Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3495-3506.doi: 10.3864/j.issn.0578-1752.2019.20.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Basis of Kernel Development and Kernel Number in Maize (Zea mays L.)

Ran ZHAO,ManJun CAI,YanFang DU,ZuXin ZHANG()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070
  • Received:2019-04-17 Accepted:2019-06-20 Online:2019-10-16 Published:2019-10-28
  • Contact: ZuXin ZHANG E-mail:zuxinzhang@mail.hzau.edu.cn

Abstract:

Grain yield per ear of maize (Zea mays L.) is composed of both kernel number and grain weight. The number of kernels on an ear is determined by not only the number of kernel rows which is closely related to the inflorescence development, but also the number of fertile florets generated by the flower meristem. Therefore, those genes for inflorescence architecture and flower development are potentially involved in the genetic control of kernel number. Maize kernel is a single-seeded fruit comprised of the maternally derived pericarp, and embryo and endosperm derived from double fertilization. Both embryo and endosperm account for the vast majority of the mature kernel mass, and directly determine the kernel size and weight. In this paper, we outlined the genetic controls of kernel number with the emphasis on the inflorescence and floret related genes that are involved in the CLAVATA- WUSCHEL (CLV-WUS) feedback loop, hormone biosynthesis and signaling, floral organ development and sex determination. In particular, we described the regulatory network models for interplays among phytohormones including auxin, gibberellin, cytokinin and strigolactone in the inflorescence architecture and floral organ development. We also summarized those embryo and endosperm developmental genes involving in processing and editing of mitochondrial transcripts, transcription and translation of some chloroplast DNAs as well as nuclear RNAs. Most of these genes encode PPR proteins targeted to mitochondria or plastids. Recently, several studies have identified a new pathway to control kernel development by regulating the transcription and processing of pre-mRNA within the nucleus. Here, we also discussed the association between these genes and kernel number or kernel weight, and the potential areas of research for deciphering molecular mechanisms of grain yield in maize.

Key words: Zea mays L., kernel number per ear, kernel weight, inflorescence, floret, embryo, endosperm

Fig. 1

Expression domain and regulatory pathway of genes involved in the regulation of activity of meristems on the ear inflorescence The figure shows the ear inflorescence meristem and primordia of spikelet-paired meristems. Different color blocks show the domains where genes are expressed.: Positive regulation. : Negative regulation "

Fig. 2

Regulation pathways for activity of meristems on the ear inflorescence by genes in hormone biosynthesis and signaling a: Both SPI1 and VT2 involve in the regulation of Trp-dependent auxin biosynthesis. b: Regulatory pathways of genes in auxin transport and signaling. c: Presumable hormone crosstalk mediated by UB3. : Positive regulation. : Negative regulation "

Fig. 3

Genes regulating maize floral organs development and floret sex determination a: The “ABCDE model” of floral organ identity. Different color blocks show different types of floral organ regulatory genes, and the label shows floral organ developed in the whorl. A-type genes determine the identity of palea and lemma. Lodicule and stamen are regulated by A+B and B+C, respectively. Carpel identity is regulated by the C-type genes. D-type genes act in ovule development, and the E-type genes involve in the regulation of development of all floral whirls. b: Floret sex determination genes regulatory network. : Positive regulation. : Negative regulation "

