Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3062-3076.doi: 10.3864/j.issn.0578-1752.2023.16.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

A Comprehensive Assessment of Proso Millet Varieties Tested in the State Multi-Region Trial by GYT Biplot Analysis

MA ZhiXiu(), CHAI ShaoHua, GUO Yan, SHI Xing, YANG QingHua, GAO JinFeng, GAO XiaoLi, FENG BaiLi, YANG Pu()   

  1. College of Agronomy, Northwest A & F University/State Key Laboratory of Crop Stress Biology in Arid Regions, Yangling 712100, Shaanxi
  • Received:2023-03-23 Accepted:2023-05-22 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】GYT biplot analysis was employed to analyze agronomic traits, yields and cultivar-trait interactions of test proso millet varieties in different trial sites and comprehensively asses and classify these test varieties in term of their multiple traits, so as to provide a theoretical basis for reasonable arrangements and zonations of proso millet varieties in China.【Method】GGE biplot, GT biplot and GYT biplot along with the analysis of correlation were employed to comprehensively assess 20 varieties tested in the State Multi-region Trial for Proso Millet in 15 trial sites in 2019-2020 in terms of their growth period, plant heights, node numbers, main spike lengths, grain weights per spike, 1000-kernel weights and yields.【Result】It was showed by the analysis of correlation that in both non-waxy and waxy proso millet varieties, the yields were significantly and positively correlated with the growth period and negatively correlated with the main spike lengths, and the plant heights was significantly and positively correlated with the growth period and main spike lengths. In non-waxy proso millet varieties, the yields were also significantly negatively correlated with the node numbers, and the node numbers and 1000-kernel weights were significantly and positively correlated. In waxy proso millet varieties, the yields were significantly and positively correlated with the 1000-kernel weights, and the growth period were significantly and positively correlated with the plant heights and 1000-kernel weights. The analysis of genotype-trait interactive effects by GT biplot showed that the main components of GT biplot PC1 and PC2 explained 61.81% and 69.96% of genotype-trait interactive effects in no-waxy and waxy proso millets, respectively. The correlations between agronomic traits of the tested varieties displayed by GT biplot were basically consistent with Pearson correlation coefficients. The correlations between the yield-trait combinations of the tested varieties were analyzed by GYT biplot, and all the traits of these combinations were significantly and positively correlated. In terms of calculated ideal indexes, Yi 11-02-92-4, Gu 19-63, 0515-2-2, Yi 11-03-3-2-2 and Zhenglongmi 1 were identified as varieties with a good yield-traits combination performance. In terms of comprehensive performances, Chimi 3, Xinong 2018-N02, Xinong 2018-N10, Y1660, Xinong 18-W02 and Xinong 18-W06 poorly performed. It followed that Yi 11-02-92-4 and 0515-2-2 had wider adaptabilities and better yields than the other varieties in different planting areas, showing an absolute regional yield advantage. 【Conclusion】In assessing multiple traits of millet varieties, GYT biplot analysis was more reliable than GGE and GT biplot analysis, so that it was an effective method to scientifically assess merits of proso millet varieties. Among the varieties tested in the state multi-region trial for proso millet, the no-waxy variety with the best comprehensive performance was Yi 11-02-92-4 and suitable to be planted in spring planting areas of proso millet in Northeast China and spring and summer-planting areas of proso millet on the Loess Plateau. The waxy variety of 0515-2-2 with a better comprehensive performance was suitable to be planted in spring-planting areas of proso millet in northern China and spring- and summer-planting areas of proso millet on the Loess Plateau.

