Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4364-4373.doi: 10.3864/j.issn.0578-1752.2019.23.016

• SPECIAL FOCUS: MOLECULAR BIOLOGY OF APPLE • Previous Articles     Next Articles

Cloning and Functional Analysis of U6 Promoter in Apple

BIAN ShuXun,HAN XiaoLei,YUAN GaoPeng,ZHANG LiYi,TIAN Yi,ZHANG CaiXia(),CONG PeiHua()   

  1. Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture/National Apple Breeding Center, Xingcheng 125100, Liaoning
  • Received:2019-07-31 Accepted:2019-09-19 Online:2019-12-01 Published:2019-12-01
  • Contact: CaiXia ZHANG,PeiHua CONG E-mail:cxzhang-bj@163.com;congph@163.com

Abstract:

【Objective】U6 promoter is an important element for the transcription of sgRNA in the CRISPR/Cas9 genome editing system. There may be species-specific factors in U6 promoter, and the activity of U6 promoter would be altered when its length changed. So far, in apple (Malus×domestica), the transcriptional characterization of U6 promoters has not been reported. Therefore, selecting an apple U6 promoter with high transcriptional activity and suitable fragment size would provide a basis for optimizing apple CRISPR/Cas9 gene editing technology system. 【Method】 DNAMAN, promoter cis element online predicting website PLACE and plant CARE were used to do the comparative analysis of apple U6 promoters; U6 promoters were cloned and constructed into firefly luciferase vector; the apple callus and tobacco (Nicotiana benthamiana) leaves were transformed via Agrobacterium-mediated transient transformation; the transcriptional activity of U6 promoter was determined according to the luciferase activity. 【Result】 There were six alternative U6 promoters in apple genome (E-value<3e -40), which were located on chr 6, chr 7, chr 9, chr 10, chr 15 and chr 17, respectively. 27 bp snRNA at 5′ end and its upstream 1 500 bp were selected as candidate U6 promoter. Sequence analysis results showed that the upstream sequence element (USE) and TATA-like elements were contained in six U6 promoters of apple, the same as Arabidopsis. After transient transformation, the luciferase activity assay showed that, the U6 promoter on chromosome 10 had the highest transcriptional activity. Among all U6 promoters which were shortened at 5′ end (1 500 bp, 959 bp, 275 bp, and 116 bp) on chromosome 10, the 275 bp one had the highest transcriptional activity. In addition, compared with the Arabidopsis U6 promoter, in apple callus, the transcriptional activity of the apple U6 promoter was higher. 【Conclusion】Six U6 promoters were cloned from the apple genome, and a U6 promoter with high transcriptional activity and suitable sequence fragment was obtained.

Key words: Malus×domestica, U6 promoter, luciferase, Nicotiana benthamiana, callus

Table 1

Primer sequences used in this study"

引物名称 Prime name 上游引物 Forward sequence (5′-3′) 下游引物 Reverse sequence (5′-3′)
MdU6-6P F:ggtaccTTTGGAGTTGAAGGATTT R;aagcttAATTTTATCGGATGTCCC
MdU6-7P F:ggtaccCCCCCGTTTGGATGACCCA R:aagcttAATTTTATCGGATGTCCC
MdU6-9P F:aagcttATGCTTCTCCCATGGAAAT R:ggatccAATTTTATCGGATGTCCC
MdU6-10P F:ggtaccTGGTGACATTGAGGTTCT R:aagcttAATTTTATCGGATGTCCC
MdU6-15P F:ggtaccTTTGGCGTTGCATTAG R:ggatccAATTTTATCGGATGTCCC
MdU6-17P F:ggtaccCTCCCCGGAAATGAC R:ggatccAATTTTATCGGATGTCCC
MdU6-10-2P F:ggtaccTGATATGTGGTGTTTCTAGG R:aagcttAATTTTATCGGATGTCCC
MdU6-10-3P F:ggtaccGGCGAAAGGTTTATGTTC R:aagcttAATTTTATCGGATGTCCC
MdU6-10-4P F:ggtaccCTCCTGACTAGTAAAGAAGG R:aagcttAATTTTATCGGATGTCCC
AtU6-1 F;ggtaccAGAAATCTCAAAATTCCGGCAG R:aagcttCAATCACTACTTCGTCTCTAACCATAT

