

Multiple alignment of StCYP83 family proteins The red cover regions represented sequences maintaining consistent amino acids"

Fig. 3

Expression profiles of StCYP83 in response to P. infestans infection Housekeeping gene StEF1α of potato as internal reference. The expression level of StCYP83 at 0 hpi was set to 1.The error bar represented SE. Statistical significance was analyzed by Student’s t-test. (*: P<0.05, **: P<0.01). The same as below"

Fig. 4

Overexpression of StCYP83B1 could enhance plant resistance to P. infestans"

Fig. 5

Overexpression of StCYP83B1 could enhance plant PTI immune response"

Fig. 6

Overexpression of StCYP83B1 could up-regulate expression of genes involved in SA (A) and JA (B) signaling pathways The N. benthamiana leaves were transiently expressed with either GFP or StCYP83B1 for 2 days prior to the inoculation with P. infestans zoospores, and total RNA was extracted from leaves at 0 and 6 hpi. Housekeeping gene NbEF1α of N. benthamiana as internal reference. The expression level of SA and JA marker genes at 0 hpi in GFP-expressed leaves was set to 1"

Fig. 7

The cysteine site in the heme binding domain of StCYP83B1 protein was required for plant resistance against P. infestans"

Fig. 8

Overexpression of StCYP83B1 could enhance potato resistance to P. infestans"

Fig. 9

StCYP83B1-OE could enhance PTI in potato plants"

Fig. 10

Expression of genes involved in SA (A) and JA (B) signaling pathways in StCYP83B1-OE lines Housekeeping gene StEF1α of potato as internal reference. The expression level of SA and JA related genes at 0 hpi in Atlantic was set to 1 (n=3)"

[1]
肖金钟. 马铃薯生产中的常见病害. 现代园艺, 2020, 43(18): 37-40.
XIAO J Z. Common diseases in potato production. Contemporary Horticulture, 2020, 43(18): 37-40. (in Chinese)
[2]
李铁锁. 马铃薯病害综合防治方法探讨. 南方农业, 2021, 15(8): 76-78.
LI T S. Discussion on integrated control methods of potato diseases. South China Agriculture, 2021, 15(8): 76-78. (in Chinese)
[3]
MERILLON J M, RAMAWAT K G. Co-Evolution of Secondary Metabolites. Germany: Spring, 2020: 1-25.
[4]
WERCK-REICHHART D, FEYEREISEN R. Cytochromes P450: A success story. Genome Biology, 2000, 1(6): REVIEWS3003.
[5]
NELSON D R. Progress in tracing the evolutionary paths of cytochrome P450. Biochimica et Biophysica Acta, 2011, 1814(1): 14-18.

doi: 10.1016/j.bbapap.2010.08.008 pmid: 20736090
[6]
BARNABA C, RAMAMOORTHY A. Picturing the membrane- assisted choreography of cytochrome P450 with lipid nanodiscs. ChemPhysChem, 2018, 19(20): 2603-2613.

doi: 10.1002/cphc.v19.20
[7]
HASEMANN C A, KURUMBAIL R G, BODDUPALLI S S, PETERSON J A, DEISENHOFER J. Structure and function of cytochromes P450: A comparative analysis of three crystal structures. Structure, 1995, 3(1): 41-62.

pmid: 7743131
[8]
BAK S, BEISSON F, BISHOP G, HAMBERGER B, HÖFER R, PAQUETTE S, WERCK-REICHHART D. Cytochromes p450. The Arabidopsis Book, 2011, 9: e0144.

doi: 10.1199/tab.0144
[9]
郭书巧, 束红梅, 巩元勇, 蒋璐, 朱静雯, 倪万潮. 菊科植物青蒿细胞色素P450基因家族分析. 江苏农业学报, 2015, 31(6): 1232-1241.
GUO S Q, SHU H M, GONG Y Y, JIANG L, ZHU J W, NI W C. Bioinformatics analysis of cytochrome P450 monooxygenase gene family from Artemisia annua. Jiangsu Journal of Agricultural Sciences, 2015, 31(6): 1232-1241. (in Chinese)
[10]
ZHU B, WANG Z, YANG J, ZHU Z, WANG H. Isolation and expression of glucosinolate synthesis genes CYP83A1 and CYP83B1 in Pak Choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee) Hanelt). International Journal of Molecular Sciences, 2012, 13(5): 5832-5843.

