Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (16): 3084-3097.doi: 10.3864/j.issn.0578-1752.2016.16.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Differential Proteomic Research of Three Varieties of Tobacco in China

XU Ying, YAN Guo-quan, ZHANG Yang, YU Hong-xiu   

  1. Institutes of Biomedical Sciences, Fudan University, Shanghai 200032
  • Received:2016-03-14 Online:2016-08-16 Published:2016-08-16

Abstract: 【Objective】 In order to strengthen the basic scientific research and cultivation of tobacco, differential proteomics is used to select specific proteins and elucidate metabolic pathways in tobacco. 【Method】 Leaf proteins of three varieties of tobacco in China including Honghuadajinyuan, K326 and Yunyan 87 were extracted by phenol. After digestion the protein profiles of three varieties of tobacco were investigated by using tandem mass tag(TMT) coupled with two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS). The proteins and peptides from tobacco were identified with MASCOT search engine after spectra extraction in Proteome Discoverer Software. Then, bioinformatics analysis including data correlation analysis, hierarchical cluster analysis and principal component analysis (PCA) were conducted. Meanwhile, proteins with change ratio of more than 2 fold were defined as differentially expressed tobacco proteins, and they were screened out by volcano plot analysis. Finally, the distribution and function of important proteins in tobacco were analyzed using KEGG pathway analysis. 【Result】 A total of 3 079 proteins in Honghuadajinyuan, K326 and Yunyan 87 were identified and the number of protein ID was 10 343. Protein expression profiles of hierarchical cluster analysis and principal component analysis indicated that K326 and Yunyan 87 were relatively similar, and Honghuadajinyuan was significantly different from the other two. The subsequent protein screening also verified the results. Screening of differentially expressed proteins suggested that there were only 29 proteins differentially expressed between K326 and Yunyan 87. 13 proteins of them covered 8 metabolic pathways including flavonoids biosynthesis. Chalcone synthetase participating in the flavonoids synthesis was significantly higher in K326 than in Yunyan 87. Honghuadajinyuan and Yunyan 87 had 160 differentially expressed proteins. 103 proteins of them covered 42 metabolic pathways including glutathione metabolism. Three kinds of enzymes related to glutathione metabolic pathway including glutathione peroxidase, phospholipid hydroperoxide glutathione peroxidase and glutathione S-transferase were significantly lower in Honghuadajinyuan than in Yunyan 87. Honghuadajinyuan and K326 had 119 differentially expressed proteins. 89 proteins of them covered metabolic pathways such as metabolism of xenobiotics by cytochrome P450. It was indicated that several proteins related to stress resistance such as proteinase inhibitor was much less in Yunyan 87 than in K326 and Honghuadajinyuan, and superoxide dismutase in Honghuadajinyuan was the lowest among the three varieties of tobacco. 【Conclusion】Results of the study revealed that the TMT coupled with 2D LC-MS/MS is a powerful method for isolating and identifying differentially expressed proteins in various tobacco varieties. Most of them are involved in photosynthesis, metabolism or stress resistance.

Key words: tobacco, differential proteomics, tandem mass tag, 2D LC-MS/MS

[1]    张柳, 王铮, 张亚婕, 林春, 陈严平, 李军营, 毛自朝. 烟草叶片衰老期过程中的蛋白质组学分析. 植物生理学报, 2014, 50(4): 488-500.
Zhang L, Wang Z, Zhang Y J, Lin C, Chen Y P, Li J Y, Mao Z C. Proteomic analysis of senescing leaf of tobacco. Plant Physiology Journal, 2014, 50(4): 488-500. (in Chinese)
[2]    Uhrig R G, Moorhead G B. Plant proteomics: Current status and future prospects. Journal of Proteomics, 2013, 88: 34-36.
[3]    柴薇薇, 普晓俊, 乔岩, 杨芳. 蛋白质组学在植物逆境胁迫研究中的进展. 生物学杂志, 2013, 30(6): 70-75.
Chai W W, Pu X J, Qiao Y, Yang F. Advances in plant proteomics research under abiotic stress. Journal of Biology, 2013, 30(6): 70-75. (in Chinese)
[4]    刘秋员, 刘峰峰, 甄焕菊, 张军方, 符云鹏. 蛋白质组学研究技术及其在烟草科学研究中的应用前景. 中国农学通报, 2009, 25(2): 93-99.
