Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2158-2171.doi: 10.3864/j.issn.0578-1752.2023.11.010

• HORTICULTURE • Previous Articles     Next Articles

Comparison of Sugar Content and Expression Analysis of Genes Related to Sugar Metabolism in Different Parts of Chinese Flowering Cabbage

FENG XianJun1(), WANG Li2, WANG Tong1, HOU LeiPing1(), LI MeiLan1()   

  1. 1 College of Horticulture,Shanxi Agricultural University, Taigu 030801, Shanxi
    2 Modern Agricultural Industry Development Service Center, Agricultural and Rural Bureau, Zuoquan County, Zuoquan 032600, Shanxi
  • Received:2022-07-26 Accepted:2022-11-15 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】 Chinese flowering cabbage has become one of the most popular vegetables in southern China due to its crunchy taste and high nutritional value. The type and content of sugars are the main factors for determining the sweetness and flavour of Chinese flowering cabbage. Therefore, this paper analyzed the sugar content and the expression of genes related to sugar metabolism and transport in different organs, so as to investigate the molecular mechanisms responsible for the differences in sugar content in different organs of Chinese flowering cabbage. 【Method】 In this experiment, the content of soluble sugars, sucrose, glucose and fructose in leaves, stalks and flower buds were determined by high performance liquid chromatography (HPLC). The expression of genes in leaves, stalks and buds was analyzed comprehensively and systematically by transcriptome sequencing (RNA-seq), and the differentially expressed genes (DEGs) between three different organs were identified using DESeq2 software. In addition, the expression of genes encoding enzymes involved in the sugar metabolic pathway and transport process was analyzed, and the correlation with sugar content were analyzed on OmicShare. Moreover, the expression of some genes was verified using quantitative real-time fluorescence PCR (qRT-PCR).【Result】The sugar content varied significantly among the different organs of Chinese flowering cabbage. Soluble sugars, sucrose, glucose and fructose all showed a trend of buds>stalks>leaves. The glucose content in flower buds was 1.3 and 1.6 times of that in stalks and leaves; the fructose content was 1.42 and 1.78 times of that in stalks and leaves, respectively. By analyzing the relation and consistency between the expression of genes coding enzymes involving in sugar metabolism and transport and content of the sugar, a total of 18 genes were screened. By analyzing the correlation and consistency of the expression of DEGs among different organs with sugar species and content, 14 DEGs were identified. By merging 7 common genes (Bra020096, Bra029914, Bra033419, Bra037980, Bra027398, Bra006129 and Bra006130), expression of 25 genes in total were consistent with the sugar content. qRT-PCR results showed that the relative expression of the eight DEGs were highly consistent with their FPKM values from RNA-seq, indicating that the sequencing results were accurate and reliable.【Conclusion】 The sugar content in the flower buds of Chinese flowering cabbage was higher than that in stalks and leaves, because the expression of genes encoding sugar synthesis-related enzymes was higher in buds than in stalks and leaves. These results laid a certain foundation for revealing the molecular mechanism of sugar metabolism and transport in different organs of Chinese flowering cabbage.

Key words: Chinese flowering cabbage, organs, sugar, RNA-seq, gene

Table 1

RT-qPCR Primer"

引物名称 Primer name 正向引物 Forward primer (F) 反向引物 Reverse primer (R)
β-actin GTTGCTATCCAGGCTGTTCT AGCGTGAGGAAGAGCATAAC
Bra017257 AACGTCAAGAGTGTATCCAG AGCTCCATTATTCATCATCTG
Bra033726 AAGGGATCATTACATGGCG AAAGGTCGTCGTAGAAATCG
Bra038242 CACTGACAAGGCTAAGCAAA ATCAACTGTGGTCTGTAACG
Bra033419 TCAACTCTCAAAGGAGACAC ACAGCTTTGGTAGGATACAC
Bra036015 AGTGCCATCTCGGATTTTAG CACGCGCTAGTAAATGTTTC
Bra015364 CTTAGATACTTGTTTGTGCGG CTCTCTGATGGAACGATGTC
Bra016357 CTCACAAGAACAAGGATAGCA TGCGTCTACATTCTCATAGTC
Bra031129 GAGACGAAGACGAGAGAGCTA ATCCACCTTCTTCACCTTTCGC

Fig. 1

Differences of sugar content in different organs of Chinese flowering cabbage Different lowercase letters indicate significant difference (P<0.05)"