doi: 10.3390/ijms13055832
[11]
程文财, 丁聪聪, 赵云, 王茂林. 油菜BnCYP83B1基因的克隆与生长素相互作用的研究. 四川大学学报(自然科学版), 2014, 51(5): 1092-1098.
CHENG W C, DING C C, ZHAO Y, WANG M L. Cloning and mRNA expression of BnCYP83B1 gene under 2,4-D hormone in Brassica napus. Journal of Sichuan University (Natural Science Edition), 2014, 51(5): 1092-1098. (in Chinese)
[12]
TUO D C, YAN P, ZHAO G Y, CUI H G, ZHU G P, LIU Y, YANG X K, WANG H, LI X Y, SHEN W T, ZHOU P. An efficient papaya leaf distortion mosaic potyvirus vector for virus-induced gene silencing in papaya. Horticulture Research, 2021, 8(1): 144.

doi: 10.1038/s41438-021-00579-y pmid: 34193861
[13]
赵桂红, 石宏, 张妮妮, 陆苗, 王晶, 李焘. 菘蓝CYP83B1基因的克隆与表达分析. 植物科学学报, 2017, 35(1): 64-72.
ZHAO G H, SHI H, ZHANG N N, LU M, WANG J, LI T. Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort. Plant Science Journal, 2017, 35(1): 64-72. (in Chinese)
[14]
赵桂红, 张妮妮, 高帅帅, 陆苗, 王晶, 张天翼, 李焘. 菘蓝CYP83A1基因的克隆、表达特性及原核表达分析. 基因组学与应用生物学, 2018, 37(1): 302-312.
ZHAO G H, ZHANG N N, GAO S S, LU M, WANG J, ZHANG T Y, LI T. Cloning, expression characteristics and prokaryotic expression analysis of CYP83A1 gene from Isatis indigotica Fort. Genomics and Applied Biology, 2018, 37(1): 302-312. (in Chinese)
[15]
高灿红, 董丽丽, 关晓弯, 赵良侠, 林俊城, 徐福乐, 张水明. 青花菜萝卜硫素合成相关基因BoCYP83A1的克隆与表达分析. 西北植物学报, 2016, 36(7): 1302-1307.
GAO C H, DONG L L, GUAN X W, ZHAO L X, LIN J C, XU F L, ZHANG S M. Cloning and expression analysis of sulforaphane synthesis-related gene BoCYP83A1 in broccoli. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(7): 1302-1307. (in Chinese)
[16]
HANSEN C H, DU L, NAUR P, OLSEN C E, AXELSEN K B, HICK A J, PICKETT J A, HALKIER B A. CYP83b 1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. The Journal of Biological Chemistry, 2001, 276(27): 24790-24796.

doi: 10.1074/jbc.M102637200
[17]
BAK S, TAX F E, FELDMANN K A, GALBRAITH D W, FEYEREISEN R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. The Plant Cell, 2001, 13(1): 101-111.

doi: 10.1105/tpc.13.1.101
[18]
BAK S, FEYEREISEN R. The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiology, 2001, 127(1): 108-118.

doi: 10.1104/pp.127.1.108 pmid: 11553739
[19]
NGOU B P M, AHN H K, DING P, JONES J D G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592(7852): 110-115.

doi: 10.1038/s41586-021-03315-7
[20]
WANG H, HE H, QI Y, MCLELLAN H, TIAN Z, BIRCH P R J, TIAN Z. The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity. Plant Cell Reports, 2019, 38(2): 173-182.