Liu Q Y, Liu F F, Zhen H J, Zhang J F, Fu Y P. Advances in research techniques of proteomics and its application in tobacco scientific research. Chinese Agricultural Science Bulletin, 2009, 25(2): 93-99. (in Chinese)
[5]    Gharechahi J, Hajirezaei M, Salekdeh G H. Comparative proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its wild type under drought stress. Journal of Plant Physiology, 2015, 175: 48-58.
[6]    赵凤霞, 高相彬, 王正平, 李海峰, 宋学立, 冀敏. 蛋白质组学技术在烟草研究中的应用进展. 中国烟草学报, 2014, 20(1): 103-110.
Zhao F X, Gao X B, Wang Z P, Li H F, Song X L, Ji M. Research and application of proteomics in tobacco. Acta Tabacaria Sinica, 2014, 20(1): 103-110. (in Chinese)
[7]    崔红, 冀浩, 张华, 邵惠芳, 李东宵, 陈亮. 不同生态区烟草叶片蛋白质组学的比较. 生态学报, 2008, 28(10): 4873-4880.
Cui H, Ji H, Zhang H, Shao H F, Li D X, Chen L. Comparative analysis of leaf proteomes between tobacco plants growing in different ecological regions of China. Acta Ecologica Sinica, 2008, 28(10): 4873-4880. (in Chinese)
[8]    陈宗瑜, 毕婷, 吴潇潇. 滤减UV-B辐射对烤烟蛋白质组变化的影响. 生态学杂志, 2012, 31(5): 1129-1135.
CHEN Z Y, BI T, WU X X. Effects of reduced UV- B radiation on the variation of flue-cured tobacco proteome. Chinese Journal of Ecology, 2012, 31(5): 1129-1135. (in Chinese)
[9]    蔡永占, 周普雄, 张柳, 王铮, 徐琼华, 杨焕文, 毛自朝. 不同气候条件对“云烟87”旺长期叶片光合速率及蛋白表达的影响. 中国烟草学报, 2015, 21(1): 39-48.
Cai Y Z, Zhou P X, Zhang L, Wang Z, Xu Q H, Yang H W, Mao Z C. Effects of climate conditions on photosynthetic rate and protein expression in Yunyan 87 leaves at vigorous growth stage. Acta Tabacaria Sinica, 2015, 21(1): 39-48. (in Chinese)
[10]   蔡永占, 周普雄, 李佛琳, 赵昶灵, 林春, 杨焕文, 毛自朝. 不同气候环境中团棵期烟草叶片蛋白质组学分析. 中国农业科学, 2013, 46(4): 859-870.
Cai Y Z, Zhou P X, Li F L, Zhao C L, Lin C, Yang H W, Mao Z C. Proteomic analysis of tobacco rosette stage leaves under different climatic conditions. Scientia Agricultura Sinica, 2013, 46(4): 859-870. (in Chinese)
[11]   张柳. 烟草叶片衰老过程变化的蛋白质组和转录组研究[D]. 昆明: 云南农业大学, 2014.
Zhang L. Changes of proteome and transcriptome of tobacco leaf during senescencing process [D]. Kunming: Yunnan Agricultural University, 2014. (in Chinese)
[12]   张树堂. 红花大金元品种品质特征. 湖南农业大学学报(自然科学版), 2007, 33(2): 170-173.
Zhang S T. Explore the feature of quality of Honghuadajinyuan variety. Journal of Hunan Agricultural University(Natural Sciences), 2007, 33(2): 170-173. (in Chinese)
[13]   汪健, 杨云高, 王松峰, 俞世康, 孙福山, 王爱华, 程浩, 王林. 烤烟红花大金元上部叶采收方式研究. 中国烟草科学, 2010, 31(2): 15-19.
Wang J, Yang Y G, Wang S F, Yu S K, Sun F S, Wang A H, Cheng H, Wang L. Harvest method of upper leaves of flue-cured tobacco variety Honghuadajinyuan. Chinese Tobacco Science, 2010, 31(2): 15-19. (in Chinese)
[14]   王戈, 杨焕文, 赵正雄, 李佛琳, 易建华. 烟草品种防御酶活性对黑胫病菌响应差异. 云南农业大学学报(自然科学), 2012, 27(3): 321-326.