[1] VOLLBRECHT E, SCHMIDT R J . Handbook of maize// BENNETZEN J L, HAKE S, eds. Development of the Inflorescences. New York: Springer, 2009: 13-40.
[2] WILLIAMS L, FLETCHER J C . Stem cell regulation in the Arabidopsis shoot apical meristem. Current Opinion in Plant Biology, 2005,8:582-586.
[3] SOMSSICH M, JE B I, SIMON R, JACKSON D . CLAVATA- WUSCHEL signaling in the shoot meristem. Development, 2016,143:3238-3248.
[4] BOMMERT P, LUNDE C, NARDMANN J, VOLLBRECHT E, RUNNING M, JACKSON D, HAKE S, WERR W . thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine- rich repeat receptor-like kinase. Development, 2005,132(6):1235-1245.
[5] BOMMERT P, NAGASAWA N S, JACKSON D . Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics, 2013,45:334-337.
[6] JE B I, GRUEL J, LEE K, BOMMERT P, AREVALO E D, EVELAND A L, WU Q, GOLDSHMIDT A, MEELEY R, BARTLETT M, KOMATSU M, SAKAI H, JÖNSSON H, JACKSON D . Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genetics, 2016,48:785-791.
[7] RODRIGUEZ-LEAL D, XU C, KWON C T, SOYARS C, DEMESA-AREVALO E, MAN J, LIU L, LEMMON Z H, JONES D S, VAN ECK J, JACKSON D P, BARTLETT M E, NIMCHUK Z L, LIPPMAN Z B . Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nature Genetics, 2019,51(5):786-792.
[8] BOMMERT P, JE B I, GOLDSHMIDT A, JACKSON D . The maize Gα gene COMPACT PLANT2 functions in CLAVATA signaling to control shoot meristem size. Nature, 2013,502:555-558.
[9] JE BI, XU F, WU Q, LIU L, MEELEY R, GALLAGHER J P, CORCILIUS L, PAYNE R J, BARTLETT M E, JACKSON D . The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. Elife, 2018,7:e35673.
[10] CHUCK G S, BROWN J, MEELEY R, HAKE S . Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proceedings of the National Academy of Sciences of the United States of America, 2014,111:18775-18780.
[11] ZHANG D, SUN W, SINGH R, ZHENG Y, CAO Z, LI M, LUNDE C, HAKE S, ZHANG Z . GRF-interacting factor1 (gif1) regulates shoot architecture and meristem determinacy in maize. The Plant Cell, 2018,30:360-374.
[12] DU Y, LIU L, LI M, FANG S, SHEN X, CHU J, ZHANG Z . UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytologist, 2016,214(2):721-733.
[13] LIU L, DU Y, SHEN X, LI M, SUN W, HUANG J, LIU Z, TAO Y, ZHENG Y, YAN J, ZHANG Z . KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics, 2015,11:e1005670.
[14] PHILLIPS K A, SKIRPAN A L, LIU X, CHRISTENSEN A, SLEWINSKI T L, HUDSON C, BARAZESH S, COHEN J D, MALCOMBER S, MCSTEEN P . vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant Cell, 2011,23:550-566.
[15] GALLAVOTTI A, YANG Y, SCHMIDT R J, JACKSON D . The relationship between auxin transport and maize branching. Plant Physiology, 2008,147:1913-1923.
[16] GALLAVOTTI A, ZHAO Q, KYOZUKA J, MEELEY R B, RITTER M K, DOEBLEY J F, PE ME, SCHMIDT R J . The role of barren stalk1 in the architecture of maize. Nature, 2004,432:630-635.
[17] SKIRPAN A, CULLER A H, GALLAVOTTI A, JACKSON D, COHEN J D, MCSTEEN P . BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant and Cell Physiology, 2009,50:652-657.
[18] MCSTEEN P, MALCOMBER S, SKIRPAN A, LUNDE C, WU X T, KELLOGG E, HAKE S . Barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiology, 2007,144:1000-1011.
[19] BARAZESH S, MCSTEEN P . Barren inflorescence1 functions in organogenesis during vegetative and inflorescence development in maize. Genetics, 2008,179:389-401.
[20] GALLI M, LIU Q, MOSS B L, MALCOMBER S, LI W, GAINES C, FEDERICI S, ROSHKOVAN J, MEELEY R, NEMHAUSER J L, GALLAVOTTI A . Auxin signaling modules regulate maize inflorescence architecture. Proceedings of the National Academy of Sciences of the United States of America, 2015,43:13372-13377.