Key words: GYT biplot, ideal index, proso millet, multi-region trial, yield-trait combination

Fig. 1

GGE biplot of non-waxy and waxy proso millet yield in 15 environments A and B are the Mean vs. stability view and Which-won-where view of non-waxy proso millet yield GGE biplot, respectively; C and D are the Mean vs. stability view and Which-won-where view of waxy millet yield GGE biplot respectively. HC: Huachi; HN: Huining; SJZ: Shijiazhuang; ZJK: Zhangjiajie; QQHE: Qiqihaer; BC: Baicheng; FX: Fuxin; CF: Chifeng; DLTQ: Dalateqi; TL: Tongliao; ZGEQ: Zhungeerqi; GY: Guyuan; DT: Datong; YA: Yanan; YL: Yulin"

Fig. 2

Genotype by trait (GT) biplot of proso millet area test A: Non-waxy proso millet; B: Waxy proso millet. GP: Growth period; PH: Plant heights; NN: Node numbers; MSL: Main spike lengths; GWE: Grain weights per spike; TGW: 1000-kernel weights; YD: Yields. The same as below"

Fig. 3

Correlation heat map of agronomic traits of non-waxy and waxy proso millet A: Non-waxy proso millet; B: Waxy proso millet. *, ** and *** indicate significant at P<0.05, P<0.01 and P<0.001, respectively"

Fig. 4

Genotype by yield×trait (GYT) biplot of proso millet regional adaptation test A: Non-waxy proso millet; B: Waxy proso millet"

Table 1

Pearson correlation coefficient of yield and trait combination of non-waxy and waxy proso millet"

产量×性状Yield×trait YD×GP YD×PH YD×NN YD×MSL YD×GWE YD×TGW
产量×生育天数YD×GP 1 0.748** 0.831** 0.800** 0.720** 0.856**
产量×株高YD×PH 0.804** 1 0.819** 0.860** 0.701** 0.880**
产量×主茎节数YD×NN 0.829** 0.923** 1 0.773** 0.765** 0.912**
产量×主穗长YD×MSL 0.874** 0.843** 0.851** 1 0.693** 0.824**
产量×穗粒重YD×GWE 0.728** 0.795** 0.774** 0.717** 1 0.767**
产量×千粒重YD×TGW 0.841** 0.894** 0.852** 0.832** 0.770** 1

Fig. 5

Mean vs. stability view (A, D), Which-won-where view (B, E) and variety ranking view (C, F) of GYT biplot of proso millet A, B, C: Non-waxy proso millet; D, E, F: Waxy proso millet. The small circle in figure A and D represents the "average value of yield-trait combination", and the straight line with a single arrow is the average environment axis (AEA). Along the direction indicated by the arrow, the higher the composite index of the varieties is. From the position of each test variety to the AEA axis as a vertical line, according to the direction of the arrow, the more forward the vertical foot, the better the comprehensive performance of the variety, and the variety can be ranked accordingly [26]. In addition, when the variety and trait combination were located on the same side of the AEA axis, it indicated that the trait combination of the variety had better performance. When the combination of variety and trait was located on the opposite side of the AEA axis, it indicated that the variety had poor performance in this combination of trait. B and E are the "which-won-where" view of the biplot [35]. The varieties farthest from the origin are connected in turn to form irregular polygons to include all varieties. The vertical lines of each edge of the polygon were drawn from the origin of the biplot. These vertical lines divide the yield-trait combination into different sector areas, each sector corresponding to a polygon vertex. Varieties at the apex of each sector region had the largest yield-trait combination of all varieties within that sector region. C and F are the "Rank Genotypes" view of the variety ordering of the GYT biplot. The ideal variety is the variety closest to the circle where the arrow of the mean environmental axis is located, which has the highest yield-trait combination performance"

[1]
HUNT H V, BADAKSHI F, ROMANOVA O, HOWE C J, JONES M K, PAT HESLOP-HARRISON J S. Reticulate evolution in Panicum (Poaceae): The origin of tetraploid broomcorn millet, P. miliaceum. Journal of Experimental Botany, 2014, 65(12): 3165-3175.