Wang G, Yang H W, Zhao Z X, Li F L, Yi J H. Response difference of the defence enzymes of flue-cured cultivars to Phytophora parasitica var. nicotiana. Journal of Yunnan Agricultural University (Natural Sciences), 2012, 27(3): 321-326. (in Chinese)
[15]   梁元存, 刘延荣, 王玉军, 王智发, 张广民. 烟草黑胫病菌致病性分化和烟草品种的抗病性差异. 植物保护学报, 2003, 30(2): 143-147.
Liang Y C, Liu Y R, Wang Y J, Wang Z F, Zhang G M. Pathogenicity differentiation of Phytophthora parasitica and the disease resisitance differnence of tobacco against black shank. Acta Phytophylacica Sinica, 2003, 30(2): 143-147. (in Chinese)
[16]   李永平, 王颖宽, 马文广, 谭彩兰. 烤烟新品种云烟87的选育及特征特性. 中国烟草科学, 2001(4): 38-42.
Li Y P, Wang Y K, Ma W G, Tan C L. Breeding and selecting of a new flue-cured tobacco variety Yunyan87 and its characteristics, Chinese Tobacco Science, 2001(4): 38-42. (in Chinese)
[17]   林世峰, 张拓, 史跃伟, 王东茂, 王志红, 杨志晓, 谢升东, 魏开华, 任学良. 烟草根系蛋白质双向电泳样品制备方法的比较. 贵州农业科学, 2012, 40(8): 71-74.
Lin S F, Zhang T, Shi Y W, Wang D M, Wang Z H, Yang Z X, Xie S D, Wei K H, Ren X L. Comparison of protein extraction methods for two-dimensional electrophoresis in tobacco root. Guizhou Agricultural Sciences, 2012, 40(8): 71-74. (in Chinese)
[18]   Isaacson T, Damasceno C M, Saravanan R S, He Y H, CatalÁ C, SaladiÉ M, Rose J K. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols, 2006, 1(2): 769-774.
[19]   Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[20]   李洪荣, 陈美元, 廖剑华, 蔡志欣, 郭仲杰, 王泽生. 双孢蘑菇子实体采后后熟的差异蛋白质组学分析. 福建轻纺, 2014(1): 38-42.
Li H R, Chen M Y, Liao J H, Cai Z X, Guo Z J, Wang Z S. Differencial proteomic analysis of postharvest ripening of the fruiting body of agaricus bisporus. Fujian Qing Fang, 2014(1): 38-42. (in Chinese)
[21]   黄瑞, 郑珩. 偏头痛相关酶和KEGG通路分析. 生物信息学, 2014, 12(3): 218-226.
Huang R, Zheng H. Migraine associated enzymes and KEGG pathway analysis. China Journal of Bioinformatics, 2014, 12(3): 218-226. (in Chinese)
[22]   刘靖宇, 江玉姬, 谢宝贵, 陈炳智, 廖伟, 邓优锦. iTRAQ结合2D LC-MS/MS技术在草菇不同生长发育时期蛋白质组分析中的应用. 微生物学通报, 2012, 39(6): 853-864.
Liu J Y, Jiang Y J, Xie B G, Chen B Z, Liao W, Deng Y J. Comparative analysis of proteomic profile at different development stages of Volvariella volvacea by iTRAQ-coupled 2D LC-MSMS. Microbiology, 2012, 39(6): 853-864. (in Chinese)
[23]   Xie H, Yang D H, Yao H, Bai G, Zhang Y H, Xiao B G. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochemical and Biophysical Research Communications, 2016, 469(3): 768-775.
[24]   李亚培, 杨铁钊, 申培林, 尚晓颍. 烟草黄酮类物质及其与品质的关系. 浙江农业科学, 2010(6): 1391-1396.
Li Y P, Yang T Z, Shen P L, SHANG X Y. Flavonoids in tobacco and its relationship with the quality of tobacco. Journal of Zhejiang Agricultural Sciences, 2010(6): 1391-1396. (in Chinese)
[25]   李勇, 林茜, 逄涛, 师君丽. 超高效液相色谱-串联质谱法定量分析烟叶中的12种类黄酮物质. 色谱, 2015, 33(7): 746-752.
Li Y, Lin Q, Pang T, Shi J L. Determination of 12 flavonoids in tobacco leaves using ultra-high performance liquid chromatography- tandem mass spectrometry. Chinese Journal of Chromatography, 2015, 33(7): 746-752. (in Chinese)
[26]   邓小华, 覃勇, 周米良, 田峰, 田茂成, 张黎明, 杨丽丽. 湘西烟叶香气特性及其区域分布特征. 北京农学院学报, 2013, 28(4): 16-21.