Table 2

Sequencing data evaluation and result statistics of each sample"

样品名称
Sample
原始Reads
Raw reads
GC含量
GC content (%)
Q30碱基百分比
≥ Q30 (%)
可比对reads数
Mapped reads
唯一比对reads数
Unique mapped reads
叶片-1 Leaf-1 50121098 48.35 94.80 43670202 (89.75%) 42083742 (86.49%)
叶片-2 Leaf-2 44695888 48.33 94.80 38980000 (89.52%) 37644105 (86.45%)
叶片-3 Leaf-3 53080028 49.44 95.03 46199884 (90.48%) 44398661 (86.95%)
薹茎-1 Stalk-1 54125218 49.02 94.55 46442755 (89.01%) 45253057 (86.73%)
薹茎-2 Stalk-2 54650960 48.10 94.46 47363455 (88.62%) 46267582 (86.57%)
薹茎-3 Stalk-3 58405446 48.29 92.86 50627900 (88.55%) 49523709 (86.62%)
花蕾-1 Bud-1 54307592 47.53 94.09 46647934 (88.22%) 45488092 (86.02%)
花蕾-2 Bud-2 49747848 47.23 92.67 42692224 (88.05%) 41538120 (85.67%)
花蕾-3 Bud-3 61677872 46.87 94.11 53241893 (88.02%) 51887560 (85.78%)

Fig. 2

PCA plot of sample A1/2/3: Leaf 1/2/3; B1/2/3: Stalk 1/2/3; C1/2/3: Bud 1/2/3"

Fig. 3

Gene expression RT-qPCR verification analysis"

Fig. 4

Chinese flowering cabbage sugar metabolism and transport pathways The red font represents the enzymes involved in the process of sugar metabolism"

Table 3

Gene expression of enzymes related to sugar metabolism"


Enzyme
基因
Gene
表达量 FPKM 表达模式 Expression pattern
叶片 Leaf 薹茎 Stalk 花蕾 Bud 叶vs薹 L vs S 叶vs花 L vs B
SPS1F Bra002289 30.62±1.16 39.12±0.27 40.34±4.08 上调 Up 上调 Up
Bra020096 2.20±0.17 3.49±1.30 10.96±0.92 上调 Up 上调 Up
SPS2F Bra006090 2.25±0.21 5.81±0.10 5.76±0.47 上调 Up 上调 Up
SPS3F Bra015364 0.22±0.02 0.26±0.14 16.96±4.35 上调 Up 上调 Up
SPS4F Bra033195 101.31±4.16 2.8±0.72 51.68±10.47 下调 Down 下调 Down
SS1 Bra002332 7.71±0.52 269.62±15.50 116.37±27.63 上调 Up 上调 Up
Bra006578 2.38±0.09 53.80±6.15 15.93±2.47 上调 Up 上调 Up
SS2 Bra037432 0.23±0.02 0.01±0.01 0.24±0.02 下调 Down 上调 Up
SS3 Bra036282 0.17±0.01 0.06±0.01 8.20±0.32 下调 Down 上调 Up