Fig. 1

Construction of LUC reporter gene fusion expression vector driven by U6 promoters"

Table 2

Mapping of U6 snRNA chromosome in apple genome"

基因名称
Gene names
基因ID
Gene ID
染色体定位
Chromosome:Location
MdU6-06 MD06G1040500 Chr06: 5202556..5202455
MdU6-07 MD07G1079000 Chr07: 7617645..7617544
MdU6-09 MD09G1120900 Chr09: 9346234..9346335
MdU6-10 MD10G1255200 Ch10: 34716072..34715971
MdU6-15 MD15G1130400 Chr15: 9427466..9427365
MdU6-17 MD17G1111900 Chr17: 9588121..9588222

Fig. 2

Sequence analysis of MdU6 promoters"

Fig. 3

PCR amplification and identification of the MdU6 promoters"

Fig. 4

Transient expression of MdU6-Ps::LUC in N. benthamiana leaves"

Fig. 5

Transient expression of MdU6-9P::LUC and MdU6-10P::LUC in apple callus Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 6

Schematic diagram of different MdU6-10-Ps truncated at the 5′ end"

Fig. 7

PCR amplification and identification of truncated MdU6 promoters"

Fig. 8

Transient expression of MdU6-10-Ps::LUC in N. benthamiana leaves"

Fig. 9

Transient expression of MdU6-10-Ps::LUC in apple callus"

Fig. 10

Transient expression of AtU6-1P::LUC and MdU6-10-3P::LUC in apple callus"