Deng X H, QIn Y, Zhou M L, Tian F, Tian M C, Zhang L M, Yang L L. Aroma characteristics of tobacco leaves from Xiangxi areas and their regional distribution characteristics. Journal of Beijing University of Agriculture, 2013, 28(4): 16-21. (in Chinese)
[27]   邹凤莲, 寿森炎, 叶纨芝, 卢钢. 类黄酮化合物在植物胁迫反应中作用的研究进展. 细胞生物学杂志, 2004, 26(1): 39-44.
Zou F L, Shou S Y, Ye W Z, Lu G. Advances in the research on flavonoid biosynthesis and plant stress response. Chinese Journal of Cell Biology, 2004, 26(1): 39-44. (in Chinese)
[28]   乔小燕, 马春雷, 陈亮. 植物类黄酮生物合成途径及重要基因的调控. 天然产物研究与开发, 2009, 21(2): 354-360.
Qiao X Y, Ma C L, Chen L. Plant flavonoid biosynthesis pathway and regulation of its important genes. Natural Product Research and Development, 2009, 21(2): 354-360. (in Chinese)
[29]   闫慧芳, 毛培胜, 夏方山. 植物抗氧化剂谷胱甘肽研究进展. 草地学报, 2013, 21(3): 428-434.
Yan H F, Mao P S, Xia F S. Research progress in plant antioxidant glutathione. Acta Agrestia Sinica, 2013, 21(3): 428-434. (in Chinese)
[30]   Gill S S, Anjum N A, Hasanuzzaman M, Gill R, Trivedi D K, Ahmad I, Pereira E, Tuteja N. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 2013, 70: 204-212.
[31]   胡文琴, 王恬, 孟庆利. 抗氧化活性肽的研究进展. 中国油脂, 2004, 29(5): 42-45.
Hu W Q, Wang T, Meng Q L. Research advance of antioxidative bioactive peptides. China Oils and Fats, 2004, 29(5): 42-45. (in Chinese)
[32]   Maher P. The effects of stress and aging on glutathione metabolism. Ageing Research Reviews, 2005, 4(2): 288-314.
[33]   Zeng F R, Qiu B Y, Wu X J, Niu S Z, Wu F B, Zhang G P. Glutathione-mediated alleviation of chromium toxicity in rice plants. Biological Trace Element Research, 2012, 148(2): 255-263.
[34]   Vernoux T, Wilson R C, Seeley K A, Reichheld J P, Muroy S, Brown S, Maughan S C, Cobbett C S, Montagu M V, Inze D, May M J, Sung Z R. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE gene defines a glutathione dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. The Plant Cell, 2000, 12: 97-110.
[35]   Cairns N G, Pasternak M, Wachter A, Cobbett C S, Meyer A J. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiology, 2006, 141: 446-455.
[36]   Frendo P, Baldacci-Cresp F, Benyamina S M, Puppo A. Glutathione and plant response to the biotic environment. Free Radical Biology and Medicine, 2013, 65: 724-730.
[37]   李志刚, 许自成, 苏永士, 陈彦春, 胡皓月, 张蕊, 杜娟. 植物谷胱甘肽研究进展. 江西农业学报, 2010, 22(4): 118-121.
Li Z G, Xu Z C, Su Y S, Chen Y C, Hu H Y, Zhang R, Du J. Research progress in plant glutathione. Acta Agriculturae Jiangxi, 2010, 22(4): 118-121. (in Chinese)
[38]   Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830(5): 3289-3303.
[39]   李伟涛, 朱伟杰, 潘善培. 磷脂过氧化氢物谷胱甘肽过氧化物酶与精子成熟. 中华男科学, 2001, 7(2): 109-112.
LI W T, Zhu W J, Pan S P. Advances in phospholipid hydroperoxide glutathione peroxidase and sperm maturation. National Journal of Andrology, 2001, 7(2): 109-112. (in Chinese)
[40]   宋长芹, 缪海飞, 朱斌, 佟少明, 李泽昀, 侯和胜. 植物谷胱甘肽-S-转移酶在植物修复中的作用. 安徽农学通报, 2010, 16(7): 56.