SS5 Bra039502 3.10±0.34 13.00±0.94 2.17±0.41 上调 Up 下调 Down
SS6 Bra015995 2.56±0.09 7.55±0.16 2.09±0.05 上调 Up 下调 Down
Bra003845 1.98±0.06 8.73±0.42 1.91±0.16 上调 Up 下调 Down
VINV1 Bra036652 0.00 0.08±0.03 0.01±0.01 上调 Up 上调 Up
Bra027030 3.16 ±0.33 3.85±0.64 7.66±3.72 上调 Up 上调 Up
VINV2 Bra019749 37.34±2.12 211.83±13.08 44.90±8.51 上调 Up 上调 Up
Bra026984 31.37±3.10 203.28±28.08 62.53±5.39 上调 Up 上调 Up
CWINV1 Bra027397 0.81±0.14 0.02±0.02 1.18±0.13 下调 Down 上调 Up
Bra021508 2.84±0.51 0.01±0.01 1.18±0.56 下调 Down 下调 Down
CWINV2 Bra033419 0.08±0.01 0.52±0.06 24.25±0.84 上调 Up 上调 Up
CWINV3 Bra037980 4.81±0.61 16.25±2.04 17.97±1.55 上调 Up 上调 Up
CWINV4 Bra017257 0.64±0.14 0.05±0.01 74.68±17.23 下调 Down 上调 Up
Bra023053 1.51±0.32 0.12±0.04 3.68±0.11 下调 Down 上调 Up
CWINV5 Bra027398 0.00 0.00 4.36±0.08 上调 Up
CWINV6 Bra008926 0.09±0.02 0.13±0.02 0.14±0.06 上调 Up 上调 Up
Bra006129 0.00 0.00 0.45±0.04 上调 Up
Bra006130 0.03±0.02 0.04±0.01 2.81±0.11 上调 Up 上调 Up
SWEET10 Bra022761 0.00±0.00 0.02±0.01 127.4±6.32 上调 Up 上调 Up
SWEET11 Bra029914 69.68±7.78 15.86±2.32 6.01±0.37 下调 Down 下调 Down
SWEET15 Bra006185 0.68±0.12 0.23±0.07 4.54±0.64 下调 Down 上调 Up
Bra008850 2.91±0.13 1.09±0.28 16.11±3.41 下调 Down 上调 Up
Bra023394 0.00±0.00 0.01±0.01 6.47±2.92 上调 Up 上调 Up
SWEET16 Bra001638 0.00 0.00 0.34±0.02 上调 Up
Bra021190 0.56±0.33 0.79±0.14 0.17±0.03 上调 Up 下调 Down
SWEET17 Bra012752 4.23±0.47 16.64±1.94 7.72±0.04 上调 Up 上调 Up
Bra038060 4.29±0.48 16.57±3.61 2.97±0.03 上调 Up 下调 Down
SWEET1 Bra017916 28.71±0.41 8.40±0.20 220.91±21.96 下调 Down 上调 Up
Bra016421 23.32±0.81 4.08±0.27 23.49±1.83 下调 Down 上调 Up
SWEET2 Bra027312 16.42±3.49 0.98±0.11 0.93±0.44 下调 Down 下调 Down
Bra027314 15.74±0.74 1.57±0.22 2.71±0.12 下调 Down 下调 Down
Bra021577 20.43±1.51 7.01±0.69 6.95±0.04 下调 Down 下调 Down
SWEET3 Bra003075 0.03±0.01 0.00 55.95±0.93 下调 Down 上调 Up
Bra022636 0.00 0.00 54.66±0.30 上调 Up