[21] SKIRPAN A, WU X, MCSTEEN P . Genetic and physical interaction suggest that BARREN STALK1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development. The Plant Journal, 2008,55:787-797.
[22] PAUTLER M, EVELAND A L, LARUE T, YANG F, WEEKS R, LUNDE C, JE B, MEELEY R, KOMATSU M, VOLLBRECHT E, SAKAI H, JACKSON D . FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. The Plant Cell, 2015,1:104-120.
[23] YANG F, BUI H T, PAUTLER M, LLACA V, JOHNSTON R, LEE B H, KOLBE A, SAKAI H, JACKSON D . A maize glutaredoxin gene, abphyl2, regulates shoot meristem size and phyllotaxy. The Plant Cell, 2015,27(1):121-131.
[24] JACKSON D, HAKE S . Control of phyllotaxy in maize by the abphyl1 gene. Development, 1999,126:315-323.
[25] GIULINI A, WANG J, JACKSON D . Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature, 2004,430:1031-1034.
[26] JIAO Y, WANG Y, XUE D, WANG J, YAN M, LIU G, DONG G, ZENG D, LU Z, ZHU X, QIAN Q, LI J . Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010,6:541-544.
[27] MIURA K, IKEDA M, MATSUBARA A, SONG X J, ITO M, ASANO K, MATSUOKA M, KITANO H, ASHIKARI M . OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 2010,6:545-549.
[28] LIU M, SHI Z, ZHANG X, WANG M, ZHANG L, ZHENG K, LIU J, HU X, DI C, QIAN Q, HE Z, YANG D L . Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nature Plants, 2019,5:389-400.
[29] SONG X, LU Z, YU H, SHAO G, XIONG J, MENG X, JING Y, LIU G, XIONG G, DUAN J, YAO X, LIU C, LI H, WANG Y, LI J . IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Research, 2017,27:1128-1141.
[30] EVELAND A L, GOLDSHMIDT A, PAUTLER M, MOROHASHI K, LISERON-MONFILS C, LEWIS M W, KUMARI S, HIRAGA S, YANG F, UNGER-WALLACE E, OLSON A, HAKE S, VOLLBRECHT E, GROTEWOLD E, WARE D, JACKSON D . Regulatory modules controlling maize inflorescence architecture. Genome Research, 2014,3:431-443.
[31] AMBROSE B A, LERNER D R, CICERI P, PADILLA C M, YANOFSKY M F, SCHMIDT R J . Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 2000,5(3):569-579.
[32] CHENG P C, GREYSON R I, WALDEN D B . Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. American Journal of Botany, 1983,70:450-462.
[33] MENA M, MANDEL M A, LERNER D R, YANOFSKY M F, SCHMIDT R J . A characterization of the MADS-box gene family in maize. The Plant Journal, 1995,8(6):845-854.
[34] BARTLETT M E, WILLIAMS S K, TAYLOR Z, DEBLASIO S, GOLDSHMIDT A, HALL D H, SCHMIDT R J, JACKSON D P, WHIPPLE C J . The maize PI/GLO ortholog Zmm16/sterile tassel silky ear1 interacts with the zygomorphy and sex determination pathways in flower development. The Plant Cell, 2015,11:3081-3098.
[35] MÜNSTER T, WINGEN L U, FAIGL W, WERTH S, SAEDLER H, THEISSEN G . Characterization of three GLOBOSA-like MADS-box genes from maize: Evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene, 2001,262(1/2):1-13.
[36] SCHMIDT R J, VEIT B, MANDEL M A, MENA M, HAKE S, YANOFSKY M F . Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. The Plant Cell, 1993,5(7):729-737.
[37] SCHREIBER D N, BANTIN J, DRESSELHAUS T . The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiology, 2004,134:1069-1079.
[38] THEISSEN G, STRATER T, FISHER A, SAEDLER H . Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene, 1995,156(2):155-166.
[39] MÜNSTER T, DELEU W, WINGEN L U, OUZUNOVA M, CACHARRON J, FAIGL W, WERTH S, KIM J T, SAEDLER H, THEISSEN G . Maize MADS-box genes galore. Maydica, 2002,47:287-301.
[40] THOMPSON B E, BARTLING L, WHIPPLE C, HALL D H, SAKAI H, SCHMIDT R, HAKE S . Bearded-ear encodes a MADS box transcription factor critical for maize floral development. The Plant Cell, 2009,21(9):2578-2590.
[41] MENA M, AMBROSE B A, MEELEY R B, BRIGGS S P, YANOFSKY M F, SCHMIDT R J . Diversification of C-function activity in maize flower development. Science, 1996,274(5292):1537-1540.