doi: 10.1007/s00299-018-2359-5 pmid: 30488097
[21]
ZHONG C, REN Y, QI Y, YU X, WU X, TIAN Z. PAMP-responsive ATL gene StRFP1 and its orthologue NbATL60 positively regulate Phytophthora infestans resistance in potato and Nicotiana benthamiana. Plant Science, 2018, 270: 47-57.

doi: 10.1016/j.plantsci.2018.01.016
[22]
CLAY N K, ADIO A M, DENOUX C, JANDER G, AUSUBEL F M. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 2009, 323(5910): 95-101.

doi: 10.1126/science.1164627
[23]
SMOLEN G, BENDER J. Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics, 2002, 160(1): 323-332.

doi: 10.1093/genetics/160.1.323
[24]
HEMM M R, RUEGGER M O, CHAPPLE C. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. The Plant Cell, 2003, 15(1): 179-194.

doi: 10.1105/tpc.006544
[25]
PIETERSE C M, VAN WEES S C, VAN PELT J A, KNOESTER M, LAAN R, GERRITS H, WEISBEEK P J, VAN LOON L C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell, 1998, 10(9): 1571-1580.

doi: 10.1105/tpc.10.9.1571
[26]
WEIS C, HILDEBRANDT U, HOFFMANN T, HEMETSBERGER C, PFEILMEIER S, KÖNIG C, SCHWAB W, EICHMANN R, HÜCKELHOVEN R. CYP83A 1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum. New Phytologist, 2014, 202(4): 1310-1319.

doi: 10.1111/nph.2014.202.issue-4
[27]
WEIS C, PFEILMEIER S, GLAWISCHNIG E, ISONO E, PACHL F, HAHNE H, KUSTER B, EICHMANN R, HÜCKELHOVEN R. Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. Molecular Plant Pathology, 2013, 14(8): 791-802.

doi: 10.1111/mpp.12050 pmid: 23782494
[28]
XU R, KONG W W, PENG Y F, ZHANG K X, LI R, LI J. Identification and expression pattern analysis of the glucosinolate biosynthetic gene BoCYP83B1 from broccoli. Biologia Plantarum, 2018, 62(3): 521-533.

doi: 10.1007/s10535-018-0797-0
[29]
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 2008, 3(6): 1101-1108.

doi: 10.1038/nprot.2008.73 pmid: 18546601
[30]
SIRIM D, WIDMANN M, WAGNER F, PLEISS J. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC Structural Biology, 2010, 10: 34.

doi: 10.1186/1472-6807-10-34 pmid: 20950472
[31]
孔乐辉, 宗德乾, 史青尧, 殷盼盼, 巫文玉, 单卫星, 强晓玉. 马铃薯StCYP83B1基因过表达载体构建及遗传转化. 西北农业学报, doi: 10.7606/j.issn.1004-1389.2024.10.001.

doi: 10.7606/j.issn.1004-1389.2024.10.001
KONG L H, ZONG D Q, SHI Q Y, YIN P P, WU W Y, SHAN W X, QIANG X Y. Construction of overexpression vector of StCYP83B1 in potato (Solanum tuberosum) and development of StCYP83B1-overexpressed transgenic potato lines. Acta Agriculturae Boreali-Occidentalis Sinica, doi: 10.7606/j.issn.1004-1389.2024.10.001. (in Chinese)

doi: 10.7606/j.issn.1004-1389.2024.10.001
[32]
WILLIAMS P A, COSME J, SRIDHAR V, JOHNSON E F, MCREE D E. Mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membrane binding and functional diversity. Molecular Cell, 2000, 5(1): 121-131.

doi: 10.1016/s1097-2765(00)80408-6 pmid: 10678174
[33]
PAQUETTE S M, BAK S, FEYEREISEN R. Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA and Cell Biology, 2000, 19(5): 307-317.