Fig. 5

Heatmap of the correlation between the expression levels of differential genes and sugar content Blue, white, and red in the heat map represent correlation coefficients r from low to high, respectively"

Fig. 6

Venn diagram of the number of differentially expressed genes in pairwise comparison of three combinations L vs S: Leaf vs Stalk; L vs B: Leaf vs Bud; S vs B: Stalk vs Bud"

Table 4

Analysis of key differentially expressed genes closely related to sugar metabolism"

基因
Gene
编码酶
Coding enzyme
GO功能
GO function
表达量 FPKM 差异倍数 Log2FC
叶片
Leaf
薹茎
Stalk
花蕾
Bud
叶vs薹
L vs S
叶vs花
L vs B
薹vs花
S vs B
Bra019214 PGI1 糖酵解过程
Glycolytic process
88.78±2.27 49.07±1.30 47.39±3.31 -1.548 -1.928
Bra007210 UGP3 UDP葡萄糖代谢过程
UDP-glucose metabolic process
55.35±3.43 13.41±0.75 10.53±0.24 -2.741 -3.413
Bra015364 SPSB 蔗糖生物合成过程
Sucrose biosynthetic process
0.29±0.02 0.18±0.14 16.96±4.35 4.845 6.254
Bra020096 SPS1F 2.20±0.17 3.49±1.30 10.96±0.92 1.301 1.315
Bra014262 SPP1 0.32±0.01 1.60±0.45 3.68±0.34 1.645 2.535
Bra030439 0.03±0.01 0.04±0.02 3.16±0.01 5.851 5.931
Bra036282 SS3 蔗糖代谢过程
Sucrose metabolic process
0.17±0.01 0.06±0.01 8.20±0.32 4.57 6.727
Bra033419 CWINV2 蔗糖分解代谢过程
Sucrose catabolic process
0.08±0.01 0.52±0.06 24.25±0.84 1.96 7.189 5.241
Bra037980 CWINV3 4.81±0.61 16.25±2.04 17.97±1.55 1.081
Bra017257 CWINV4 0.64±0.14 0.05±0.01 74.68±17.23 -4.42 5.84 10.282
Bra027398 CWINV5 0.00±0.00 0.00±0.00 4.36±0.08 9.398 10.28
Bra006129 CWINV6 0.00±0.00 0.00±0.00 0.45±0.04 6.833 7.717
Bra006130 0.03±0.02 0.04±0.01 2.81±0.11 5.892 5.791
Bra039025 HXK2 糖酵解过程
Glycolytic process
33.02±1.53 33.55±1.45 104.06±10.12 1.326
Bra015599 HXK3 1.29±0.16 3.71±0.56 12.48±0.16 2.246 1.419
Bra011789 0.00±0.00 0.00±0.00 4.07±0.82 9.226 10.11
Bra010616 0.00±0.00 0.00±0.00 1.80±0.56 8.127 9.01
Bra035821 HXK4 1.53±0.67 2.36±0.30 6.73±0.40 1.106 1.198
Bra007452 FRK4 果糖代谢过程
Fructose metabolic process
0.01±0.01 0.00±0.00 1.62±0.09 6.401 8.241
Bra029158 FRK1 0.10±0.01 0.90±0.09 4.75±0.56 2.475 4.54 2.074
Bra036482 GLK1 94.36±14.03 5.48±0.61 2.86±0.10 -4.51 -5.784 -1.268
Bra031129 140.10±18.85 10.12±0.93 2.81±0.11 -4.482 -6.656
Bra033726 GLK2 67.67±1.71 13.42±1.13 10.29±1.60 -2.788 -3.543
Bra036015 47.71±0.56 4.66±0.83 4.31±0.88 -4.293 -4.337
Bra022761 SWEET10 蔗糖转运
Sucrose transport
0.00±0.00 0.02±0.01 127.4±6.32 13.491 12.514
Bra029914 SWEET11 69.68±7.78 15.86±2.32 6.01±0.37 -2.796 -4.544 -1.75
Bra026487 SWEET12 0.26±0.1 18.27±5.08 18.24±0.98 5.478 5.178
Bra023394 SWEET15 0.00±0.00 0.01±0.01 6.47±2.92 9.215 9.131
Bra038242 STP4 葡萄糖输入
Glucose import
16.00±0.34 5.99±0.06 1.66±0.06 -2.1 -4.277 -2.173
Bra032018 VGT1 果糖跨膜转运;葡萄糖输入
Fructose transmembrane transport; glucose import
10.55±0.07 6.61±1.04 19.24±1.88 -1.356 1.219
Bra017916 SWEET1 糖跨膜转运
Sugar transmembrane transport
28.71±0.41 8.40±0.20 220.91±21.96 -2.476 1.927 4.425
Bra022636 SWEET3 0.00±0.00 0.00±0.00 54.66±0.30 12.114 12.994

Fig. 7

Analysis of differentially expressed genes related to sugar metabolism and transport in different organs of Chinese flowering cabbage Green, black and red indicate gene expression from low to high. Genes in the blue background are closely related to sugar content"

[1]
ZOU L, TAN W K, DU Y Y, LEE H W, LIANG X, LEI J J, STRIEGEL L, WEBER N, RYCHLIK M, ONG C N. Nutritional metabolites in Brassica rapa subsp. chinensis var. parachinensis (choy sum) at three different growth stages: Microgreen, seedling and adult plant. Food Chemistry, 2021, 357: 129535.

doi: 10.1016/j.foodchem.2021.129535
[2]
FENG X J, MA J J, LIU Z Q, LI X, WU Y H, HOU L P, LI M L. Analysis of glucosinolate content and metabolism related genes in different parts of Chinese flowering cabbage. Frontiers in Plant Science, 2022, 12: 767898.

doi: 10.3389/fpls.2021.767898
[3]
TEIXEIRA R T, KNORPP C, GLIMELIUS K. Modified sucrose starch, and ATP levels in two alloplasmic male-sterile lines of B. napus. Journal of Experimental Botany, 2005, 56(414): 1245-1253.

doi: 10.1093/jxb/eri120
[4]
WU Y L, LI Y L, LI Y Y, MA Y Z, ZHAO Y L, WANG C Z, CHI H B, CHEN M, DING Y H, GUO X P, MIN L, ZHANG X L. Proteomic analysis reveals that sugar and fatty acid metabolisms play a central role in sterility of the male-sterile line 1355A of cotton. Journal of Biological Chemistry, 2019, 294(17): 7057-7067.