doi: 10.1093/jxb/eru161
[2]
LU H Y, ZHANG J P, LIU K B, WU N Q, LI Y M, ZHOU K S, YE M L, ZHANG T Y, ZHANG H J, YANG X Y, SHEN L C, XU D K, LI Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7367-7372.
[3]
CALAMAI A, MASONI A, MARINI L, DELL’ACQUA M, GANUGI P, BOUKAIL S, BENEDETTELLI S, PALCHETTI E. Evaluation of the agronomic traits of 80 accessions of proso millet (Panicum miliaceum L.) under mediterranean pedoclimatic conditions. Agriculture, 2020, 10(12): 578.

doi: 10.3390/agriculture10120578
[4]
杨璞, Rabia Begum Panhwar, 李境, 高金锋, 高小丽, 王鹏科, 冯佰利. 基于国家品种区域试验数据的中国糜子品种产量和性状变化. 中国农业科学, 2017, 50(23): 4517-4530.

doi: 10.3864/j.issn.0578-1752.2017.23.006
YANG P, PANHWAR R B, LI J, GAO J F, GAO X L, WANG P K, FENG B L. Changes of yield and traits of broomcorn millet cultivars in China based on the data from national cultivars regional adaptation test. Scientia Agricultura Sinica, 2017, 50(23): 4517-4530. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.23.006
[5]
LI H, LA S K, ZHANG X, GAO L H, TIAN Y Q. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. The ISME Journal, 2021, 15(10): 2865-2882.

doi: 10.1038/s41396-021-00974-2
[6]
ZOU C S, LI L T, MIKI D, LI D L, TANG Q M, XIAO L H, RAJPUT S, DENG P, PENG L, JIA W, HUANG R, ZHANG M L, SUN Y D, HU J M, FU X, SCHNABLE P S, CHANG Y X, LI F, ZHANG H, FENG B L, ZHU X G, LIU R Y, SCHNABLE J C, ZHU J K, ZHANG H. The genome of broomcorn millet. Nature Communications, 2019, 10(1): 436.

doi: 10.1038/s41467-019-08409-5 pmid: 30683860
[7]
NOWAK V, DU J, CHARRONDIÈRE U R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 2016, 193: 47-54.

doi: 10.1016/j.foodchem.2015.02.111
[8]
SALEH A S M, ZHANG Q, CHEN J, SHEN Q. Millet grains: Nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 2013, 12(3): 281-295.

doi: 10.1111/crf3.2013.12.issue-3
[9]
刁现民, 程汝宏. 十五年区试数据分析展示谷子糜子育种现状. 中国农业科学, 2017, 50(23): 4469-4474.

doi: 10.3864/j.issn.0578-1752.2017.23.001
DIAO X M, CHENG R H. Current breeding situation of foxtail millet and common millet in China as revealed by exploitation of 15 years regional adaptation test data. Scientia Agricultura Sinica, 2017, 50(23): 4469-4474. (in Chinese)
[10]
董扬, 闫锋, 李清泉, 季生栋, 李旭业, 赵索, 武琳琳, 周超. 13个糜子品种高产稳产性分析. 黑龙江农业科学, 2020, 317(11): 12-14.
DONG Y, YAN F, LI Q Q, JI S D, LI X Y, ZHAO S, WU L L, ZHOU C. Analysis of the high and stable yield of 13 millet varieties. Heilongjiang Agricultural Sciences, 2020, 317(11): 12-14. (in Chinese)
[11]
冯佰利, 李冬梅, 杨清华, 王洪露, 王云浩, 张飞飞, 陈鹏良. 糜子优异种质资源品质性状分析与综合评价. 榆林学院学报, 2023, 33(2): 27-33.
FENG B L, LI D M, YANG Q H, WANG H L, WANG Y H, ZHANG F F, CHEN P L. Analysis and comprehensive evaluation of quality traits of prosomillet germplasm resources. Journal of Yulin University, 2023, 33(2): 27-33. (in Chinese)
[12]
周瑜, 刘佳佳, 张盼盼, 屈洋, 张骥如飞, 朱明旗, 冯佰利. 糜子叶片防御酶系及抗氧化物质对黑穗病菌胁迫的响应. 中国农业科学, 2016, 49(17): 3298-3307.