[42] CACHARRÓN J, SAEDLER H, THEISSEN G . Expression of MADS-box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and the lower floret of each spikelet. Development Genes and Evolution, 1999,209:411-420.
[43] KOBAYASHI K, MAEKAWA M, MIYAO A, HIROCHIKA H, KYOZUKA J . PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Nature Reviews Genetics, 2010,511:47-57.
[44] CIAFFI M, RITA A, ANTONIO O, ENRICO T . Molecular aspects of flower development in grasses. Sexual Plant Reproduction, 2011,24:247-282.
[45] CHUCK G, MEELEY R B, HAKE S . The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Development, 1998,12(8):1145-1154.
[46] CHUCK G, MEELEY R, HAKE S . Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 2008,135(18):3013-3019.
[47] CHUCK G, MEELEY R, IRISH E, SAKAI H, HAKE S . The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics, 2007,39:1517-1521.
[48] ACOSTA I F, LAPARRA H, ROMERO S P, SCHMELZ E, HAMBERG M, MOTTINGER J P, MORENO M A, DELLAPORTA S L . tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science, 2009,323:262-265.
[49] DELONG A, CALDERON-URREA A, DELLAPORTA S L . Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell, 1993,74:757-768.
[50] YAN Y, CHRISTENSEN S, ISAKEIT T, ENGELBERTH J, MEELEY R, HAYWARD A, EMERY R J N, KOLOMIETS M V . Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. The Plant Cell, 2012,24(4):1420-1436.
[51] LUNDE C, KIMBERLIN A, LEIBOFF S, KOO A J, HAKE S . Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Communications Biology, 2019,2:114.
[52] HAYWARD A P, MORENO M A, HOWARD T P, HAGUE J, NELSON K, HEFFELFINGER C, ROMERO S, KAUSCH A P, GLAUSER G, ACOSTA I F, ET A L . Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Science Advances, 2016,2:e1600991.
[53] IRISH E E, LANGDALE J A, NELSON T M . Interactions between tassel seed genes and other sex determining genes in maize. Developmental Genetics, 1994,15:155-171.
[54] HARTWIG T, CHUCK G S, FUJIOKA S, KLEMPIEN A, WEIZBAUER R, POTLURI D P V, CHOE S, JOHAL G S, SCHULZ B . Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(49):19814-19819.
[55] BEST N B, HARTWIG T, BUDKA J, FUJIOKA S, JOHAL G, SCHULZ B, DILKES B P . nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis protein Dwarf1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiology, 2016,171:2633-2647.
[56] HABBEN J E, BAO X, BATE N J, DEBRUIN J L, DOLAN D, HASEGAWA D, HELENTJARIS T G, LAFITTE R H, LOVAN N, MO H, REIMANN K, SCHUSSLER J R . Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnology Journal, 2014,12:685-693.
[57] SHI J, HABBEN J E, ARCHIBALD R L, DRUMMOND B J, CHAMBERLIN M A, WILLIAMS R W, LAFITTE H R, WEERS B P . Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiology, 2015,169(1):266-282.
[58] SCANLON M J, TAKACS E M. Kernel biology//BENNETZEN J, HAKE S, eds.,Handbook of Maize: Its Biology. New York: Springer Press, 2009: 121-143.
[59] LI X J, ZHANG Y F, HOU M, SUN F, SHEN Y, XIU Z H, WANG X, CHEN Z L, SUN S S, SMALL I, TAN B C . Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). The Plant Journal, 2014,79(5):797-809.
[60] YANG Y Z, DING S, WANG Y, LI C L, SHEN Y, MEELEY R . Small kernel2 encodes a glutaminase in vitamin B6 biosynthesis essential for maize seed development. Plant Physiology, 2017,174(2):1127-1138.
[61] NEUFFER M G, SHERIDAN W F . Defective kernel mutants of maize: I. Genetic and lethality studies. Genetics, 1980,95(4):929-944.
[62] SCANLON M J, STINARD P S, JAMES M G, MYERS A M, ROBERTSON D S . Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks. Genetics, 1994,136(1):281-294.
[63] FU S, MEELEY R, SCANLON M J . Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. The Plant Cell, 2002,14(12):3119-3132.