Song C Q, Miao H F, Zhu B, Tong S M, Li Z Y, Hou H S. The role of Glutathione-S-transferase in phytoremediation of plants. Anhui Agricultural Science Bulletin, 2010, 16(7): 56. (in Chinese)
[41]   陈秀华, 王臻昱, 李先平, 朱延明, 刘丽, 陈威, 陈勤. 谷胱甘肽S-转移酶的研究进展. 东北农业大学学报, 2013, 44(1): 149-153.
Chen X H, Wang Z Y, Li X P, Zhu Y M, Liu L, Chen W, Chen Q. Research progress on glutathione S-transferases. Journal of Northeast Agricultural University, 2013, 44(1): 149-153. (in Chinese)
[42]   张岩, 胡军, 郭长虹, 徐香玲, 李集临, 胡赞民. 植物谷胱甘肽-S-转移酶的分子生物学研究进展. 哈尔滨师范大学自然科学学报, 2007, 23(4): 76-79.
Zhang Y, Hu J, Guo C H, Xu X L, Li J L, Hu Z M. The molecular biology research of glutathione-S-tranferases (GSTs) in plants. Natural Sciences Journal of Harbin Normal University, 2007, 23(4): 76-79. (in Chinese)
[43]   Edwards R, Dixon D P, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science, 2000, 5(5): 193-198.
[44]   解芬, 马原, 胡琼, 王铎, 杨丽菊. 烤烟品种红花大金元在小哨地区的推广试验研究. 现代农业科技, 2014(20): 53-55.
Jie F, Ma Y, Hu Q, Wang D, Yang L J. Promotion test of flue-cured tobacco varieties of Hongda in the Xiaoshao. Modern Agricultural Science and Technology, 2014(20): 53-55. (in Chinese)
[45]   曹仕明, 李进平, 刘圣高, 陈振国, 许汝冰, 毕庆文, 许树银, 范敬修, 王学龙, 郭力, 汪明. 7个引进烤烟品种在环神农架地区的生态适应性. 贵州农业科学, 2012, 40(7): 60-65.
Cao S M, Li J P, Liu S G, Chen Z G, Xu R B, Bi Q W, Xu S Y, Fan J X, Wang X L, Guo L, Wang M. Ecological adaptability of seven introduced flue-cured tobacco cultivars around Shennongjia region. Guizhou Agricultural Sciences, 2012, 40(7): 60-65. (in Chinese)
[46]   陈晓燕, 刘燕, 付修廷, 李崇禄, 易克, 赵正雄, 杨虹琦. 云南昭通植烟区烤烟品种生态适应性研究. 湖南农业科学, 2012(17): 22-25.
Chen X Y, Liu Y, Fu X T, Li C L, Yi K, Zhao Z X, Yang H Q. Ecological adaptability of flue-cured tobacco varieties in Zhaotong tobacco-planting area in Yunnan province. Hunan Agricultural Sciences, 2012(17): 22-25. (in Chinese)
[47]   张文平, 汪代斌, 曾超宁, 张帅. 不同烟草品种对烟草赤星病的抗性比较. 安徽农业科学, 2014, 42(35): 12513-12515.
Zhang W P, Wang D B, Zeng C N, Zhang S. Comparison on resistance of different tobacco varieties against tobacco brown spot. Journal of Anhui Agricultural Science, 2014, 42(35): 12513-12515. (in Chinese)
[48]   Denisov I G, Frank D J, Sligar S G. Cooperative properties of cytochromes P450. Pharmacology & Therapeutics, 2009, 124(2): 151-167.
[49]   Zhao Y J, Cheng Q Q, Su P, Chen X, Wang X J, Gao W, Huang L Q. Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants. Applied Microbiology and Biotechnology, 2014, 98(6): 2371-2383.
[50]   解敏敏, 龚达平, 李凤霞, 刘贯山, 孙玉合. 烟草细胞色素P450的基因组学分析. 遗传, 2013, 35(3): 379-387.
Xie M M, Gong D P, Li F X, Liu G S, Sun Y H. Genome-wide analysis of cytochrome P450 monooxygenase genes in the tobacco. Hereditas, 2013, 35(3): 379-387. (in Chinese)
[51]   王转花, 杨斌, 张政. 植物蛋白酶抑制剂抗虫基因工程研究进展. 植物保护学报, 2001, 28(1): 83-88.
Wang Z H, Yang B, Zhang Z. Recent progress in the genetic engineering of plant proteinase inhibitor anti-insect pests. Acta Phytophylacica Sinica, 2001, 28(1): 83-88. (in Chinese)
[52]   Julia A C, Marilyn A A, Dennis J B, Malcolm W, Higgins T J V. Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Molecular Breeding, 1999, 5: 357-365.