doi: 10.3864/j.issn.0578-1752.2016.17.005
ZHOU Y, LIU J J, ZHANG P P, QU Y, ZHANG J R F, ZHU M Q, FENG B L. Response of leaf defensive enzymes and antioxidant to smut fungus stress in broomcorn millet. Scientia Agricultura Sinica, 2016, 49(17): 3298-3307. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.17.005
[13]
张盼盼, 冯佰利, 王鹏科, 高小丽, 高金锋, 宋慧, 张小东, 柴岩. PEG胁迫下糜子苗期抗旱指标鉴选研究[J]. 中国农业大学学报, 2012, 17(1): 53-59.
ZHANG P P, FENG B L, WANG P K, GAO X L, GAO J F, SONG H, ZHANG X D, CHAI Y. Study on identification of drought-resistance indexes at seedling stage in broomcorn millet under PEG stress. Journal of China Agricultural University, 2012, 17(1): 53-59. (in Chinese)
[14]
袁雨豪, 杨清华, 党科, 杨璞, 高金锋, 高小丽, 王鹏科, 陆平, 刘敏轩, 冯佰利. 糜子资源耐盐性评价与盐胁迫生理响应. 中国农业科学, 2019, 52(22): 4066-4090.

doi: 10.3864/j.issn.0578-1752.2019.22.011
YUAN Y H, YANG Q H, DANG K, YANG P, GAO J F, GAO X L, WANG P K, LU P, LIU M X, FENG B l. Salt-tolerance evaluation and physiological response of salt stress of broomcorn millet (Panicum miliaceum L.). Scientia Agricultura Sinica, 2019, 52(22): 4066-4090. (in Chinese)
[15]
王君杰, 王海岗, 曹晓宁, 陈凌, 刘思辰, 田翔, 秦慧彬, 乔治军. 糜子不同性状光周期敏感性的综合评价. 中国农业科学, 2020, 53(3): 474-485.

doi: 10.3864/j.issn.0578-1752.2020.03.002
WANG J J, WANG H G, CAO X N, CHEN L, LIU S C, TIAN X, QIN H B, QIAO Z J. Comprehensive evaluation of photoperiod sensitivity based on different traits of broomcorn millet. Scientia Agricultura Sinica, 2020, 53(3): 474-485. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.03.002
[16]
董扬. 糜子萌芽期耐冷种质资源综合评价体系构建. 江苏农业科学, 2022, 50(21): 82-89.
DONG Y. Construction of comprehensive evaluation system for cold tolerance germplasm resources of broomcorn millet at germination stage. Jiangsu Agricultural Sciences, 2022, 50(21): 82-89. (in Chinese)
[17]
董扬. 240份糜子种质资源萌芽期耐冷性综合评价及筛选. 干旱地区农业研究, 2022, 40(6): 23-33.
DONG Y. Comprehensive evaluation and screening of cold tolerance of 240 broomcorn millet germplasm resources at germination stage. Agricultural Research in the Arid Areas, 2022, 40(6): 23-33. (in Chinese)
[18]
杨清华, 邱军, 李海, 杨天育, 程炳文, 赵敏, 刘国庆, 高小丽, 冯佰利. 糜子育成品种农艺、产量及品质性状综合鉴定与评价. 中国农业科学, 2017, 50(23): 4530-4547.

doi: 10.3864/j.issn.0578-1752.2017.23.007
YANG Q H, QIU J, LI H, YANG T Y, CHENG B W, ZHAO M, LIU G Q, GAO X L, FENG B L. Comprehensive evaluation of agronomic, yield and quality traits of broomcorn millet (Panicum miliaceum L.) cultivars. Scientia Agricultura Sinica, 2017, 50(23): 4530-4547. (in Chinese)
[19]
HARCOURT A H, HARVEY P H, LARSON S G, SHORT R V. Testis weight, body weight and breeding system in primates. Nature, 1981, 293(5827): 55-57.