doi: 10.1089/10445490050021221
[34]
汪思远, 蒋世翠, 王康宇, 王义, 张美萍. 植物细胞色素P450的研究进展. 吉林蔬菜, 2014(4): 41-45.
WANG S Y, JIANG S C, WANG K Y, WANG Y, ZHANG M P. Research process of cytochrome P450 in plant. Jilin Vegetable, 2014(4): 41-45. (in Chinese)
[35]
HATAE T, HARA S, YOKOYAMA C, YABUKI T, INOUE H, ULLRICH V, TANABE T. Site-directed mutagenesis of human prostacyclin synthase: Alteration of Cys441 of the Cys-pocket, and Glu347 and Arg350 of the EXXR motif. FEBS Letters, 1996, 389(3): 268-272.

doi: 10.1016/0014-5793(96)00600-X
[36]
LAMBETH J D. NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 2004, 4(3): 181-189.

doi: 10.1038/nri1312 pmid: 15039755
[37]
PAN Q, CUI B, DENG F, QUAN J, LOAKE G J, SHAN W. RTP1 encodes a novel endoplasmic reticulum (ER) localized protein in Arabidopsis and negatively regulates resistance against biotrophic pathogens. New Phytologist, 2016, 209(4): 1641-1654.

doi: 10.1111/nph.2016.209.issue-4
[38]
YANG Y, ZHAO Y, ZHANG Y, NIU L, LI W, LU W, LI J, SCHÄFER P, MENG Y, SHAN W. A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst. The Plant Cell, 2022, 34(6): 2343-2363.

doi: 10.1093/plcell/koac082 pmid: 35262740
[39]
NIE P, LI X, WANG S, GUO J, ZHAO H, NIU D. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Frontiers in Plant Science, 2017, 8: 238.
[40]
DURRANT W E, ROWLAND O, PIEDRAS P, HAMMOND- KOSACK K E, JONES J D. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. The Plant Cell, 2000, 12(6): 963-977.

doi: 10.1105/tpc.12.6.963
[41]
LI Y, ZHANG Y, WANG Q X, WANG T T, CAO X L, ZHAO Z X, ZHAO S L, XU Y J, XIAO Z Y, LI J L, FAN J, YANG H, HUANG F, XIAO S, WANG W M. RESISTANCE TO POWDERY MILDEW8.1 boosts pattern-triggered immunity against multiple pathogens in Arabidopsis and rice. Plant Biotechnology Journal, 2018, 16(2): 428-441.

doi: 10.1111/pbi.2018.16.issue-2
[42]
PIETERSE C M, VAN DER DOES D, ZAMIOUDIS C, LEON- REYES A, VAN WEES S C. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 2012, 28: 489-521.

doi: 10.1146/annurev-cellbio-092910-154055 pmid: 22559264
[43]
HONG Y, LIU Q, CAO Y, ZHANG Y, CHEN D, LOU X, CHENG S, CAO L. The OsMPK15 negatively regulates Magnaporthe oryza and Xoo disease resistance via SA and JA signaling pathway in rice. Frontiers in Plant Science, 2019, 10: 752.

doi: 10.3389/fpls.2019.00752
[44]
ZHU Y, HU X, WANG P, WANG H, GE X, LI F, HOU Y. The phospholipase D gene GhPLDδ confers resistance to Verticillium dahliae and improves tolerance to salt stress. Plant Science, 2022, 321: 111322.