doi: 10.1074/jbc.RA118.006878 pmid: 30862676
[5]
张晓艳, 叶珺琳, 李仕芳, 柴喜荣, 赵普艳, 杨暹. 不同熟性菜心品种糖代谢规律的研究. 广东农业科学, 2015, 42(18): 25-31.
ZHANG X Y, YE J L, LI S F, CHAI X R, ZHAO P Y, YANG X. Research on sugar metabolism regular of flowering Chinese cabbage varieties with different maturity cultivars. Guangdong Agricultural Sciences, 2015, 42(18): 25-31. (in Chinese)
[6]
张梦. 百合花瓣成分分析及糖代谢相关酶基因表达的研究[D]. 北京: 北京林业大学, 2019.
ZHANG M. Composition analysis of lily petals and study on gene expression of enzymes related to sugar metabolism[D]. Beijing: Beijing Forestry University, 2019. (in Chinese)
[7]
马春梅, 郭海龙, 龚振平, 徐瑶, 魏丹, 迟凤琴. 大豆叶片可溶性糖代谢动态变化与相关酶活性的研究. 作物杂志, 2012(5): 71-75.
MA C M, GUO H L, GONG Z P, XU Y, WEI D, CHI F Q. Study on dynamic change of soluble sugar metabolism and related enzyme activity in soybean leaf. Crops, 2012(5): 71-75. (in Chinese)
[8]
WEN X X, ZHANG W Q, FENG Y Q, YU X Y. Cloning and characterization of a sucrose synthase-encoding gene from muskmelon. Molecular Biology Reports, 2010, 37(2): 695-702.

doi: 10.1007/s11033-009-9539-x pmid: 19415524
[9]
XU S M, BRILL E, LLEWELLYN D J, FURBANK R T, RUAN Y L. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Molecular Plant, 2012, 5(2): 430-441.

doi: 10.1093/mp/ssr090
[10]
魏华伟, 柴松琳, 胡克玲, 侯金锋, 高朋, 高优洋, 陈友根. 辣椒酸性蔗糖转化酶基因家族鉴定及表达. 分子植物育种, 2019, 17(15): 4900-4907.
WEI H W, CHAI S L, HU K L, HOU J F, GAO P, GAO Y Y, CHEN Y G. Genome identification and expression of acid invertase gene in pepper. Molecular Plant Breeding, 2019, 17(15): 4900-4907. (in Chinese)
[11]
吴英华, 马嘉俊, 李梅兰, 侯雷平. 山西晋中地区塑料大棚菜心品种筛选. 山西农业科学, 2021, 49(1): 38-45.
WU Y H, MA J J, LI M L, HOU L P. Variety selection of flowering Chinese cabbage in plastic greenhouse in Jinzhong area of Shanxi. Journal of Shanxi Agricultural Sciences, 2021, 49(1): 38-45. (in Chinese)
[12]
陈克克. 地瓜儿可溶性糖和还原糖的含量测定. 西安文理学院学报(自然科学版), 2009, 12(1): 39-42.
CHEN K K. Determination of soluble sugar and reducing sugar in the root of Lycopus lucidus Turcz. Journal of Xi’an University of Arts and Science (Natural Science Edition), 2009, 12(1): 39-42. (in Chinese)
[13]
张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 4版. 北京: 高等教育出版社, 2009.
ZHANG Z L, QU W J, LI X F. Experimental Instruction of Plant Physiology. 4th ed. Beijing: Higher Education Press, 2009. (in Chinese)
[14]
SHANG M Y, WANG X T, ZHANG J, QI X H, PING A M, HOU L P, XING G M, LI G Z, LI M L. Genetic regulation of GA metabolism during vernalization, floral bud initiation and development in pak choi (Brassica rapa ssp. chinensis makino). Frontiers in Plant Science, 2017, 8: 1533.