doi: 10.1038/293055a0
[20]
江婉玥, 胡晓航, 马亚怀, 李彦丽. 基于AMMI模型和GGE双标图在甜菜品种区试中的应用. 分子植物育种, 2023: 1-12.
JIANG W Y, HU X H, MA Y H, LI Y L. Application of AMMI model and GGE biplot in regional test of sugarbeet. Molecular plant breeding, 2023:1-12. (in Chinese)
[21]
魏鹏程, 陈杜, 罗英舰, 郑迎霞, 杨锦越, 罗上轲, 程乙, 王安贵, 宋碧. 基于AMMI和GGE双标图的贵州不同生态区春玉米丰产性稳产性和试点辨别力评价. 玉米科学, 2023, 31(1): 22-31.
WEI P C, CHEN D, LUO Y J, ZHENG Y X, YANG J Y, LUO S K, CHENG Y, WANG A G, SONG B. Evaluation of the high yield, stability and pilot discriminative power of spring maize in different ecological areas of Guizhou based on AMMI and GGE-biplot. Journal of Maize Sciences, 2023, 31(1): 22-31. (in Chinese)
[22]
FINLAY K W, WILKINSON G N. The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 1963, 14(6): 742.

doi: 10.1071/AR9630742
[23]
GAUCH H G, PIEPHO H P, ANNICCHIARICO P. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science, 2008, 48(3): 866.

doi: 10.2135/cropsci2007.09.0513
[24]
严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36(11): 1805-1819.

doi: 10.3724/SP.J.1006.2010.01805
YAN W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010, 36(11): 1805-1819. (in Chinese)
[25]
YAN W K, FRÉGEAU-REID J. Genotype by Yield*Trait (GYT) biplot: A novel approach for genotype selection based on multiple traits. Scientific Reports, 2018, 8: 8242.

doi: 10.1038/s41598-018-26688-8 pmid: 29844453
[26]
KENDAL E. Comparing durum wheat cultivars by genotype × yield ×trait and genotype × trait biplot method. Chilean Journal of Agricultural Research, 2019, 79(4): 512-522.

doi: 10.4067/S0718-58392019000400512
[27]
许乃银, 李健. 基于GGE双标图的长江流域国审棉花品种分类特征评价. 中国农业科学, 2014, 47(24): 4780-4789.

doi: 10.3864/j.issn.0578-1752.2014.24.002
XU N Y, LI J. Evaluation on the classification characteristics of national registered cotton varieties in the Yangtze River valley based on GGE biplot. Scientia Agricultura Sinica, 2014, 47(24): 4780-4789. (in Chinese)
[28]
YAN W, FRÉGEAU-REID J, MOUNTAIN N, KOBLER J. Genotype and management evaluation based on genotype by Yield*Trait (GYT) analysis. Crop Breeding, Genetics and Genomics, 2019, 1: e190002.
[29]
GABRIEL K R. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 1971, 58(3): 453-467.

doi: 10.1093/biomet/58.3.453
[30]
李亚杰, 李德明, 范士杰, 何建强, 刘毅, 张俊莲, 白江平, 王蒂. GGE双标图在马铃薯品种适应性及产量稳定性分析中的应用评价. 兰州大学学报(自然科学版), 2016, 52(5): 617-622.
LI Y J, LI D M, FAN S J, HE J Q, LIU Y, ZHANG J L, BAI J P, WANG D. Analysis of variety adaptability and yield stability of potato for evaluating GGE-biplot application. Journal of Lanzhou University (Natural Sciences), 2016, 52(5): 617-622. (in Chinese)
[31]
RAKSHIT S, GANAPATHY K N, GOMASHE S S, RATHORE A, GHORADE R B, NAGESH KUMAR M V N, GANESMURTHY K, JAIN S K, KAMTAR M Y, SACHAN J S, AMBEKAR S S, RANWA B R, KANAWADE D G, BALUSAMY M, KADAM D, SARKAR A, TONAPI V A, PATIL J V. GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica, 2012, 185(3): 465-479.