doi: 10.1016/j.plantsci.2022.111322
[1] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[2] Fen LU,RunJie MENG,Jie WU,JianJiang ZHAO,Yang LI,QiuYan BI,XiuYing HAN,JingHua LI,WenQiao WANG. Monitoring of Resistance Dynamics of Phytophthora infestans to Cymoxanil and Control Efficacy Validation of Cymoxanil-Containing Fungicides Against Potato Late Blight [J]. Scientia Agricultura Sinica, 2022, 55(18): 3556-3564.
[3] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[4] YAN XiaoCui, LI ZaiFeng, YANG HuaLi, ZHANG HuanHuan, GEBREWAHID Takele Weldu, YAO ZhanJun, LIU DaQun, ZHOU Yue. Analysis of Wheat Leaf Rust Resistance Genes in 30 Important Wheat Cultivars [J]. Scientia Agricultura Sinica, 2017, 50(2): 272-285.
[5] HAN Liu-sha, WANG Jia-zhen, SHI Ling-zhi, ZHU Lin, LI Xing, LIU Da-qun. QTL Mapping for Adult-Plant Resistance to Leaf Rust in Chinese Wheat Cultivar Lantian9 [J]. Scientia Agricultura Sinica, 2015, 48(12): 2346-2353.
[6] WANG Jing, WANG Hai-Xia, TIAN Zhen-Dong. Histochemical Assays and Signaling Pathway Analysis of β-Aminobutyric Acid Induced Resistance in Potato Against Phytophthora infestans [J]. Scientia Agricultura Sinica, 2014, 47(13): 2571-2579.
[7] LI Hong-Hao, PENG Hua-Xian, XI Ya-Dong, WANG Xiao-Li, LIU Bo-Wei. Characteristics of Mating Types, Physiological Races, Metalaxyl Sensitivity and mtDNA Haplotypes of Phytophthora infestans in Sichuan Province [J]. Scientia Agricultura Sinica, 2013, 46(4): 728-736.
[8] ZHANG Peng-12, WANG Wen-Qiao-1, HUANG Qi-Liang-2, MENG Run-Jie-1, ZHAO Jian-Jiang-1, MA Zhi-Qiang-1, HAN Xiu-Ying-1, ZHANG Xiao-Feng-1. Development of 40% Fluopicolide•Pyraclostrobin Suspension Concentrate and Its Controlling Efficacy to Potato Late Blight in the Field [J]. Scientia Agricultura Sinica, 2013, 46(15): 3142-3150.
[9] ZHANG Chun-Zhi, LIU Lei, SUN Yu-Yan, ZHOU Long-Xi, YANG Yu-Hong, XIE Bing-Yan, LI Jun-Ming. Identification of QTLs Conferring Resistance to Late Blight in Solanum lycopersicoides LA2951 Introgression Line Population [J]. Scientia Agricultura Sinica, 2012, 45(6): 1093-1105.
[10] WU Tian,XIE Cong-hua
. Cloning and Activity Analysis of the Promoter of Potato Protein Kinase Gene StPK1
[J]. Scientia Agricultura Sinica, 2011, 44(5): 867-873 .
[11] HE Zhong-hu,LAN Cai-xia1,CHEN Xin-min,ZOU Yu-chun,ZHUANG Qiao-sheng,XIA Xian-chun. Progress and Perspective in Research of Adult-Plant Resistance to Stripe Rust and Powdery Mildew in Wheat [J]. Scientia Agricultura Sinica, 2011, 44(11): 2193-2215 .
[12] ZHU Hua-zhong,WANG Zhong-wei,WU Ling,Ravi P. SINGH,J. HUERTA-ESPINO,HE Zhong-hu, HU Jia,CHEN Fang,XIA Xian-chun
. QTL Mapping for Adult-Plant Resistance to Stripe Rust in Wheat Cultivar Chuanmai 107
[J]. Scientia Agricultura Sinica, 2010, 43(4): 706-712 .
[13] HAN De-jun,WANG Qi-lin,ZHANG Li,WEI Guo-rong,ZENG Qing-dong,ZHAO Jie,WANG Xiao-jie,HUANG Li-li,KANG Zhen-sheng
. Evaluation of Resistance of Current Wheat Cultivars to Stripe Rust in Northwest China, North China and the Middle and Lower Reaches of Changjiang River Epidemic Area
[J]. Scientia Agricultura Sinica, 2010, 43(14): 2889-2896 .
[14] . QTL Mapping for Adult-Plant Resistance to Leaf Rust in CIMMYT Wheat Cultivar Saar [J]. Scientia Agricultura Sinica, 2009, 42(2): 388-397 .
[15] . Postulation of Leaf Rust Resistance Genes in 47 New Wheat Cultivars(Lines)in China [J]. Scientia Agricultura Sinica, 2007, 40(9): 1925-1935 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!