[64] HECKEL T, WERNER K, SHERIDAN W F, DUMAS C, ROGOWSKY P M . Novel phenotypes and developmental arrest in early embryo specific mutants of maize. Planta, 1999,210(1):1-8.
[65] SHEN Y, LI C, MCCARTY D R, MEELEY R, TAN B C . Embryo defective12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. The Plant Journal, 2013,74(5):792-804.
[66] QI W, YANG Y, FENG X, ZHANG M, SONG R . Mitochondrial function and maize kernel development requires dek2, a pentatricopeptide repeat protein involved in nad1 mRNA splicing. Genetics, 2017,205(1):239-249.
[67] CHEN X, FENG F, QI W, XU L, YAO D, WANG Q , SONG R. dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Molecular Plant, 2017,10(3):427-441.
[68] DAI D, LUAN S, CHEN X, WANG Q, FENG Y, ZHU C, QI W, SONG R . Maize dek37 encodes a p-type PPR protein that affects cis-splicing of mitochondrial nad2 intron 1 and seed development. Genetics, 2018,208(3):1069-1082.
[69] QI W, TIAN Z, LU L, CHEN X, CHEN X, ZHANG W, SONG R . Editing of mitochondrial transcripts nad3 and cox2 by dek10 is essential for mitochondrial function and maize plant development. Genetics, 2017,205(4):1489-1501.
[70] WANG G, ZHONG M, SHUAI B, SONG J, ZHANG J, HAN L, LING H, TANG Y, WANG G, SONG R . E+ subgroup PPR protein Defective Kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. New Phytologist, 2017,214(4):1563-1578.
[71] LI X, GU W, SUN S, CHEN Z, CHEN J, SONG W, ZHAO H, LAI J . Defective Kernel 39 encodes a PPR protein required for seed development in maize. Journal of Integrative Plant Biology, 2018,60(1):45-64.
[72] SUN F, ZHANG X, SHEN Y, WANG H, LIU R, WANG X, GAO D, YANG Y Z, LIU Y, TAN B C . The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize. The Plant Journal, 2018,95:919-932.
[73] CAI M, LI S, SUN F, SUN Q, ZHAO H, REN X, ZHAO Y, TAN B C, ZHANG Z, QIU F . Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. The Plant Journal, 2017,91(1):132-144.
[74] REN X, PAN Z, ZHAO H, ZHAO J, CAI M, LI J, ZHANG Z, QIU F . EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. Journal of Experimental Botany, 2017,68(16):4571-4581.
[75] SUN F, XIU Z, JIANG R, LIU Y, ZHANG X, YANG Y Z, LI X, ZHANG X, WANG Y, TAN B C . The mitochondrial pentatricopeptide repeat protein EMP12 is involved in the splicing of three nad2 introns and seed development in maize. Journal of Experimental Botany, 2019,70(3):963-972.
[76] XIU Z, SUN F, SHEN Y, ZHANG X, JIANG R, BONNARD G, ZHANG J, TAN B C . EMPTY PERICARP16 is required for mitochondrial nad2 intron 4 cis-splicing, complex I assembly and seed development in maize. The Plant Journal, 2016,85(4):507-519.
[77] LIU Y J, XIU Z H, MEELEY R, TAN B C . Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. The Plant Cell, 2013,25(3):868-883.
[78] SUN F, WANG X, BONNARD G, SHEN Y, XIU Z, LI X, GAO D, ZHANG Z, TAN B C . Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. The Plant Journal, 2015,84(2):283-295.
[79] YANG Y Z, DING S, WANG H C, SUN F, HUANG W L, SONG S, XU C, TAN B C . The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytologist, 2017,214(2):782-795.
[80] LI X L, HUANG W L, YANG H H, JIANG R C, SUN F, WANG H C, ZHAO J, XU C H, TAN B C . EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. New Phytologist, 2019,221(2):896-907.
[81] GUTIERREZ-MARCOS J F, DAL PRA M, GIULINI A, COSTA L M, GAVAZZI G, CORDELIER S, SELLAM O, TATOUT C, PAUL W, PEREZ P, DICKINSON H G, CONSONNI G . Empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. The Plant Cell, 2007,19(1):196-210.
[82] OFFLER C E, MCCURDY D W, PATRICK J W, TALBOT M J . Transfer cells: Cells specialized for a special purpose. Annual Review of Plant Biology, 2003,54:431-454.