doi: 10.1007/s10681-012-0648-6
[32]
YAN W K. Singular-value partitioning in biplot analysis of multienvironment trial data. Agronomy Journal, 2002, 94(5): 990-996.
[33]
YAN W K. GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. Journal of the Indian Society of Agricultural Statistics, 2011, 65(2):181-193.
[34]
赵利蓉, 马珂, 张丽光, 汤沙, 原向阳, 刁现民. 不同生态区谷子品种农艺性状和品质分析. 作物杂志, 2022, 207(2): 44-53.
ZHAO L R, MA K, ZHANG L G, TANG S, YUAN X Y, DIAO X M. Analysis of agronomic traits and quality of foxtail millet varieties in different ecological regions. Crops, 2022, 207(2): 44-53. (in Chinese)
[35]
YAN W K. GGEbiplot-A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 2001, 93(5): 1111-1118.

doi: 10.2134/agronj2001.9351111x
[36]
孙佩, 张培风, 张玉红, 周联东, 李栋, 王蕊, 王文洁, 张瑞平, 李祥, 马朝阳, 李合顺, 王学军. 利用R语言GGE双标图进行黄淮海区玉米新组合评价分析. 中国种业, 2023(3): 85-90.
SUN P, ZHANG P F, ZHANG Y H, ZHOU L D, LI D, WANG R, WANG W J, ZHANG R P, LI X, MA C Y, LI H S, WANG X J. Evaluate and analysis of maize combination of different heterosis groups in Huang-huai-hai area by application of GGE biplot based on R language. Chinese Seed Industry, 2023(3): 85-90. (in Chinese)
[37]
张志芬, 付晓峰, 刘俊青, 杨海顺. 用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性. 作物学报, 2010, 36(8): 1377-1385.
ZHANG Z F, FU X F, LIU J Q, YANG H S. Yield stability and testing-site representativeness in national regional trials for oat lines based on GGE-biplot analysis. Acta Agronomica Sinica, 2010, 36(8): 1377-1385. (in Chinese)

doi: 10.3724/SP.J.1006.2010.01377
[38]
郑桂萍, 蔡永盛, 赵洋, 李丹丹, 郑悦, 潘世驹, 刘丽华. 利用AMMI模型进行寒地水稻品质分析. 核农学报, 2015, 29(2): 296-303.

doi: 10.11869/j.issn.100-8551.2015.02.0296
ZHENG G P, CAI Y S, ZHAO Y, LI D D, ZHENG Y, PAN S J, LIU L H. Application of AMMI model in the analysis of rice quality at cold area. Journal of Nuclear Agronomy, 2015, 29(2): 296-303. (in Chinese)
[39]
岳海旺, 魏建伟, 卜俊周, 陈淑萍, 彭海成, 李春杰, 李媛, 谢俊良, 叶美金. 河北省春播玉米品种产量和主要穗部性状GGE双标图分析. 玉米科学, 2018, 26(4): 28-35.
YUE H W, WEI J W, BU J Z, CHEN S P, PENG H C, LI C J, LI Y, XIE J L, YE M J. GGE-biplot analysis of grain yield and main ear characteristics for spring maize in Hebei Province. Journal of Maize Sciences, 2018, 26(4): 28-35. (in Chinese)
[40]
孙建军, 丁超明, 申培林, 郭新海, 郭玉玺, 王德新. 基于GGE双标图分析氮肥对小麦生长的影响. 中南农业科技, 2022, 43(5): 26-29.
SUN J J, DING C M, SHEN P L, GUO X H, GUO Y X, WANG D X. Effects of nitrogen fertilizer on wheat growth were analyzed based on GGE biplot. South-Central Agricultural Science and Technology, 2022, 43(5): 26-29. (in Chinese)
[41]
丁正权, 王士磊, 潘月云, 黄海祥. 基于GGE双标图的籼粳杂交稻‘中禾优1号’广适性分析. 分子植物育种, 2022: 1-10.
DING Z Q, WANG S L, PAN Y Y, HUANG H X. Analysis on the wide suitability of indica/japonica hybrid rice 'Zhongheyou 1' based on GGE Biplot. Molecular Plant Breeding, 2022: 1-10. (in Chinese)
[42]
ZHANG P P, SONG H, KE X W, JIN X J, YIN L H, LIU Y, QU Y, SU W, FENG N J, ZHENG D F, FENG B L. GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum L.) genotypes. Journal of Integrative Agriculture, 2016, 15(06): 1218-1227.