doi: 10.3389/fpls.2017.01533
[15]
孙勃, 方莉, 刘娜, 闫会转, 张雅君, 施倩倩, 汪俏梅. 芥蓝不同器官主要营养成分分析. 园艺学报, 2011, 38(3): 541-548.
SUN B, FANG L, LIU N, YAN H Z, ZHANG Y J, SHI Q Q, WANG Q M. Studies on main nutritional components of Chinese kale among different organs. Acta Horticulturae Sinica, 2011, 38(3): 541-548. (in Chinese)
[16]
陈荣宇, 钟玉娟, 谢大森, 张艳, 陈汉才, 薛舒丹. 不同菜心品种的营养品质及外在感官品质评价分析. 广东农业科学, 2020, 47(5): 21-28.
CHEN R Y, ZHONG Y J, XIE D S, ZHANG Y, CHEN H C, XUE S D. Evaluation analysis on nutritional quality and external sensory quality of Chinese flowering cabbage varieties. Guangdong Agricultural Sciences, 2020, 47(5): 21-28. (in Chinese)
[17]
叶珺琳, 张晓艳, 柴喜荣, 赵普艳, 康云艳, 李仕芳, 杨暹. 芥蓝主要营养成分与活性氧代谢的研究. 广东农业科学, 2016, 43(4): 57-62.
YE J L, ZHANG X Y, CHAI X R, ZHAO P Y, KANG Y Y, LI S F, YANG X. Research on main nutritional components and active oxygen metabolism in Chinese kale (Brassica alboglabra Bailey). Guangdong Agricultural Sciences, 2016, 43(4): 57-62. (in Chinese)
[18]
张永平, 乔永旭, 喻景权, 赵智中. 园艺植物果实糖积累的研究进展. 中国农业科学, 2008, 41(4): 1151-1157. doi: 10.3864/j.issn.0578-1752.2008.04.026.

doi: 10.3864/j.issn.0578-1752.2008.04.026
ZHANG Y P, QIAO Y X, YU J Q, ZHAO Z Z. Progress of researches of sugar accumulation mechanism of horticultural plant fruits. Scientia Agricultura Sinica, 2008, 41(4): 1151-1157. doi: 10.3864/j.issn.0578-1752.2008.04.026. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2008.04.026
[19]
冯献君, 吴英华, 史艳, 侯雷平, 李梅兰. 菜心酸性蔗糖转化酶基因家族的鉴定及表达分析. 江苏农业科学, 2022, 50(19): 44-50.
FENG X J, WU Y H, SHI Y, HOU L P, LI M L. Identification and expression analysis of acid sucrose invertase gene family in Chinese cabbage. Jiangsu Agricultural Sciences, 2022, 50(19): 44-50. (in Chinese)
[20]
RUAN Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 2014, 65: 33-67.

doi: 10.1146/arplant.2014.65.issue-1
[21]
杨明. 甜高粱蔗糖代谢相关酶SPS、SS表达与蔗糖积累的相关性研究[D]. 保定: 河北农业大学, 2008.
YANG M. Study on the correlation between the expression of SPS and SS related enzymes of sucrose metabolism and sucrose accumulation in sweet sorghum[D]. Baoding: Hebei Agricultural University, 2008. (in Chinese)
[22]
贾荣荣, 路莎莎, 江媛, 刘增平, 俞嘉宁. 棉花GhSPS1的克隆及表达模式分析. 中国农业科学, 2012, 45(6): 1031-1041. doi: 10.3864/j.issn.0578-1752.2012.06.001.

doi: 10.3864/j.issn.0578-1752.2012.06.001
JIA R R, LU S S, JIANG Y, LIU Z P, YU J N. Cloning and analysis expression patterns of GhSPS1 gene in cotton. Scientia Agricultura Sinica, 2012, 45(6): 1031-1041. doi: 10.3864/j.issn.0578-1752.2012.06.001. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.06.001
[23]
山溪, 秦文斌, 张振超, 姚悦梅, 戴忠良, 饶斌. 甘蓝蔗糖磷酸合酶家族的鉴定和表达分析. 江苏农业科学, 2021, 49(16): 53-60.
SHAN X, QIN W B, ZHANG Z C, YAO Y M, DAI Z L, RAO B. Identification and expression analysis of sucrose phosphate synthase family in cabbage. Jiangsu Agricultural Sciences, 2021, 49(16): 53-60. (in Chinese)
[24]
闻小霞. 甜瓜果实蔗糖合成酶基因(SS)的克隆、表达分析及遗传转化[D]. 泰安: 山东农业大学, 2010.
WEN X X. Cloning, expression analysis and genetic transformation of sucrose synthase gene (SS) in melon fruit[D]. Taian: Shandong Agricultural University, 2010. (in Chinese)
[25]
柴静, 俞嘉宁, 屈生宪, 张会. 蔗糖合酶基因AtSUS3干涉后对拟南芥角果发育的影响. 西北植物学报, 2013, 33(4): 678-683.
CHAI J, YU J N, QU S X, ZHANG H. Sucrose synthase gene- AtSUS3 with RNA interference affects siliques maturation in Arabidopsis thaliana. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(4): 678-683. (in Chinese)
[26]
苏宁. 拟南芥蔗糖转化酶基因AtCWINV4的功能研究及对油菜的遗传转化[D]. 武汉: 华中师范大学, 2013.
SU N. Study on the function of Arabidopsis sucrose invertase gene AtCWINV4 and its genetic transformation to rape[D]. Wuhan: Central China Normal University, 2013. (in Chinese)
[27]
CHEN L Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist, 2014, 201(4): 1150-1155.