[83] BRYANT N, LLOYD J, SWEENEY C, MYOUGA F, MEINKE D . Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. Plant Physiology, 2011,155(4):1678-1689.
[84] SOSSO D, CANUT M, GENDROT G, DEDIEU A, CHAMBRIER P, BARKAN A, CONSONNI G, ROGOWSKY P M . PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. Journal of Experimental Botany, 2012,63(16):5843-6857.
[85] LI C, SHEN Y, MEELEY R, MCCARTY D R, TAN B C . Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. The Plant Journal, 2015,84(4):785-799.
[86] ZHANG Y F, HOU M M, TAN B C . The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize. PLoS ONE, 2013,8(6):e67369.
[87] MA Z, DOONER H K . A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. The Plant Journal, 2004,37(1):92-103.
[88] LI Q, WANG J, YE J, ZHENG X, XIANG X, LI C, FU M, WANG Q, ZHANG Z, WU Y . The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA Polymerase III. The Plant Cell, 2017,29(10):2661-2675.
[89] LI J, FU J, CHEN Y, FAN K, HE C, ZHANG Z, LI L, LIU Y, ZHENG J, REN D, WANG G . The U6 Biogenesis-Like 1 plays an important role in maize kernel and seedling development by affecting the 3' end processing of U6 snRNA. Molecular Plant, 2017,10(3):470-482.
[90] ZUO Y, FENG F, QI W, SONG R . Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize kernel development. Journal of Integrative Plant Biology, 2019,61(6):728-748
[91] WANG H, WANG K, DU Q, WANG Y, FU Z, GUO Z, KANG D, LI W X, TANG J . Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytologist, 2018,218(3):1233-1246.
[92] HE Y, WANG J, QI W, SONG R . Maize Dek15 encodes the Cohesin- Loading Complex Subunit SCC4 and is essential for chromosome aegregation and kernel development. The Plant Cell, 2019,31(2):465-485.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[3] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[4] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[5] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[6] LI Ming,LI YingChun,NIU XiaoGuang,MA Fen,WEI Na,HAO XingYu,DONG LiBing,GUO LiPing. Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Fertilizer on the Yield of Summer Maize and Carbon and Nitrogen Metabolism After Flowering [J]. Scientia Agricultura Sinica, 2021, 54(17): 3647-3665.
[7] HUANG YuQing,SUN YanYan,LUO RongZheng,Awangcuomu ,LU SuWen,FAN XiuCai,WANG Chen,LIU ChongHuai,FANG JingGui. A New Classification Standard for Different Grape Cluster Shapes and Investigation on Cluster Shape Dynamic Development Process [J]. Scientia Agricultura Sinica, 2021, 54(11): 2389-2405.
[8] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[9] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[10] ZHU ShiPing,WANG FuSheng,CHEN Jiao,YU Xin,YU Hong,LUO GuoTao,HU Zhou,FENG JinYing,ZHAO XiaoChun,HONG QiBin. Seed Traits and Seedling Performances of Different Types of Citrus Rootstock [J]. Scientia Agricultura Sinica, 2020, 53(3): 585-599.
[11] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
[12] XIE KaiDong,PENG Jun,YUAN DongYa,QIANG RuiRui,XIE ShanPeng,ZHOU Rui,XIA QiangMing,WU XiaoMeng,KE FuZhi,LIU GaoPing,GROSSER Jude W,GUO WenWu. Production of Citrus Triploids Based on Interploidy Crossing with Bendizao and Man Tangerines as Female Parents [J]. Scientia Agricultura Sinica, 2020, 53(23): 4961-4968.
[13] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
[14] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
[15] JIA ShanShan,LUO QiangWei,LI ShaSha,WANG YueJin. Optimization of Embryo Rescue Technique and Production of Potential Seedless Grape Germplasm with Rosy Aroma [J]. Scientia Agricultura Sinica, 2020, 53(16): 3344-3355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!