doi: 10.1016/S2095-3119(15)61157-1
[43]
DE OLIVEIRA T R A, DE AMARAL GRAVINA G, DE OLIVEIRA G H F, ARAÚJO K C, DE ARAÚJO L C, DAHER R F, VIVAS M, GRAVINA L M, DA CRUZ D P. The GT biplot analysis of green bean traits. Ciência Rural, 2018, 48(6): e20170757.
[44]
XU N Y, FOK M, LI J, YANG X N, YAN W K. Optimization of cotton variety registration criteria aided with a genotype-by-trait biplot analysis. Scientific Reports, 2017, 7(1): 17237.

doi: 10.1038/s41598-017-17631-4 pmid: 29222523
[45]
DOLATABAD S S, CHOUKAN R, HERVAN E M, DEHGHANI H. Multienvironment analysis of traits relation and hybrids comparison of maize based on the genotype by trait biplot. American Journal of Agricultural and Biological Sciences, 2010, 5(1): 107-113.

doi: 10.3844/ajabssp.2010.107.113
[46]
MALIK R, SHARMA H, SHARMA I, KUNDU S, VERMA A, SHEORAN S, KUMAR R, CHATRATH R. Genetic diversity of agro-morphological characters in Indian wheat varieties using GT biplot. Australian Journal of Crop Science, 2014, 8(9): 1266-1271.
[47]
SHARIFI P, EBADI A A. Relationships of rice yield and quality based on genotype by trait (GT) biplot. Anais Da Academia Brasileira De Ciencias, 2018, 90(1): 342-356.
[48]
WU E G, LIU L, ZHU M Q, WU H Q, YANG Q H, LI J, HAN X W, FENG B L. The life cycle and ultrastructure of the host response of the smut pathogen Anthracocystis destruens on broomcorn millet. Phytopathology, 2022, 112(5): 996-1002.

doi: 10.1094/PHYTO-04-21-0154-R
[1] Ming DONG,YanMiao JIANG,HaiQuan LI,LingLing GENG,JianYe LIU,ZhiHong QIAO,GuoQing LIU. Effects of Photoperiod Changes on Morphological Characters and Young Panicle Development in Proso Millet (Panicum Miliaceum L.) [J]. Scientia Agricultura Sinica, 2020, 53(6): 1118-1125.
[2] CHEN XiaoHong,HE JieLi,SHI TianTian,SHAO HuanHuan,WANG HaiGang,CHEN Ling,GAO ZhiJun,WANG RuiYun,QIAO ZhiJun. Developing SSR Markers of Proso Millet Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949.
[3] GONG XiangWei,DANG Ke,LI Jing,LUO Yan,ZHAO Guan,YANG Pu,GAO XiaoLi,GAO JinFeng,WANG PengKe,FENG BaiLi. Effects of Different Intercropping Patterns on Photosynthesis Production Characteristics and Water Use Efficiency of Proso Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4139-4153.
[4] DONG Jun-li, WANG Hai-gang, CHEN Ling, WANG Jun-jie, CAO Xiao-ning, WANG Lun, QIAO Zhi-jun. Analysis of Genetic Diversity and Structure of Proso Millet Core Germplasm [J]. Scientia Agricultura Sinica, 2015, 48(16): 3121-3131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!