[53]   Tamayo M C, Rufat M, Bravo J M, Segundo B S. Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta, 2000, 211(1): 62-71.
[54]   孙兴华, 周晓榕, 庞保平, 孟庆玖. 南美斑潜蝇为害对黄瓜叶片中蛋白酶抑制剂活性及葫芦素B含量的影响. 应用昆虫学报, 2014, 51(1): 169-177.
Sun X H, Zhou X R, Pang B P, Meng Q J. Effects of Liriomyza huidobrensis (Blanchard) larval infestation on trypsin and chymotrypsin activity and cucurbitacin B content in cucumber leaves. Chinese Journal of Applied Entomology, 2014, 51(1): 169-177. (in Chinese)
[55]   Hilder V A, Gatehouse A M R, Sheerman S E, Barker R F, Boulter D. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987, 300: 160-163.
[56]   Niyomploy P, Srisomsap C, Chokchaichamnankit D, Vinayavekhin N, Karnchanatat A, Sangvanich P. Superoxide dismutase isozyme detection using two-dimensional gel electrophoresis zymograms. Journal of Pharmaceutical and Biomedical Analysis, 2014, 90: 72-77.
[57]   Camp W V, InzÉ D, Montagu M V. The regulation and function of tobacco superoxide dismutases. Free Radical Biology & Medicine, 1997, 23(3): 515-520.
[58]   Negi N P, Shrivastava D C, Sharma V, Sarin N B. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Reports, 2015, 34(7): 1109-1126.
[59]   江彤, 杨建卿, 高明, 孔俊. 不同抗病性烟草罹黑胫病后几种酶的活性及丙二醛含量的变化. 安徽农业大学学报, 2006, 33(2): 218-221.
Jiang T, Yang J Q, Gao M, Kong J. Changes of MDA content and activities of some enzymes in tobacco varieties with different disease resistance infected with Phytophthora nicotianae. Journal of Anhui Agricultural University, 2006, 33(2): 218-221. (in Chinese)
[60]   杨建卿, 许大凤, 孔俊, 江彤. 不同烟草品种罹黑胫病后几种酶活性的变化. 合肥工业大学学报(自然科学版), 2005, 28(7): 816-819.
Yang J Q, Xu D F, Kong J, Jiang T. Change of activities of some enzymes in different tobacco varieties infected with Phytophthora nicotianae. Journal of Hefei University of Technology (Natural Sciences), 2005, 28(7): 816-819. (in Chinese)
[1] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[2] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[3] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[4] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[5] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[6] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[7] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[8] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[9] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
[10] LI FeiHong,HOU YingJun,LI XueHan,YU XinYi,QU ShenChun. Cloning and Function Analysis of Apple Gibberellin Oxidase Gene MdGA2ox8 [J]. Scientia Agricultura Sinica, 2018, 51(22): 4339-4351.
[11] PENG HaoRan, PAN Qi, WEI ZhouLing, PU YunDan, ZHANG YongZhi, WU GenTu, QING Ling, SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Tomato Resistance-Related Gene SlHin1 [J]. Scientia Agricultura Sinica, 2017, 50(7): 1242-1251.
[12] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
[13] ZHAO LeiLin, FAN Xin, NIE Xing, LIANG ChengZhen, ZHANG Rui, SUN GuoQing, MENG ZhiGang, LIN Min, WANG Yuan, GUO SanDui. Salt and Drought Tolerance in Heterologous-Expression of irrE Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2017, 50(20): 3860-3870.
[14] YANG Zhan-wu, YANG Jun, ZHANG Yan, WU Jin-hua, LI Zhi-kun, WANG Xing-fen, WU Li-qiang, ZHANG Gui-yin, MA Zhi-ying. Subcellular Localization and Verticillium Wilt Resistance Analysis of Cotton GbRvd in Overexpressed Tobacco [J]. Scientia Agricultura Sinica, 2016, 49(21): 4065-4073.
[15] WANG Sheng, XIE Zhi-xun, HUANG Li, XIE Li-ji, DENG Xian-wen, XIE Zhi-qin, LIU Jia-bo, LUO Si-si, ZENG Ting-ting. Expression and Identification of the σ3 Gene of Avian Reovirus in Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2015, 48(9): 1836-1844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!