doi: 10.1111/nph.2014.201.issue-4
[28]
黄成, 张明阳, 郭燕芳, 王锦达. 甘蔗双向糖转运蛋白ShSWEET2a基因的克隆与表达分析. 中国糖料, 2021, 43(2): 1-8.
HUANG C, ZHANG M Y, GUO Y F, WANG J D. Cloning and expression analysis of ShSWEET2a gene from sugarcane. Sugar Crops of China, 2021, 43(2): 1-8. (in Chinese)
[29]
李明. 马铃薯糖转运蛋白StSWEET基因的克隆及功能分析[D]. 西宁: 青海大学, 2019.
LI M. Cloning and functional analysis of potato sugar transporter StSWEET gene[D]. Xining: Qinghai University, 2019. (in Chinese)
[30]
唐朝荣, 肖小虎, 方永军, 龙翔宇. 巴西橡胶树磷酸蔗糖磷酸化酶基因的克隆和表达模式分析. 热带作物学报, 2013, 34(5): 855-859.
TANG C R, XIAO X H, FANG Y J, LONG X Y. Cloning and expression of a sucrose phosphate phosphatase gene from Hevea brasiliensis. Chinese Journal of Tropical Crops, 2013, 34(5): 855-859. (in Chinese)
[31]
徐志华. 大豆蔗糖代谢相关基因GmCInv1GmSPP1的克隆及功能分析[D]. 南京: 南京农业大学, 2013.
XU Z H. Cloning and functional analysis of genes related to sucrose metabolism in soybean GmCInv1 and GmSPP1[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[32]
洪泂, 张国荣, 卢敏, 王冬梅. 高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用: CN106222101A. 2020-03-27.
HONG J, ZHANG G R, LU M, WANG D M. High-temperature-resistant strain for producing high-purity fructose at high temperature in one step through efficient utilization of Jerusalem artichoke and application of high-temperature-resistant strain: CN106222101A. 2020-03-27. (in Chinese)
[33]
ZHAO B Y, QI K J, YI X R, CHEN G D, LIU X, QI X X, ZHANG S L. Identification of hexokinase family members in pear (Pyrus × bretschneideri) and functional exploration of PbHXK1 in modulating sugar content and plant growth. Gene, 2019, 711: 143932.

doi: 10.1016/j.gene.2019.06.022
[34]
叶香媛, 周文彬. 植物果糖激酶研究进展. 科学通报, 2021, 66(22): 2820-2831.
YE X Y, ZHOU W B. Research progress of plant fructose kinase. Chinese Science Bulletin, 2021, 66(22): 2820-2831. (in Chinese)
[35]
OTORI K, TANABE N, TAMOI M, SHIGEOKA S. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 2018, 83(3): 1-10.

doi: 10.1080/09168451.2018.1533804
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[3] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[4] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[5] JIANG Dong, WANG Xu, LI RenJing, ZHAO XiaoDong, DAI XiangSheng, LIU ZhengWei. Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2023, 56(8): 1547-1560.
[6] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[7] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[8] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[9] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[10] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[11] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[12] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[13] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[14] PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980.
[15] YANG MingLu, ZHANG HaiLiang, LUO HanPeng, HUANG XiXia, ZHANG HanLin, ZHANG ShiShi, WANG Yan, LIU Lin, GUO Gang, WANG YaChun. Estimation of Genetic Parameters and Genome-Wide Association Study of Heat Indicators in Holstein Cattle Based on Collar-Mounted Device [J]. Scientia Agricultura Sinica, 2023, 56(5): 995-1006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!