[1] CHEN K L, GAO C X . Targeted genome modification technologies and their applications in crop improvements. Plant Cell Report, 2014,33(4):575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082
[2] RAN F A, HSU P D, WRIGHT J, AGARWALA V, SCOTT D A, ZHANG F . Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013,8(11):2281-2308.
doi: 10.1038/nprot.2013.143
[3] LI J F, NORVILLE J E, AACH J, MCCORMACK M, ZHANG D D, BUSH J, CHURCH G M, SHEEN J . Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013,31(8):688-691.
doi: 10.1038/nbt.2654 pmid: 23929339
[4] LIU X J, XIE C X, SI H J, YANG J X . CRISPR/Cas9-mediated genome editing in plants. Methods, 2017,12(1):94-102.
doi: 10.1111/pbi.13315 pmid: 31821678
[5] XING H L, DONG L, WANG Z P, ZHANG H Y, HAN C Y, LIU B, WANG X C, CHEN Q J . A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 2014,14(1):327.
doi: 10.1186/s12870-014-0327-y
[6] DAS G, HENNING D, REDD R . Structure, organization, and transcription of Drosophila U6 small nuclear RNA genes. Biological Chemistry, 1987,262(25):1187-1193.
pmid: 3027083
[7] TAZI J, FORNE T, JEANTEUR P, CATHALA G, BRUNEL C . Mammalian U6 small nuclear RNA undergoes 3' end modifications within the spliceosome. Molecular & Cellular Biology, 1993,13(3):1641-1650.
doi: 10.1055/s-0039-3400233 pmid: 31842235
[8] BERGET S M, ROBBERSON B L . U1, U2, and U4/U6 small nuclear ribonucleoproteins are required for in vitro splicing but not polyadenylation. Cell, 1986,46(5):691-696.
doi: 10.1016/0092-8674(86)90344-2 pmid: 2427201
[9] BLACK D L, STEITZ J A . Pre-mRNA splicing in vitro requires intact U4/U6 small nuclear ribonucleoprotein. Cell, 1986,46(5):697-704.
doi: 10.1016/0092-8674(86)90345-4 pmid: 2427202
[10] WAIBEL F, FILIPOWICZ W . U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase ll-transcribed U-snRNA genes. Nucleic Acids Research, 1990,18(12):3451-3458.
doi: 10.1093/nar/18.12.3451 pmid: 2362802
[11] BOGENHAGEN D F, SAKONJU S, BROWN D D . A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region. Cell, 1980,19(1):27-35.
doi: 10.1016/0092-8674(80)90385-2 pmid: 7357604
[12] GEIDUSCHEK E P, TOCCHINI-VALENTINI G P . Transcription by RNA polymerase III. Annual Review of Biochemistry, 1988,57(59):873-914.
[13] MALI P, YANG L H, ESVELT K M, AACH J, GUELL M, DICARLO J E, NORVILLE J E, CHURCH J M . RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
doi: 10.1126/science.1232033
[14] MA H M, WU Y G, DANG Y, CHOI J G, ZHANG J L, WU H Q . Pol III promoters to express small RNAs: Delineation of transcription initiation. Molecular Therapy-Nucleic Acids, 2014,3(5):e161.
doi: 10.1038/mtna.2014.12 pmid: 24803291
[15] PAUL C P, GOOD P D, WINER I, ENGELKE D R . Effective expression of small interfering RNA in human cells. Nature Biotechnology, 2002,20(5):505-508.
doi: 10.1038/nbt0502-505 pmid: 11981566
[16] KWAK Y D, KOIKE H, SUGAYA K . RNA interference with small hairpin RNAs transcribed from a human U6 promoter-driven DNA vector. Journal of Pharmacological Sciences, 2003,93(2):214-217.
doi: 10.1254/jphs.93.214 pmid: 14578591
[17] JIANG W Z, ZHOU H B, BI H H, FROMM M, YANG B, WEEKS D P . Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 2013,41(20):e188.
doi: 10.1093/nar/gkt780 pmid: 23999092
[18] LI X, JIANG D H, YONG K, ZHANG D B . Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. Plant Biology, 2007,49(2):222-229.
doi: 10.1093/nar/gkg331 pmid: 12711679
[19] SHAN Q W, WANG Y P, LI J, ZHANG Y, CHEN K L, LIANG Z, ZHANG K, LIU J X . Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013,31(8):686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[20] 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东 . 基于棉花U6 启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018,44(2):227-235.
LI J Y, LEI J F, DAI P H, YAO R, QU Y Y, CHEN Q J, LI Y, LIU X D . Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton ( Gossypium barbadense L.). The Crop Journal, 2018,44(2):227-235. (in Chinese)
[21] 蒲艳, 刘超, 李继洋, 阿尔祖古丽·塔什, 胡燕, 刘晓东 . 番茄 U6 启动子的克隆及 CRISPR/Cas9 基因编辑体系的建立. 中国农业科学, 2018,51(2):315-326.
doi: 10.3864/j.issn.0578-1752.2018.02.011
PU Y, LIU C, LI J Y, ALZU G T, HU Y, LIU X D . Different SlU6 promoters cloning and establishment of CRISPR/Cas9 mediated gene editing system in tomato. Agricultural Sciences in China, 2018,51(2):315-326. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.02.011
[22] FENG Z Y, ZHANG B T, DING W N, LIU X D, YANG D L, WEI P L . Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013,23(10):1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582
[23] JACOBS T B, LAFAYETTE P R, SCHMITZ R J, PARROTT W A . Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 2015,15(1):1-10.
doi: 10.1371/journal.pone.0136064 pmid: 26284791
[24] NISHITANI C, HIRAI N, KOMORI S, WADA M, OKADA K, OSAKABE K, YAMAMOTO T, OSAKABE Y . Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 2016,6:31481.
doi: 10.1038/srep31481 pmid: 27530958
[25] 朱金洁 . CRISPR_Cas9介导的玉米基因组定点编辑研究[D]. 北京: 中国农业大学, 2015.
ZHU J J . Targeted genome editing in maize using CRISPR-Cas9[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[26] WANG M B, HELLIWELL C A, WU L M, WATERHOUSE P M, PEACOCK W J, DENNIS E S . Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. Rna-a Publication of the Rna Society, 2008,14(5):903-913.
doi: 10.1261/rna.760908 pmid: 18367720
[27] JEFFERSON R A, KAVANAGH T A, BEVAN M W . GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. THE EMBO Journal, 1987,6(13):3901-3907.
pmid: 3327686
[28] CHIU W L, NIWA Y, ZENG W K, HIRANO T, KOBAYASHI H, SHEEN J . Engineered GFP as a vital reporter in plants. Current Biology, 1996,6(3):325-330.
doi: 10.1016/s0960-9822(02)00483-9 pmid: 8805250
[29] ZHANG G H, GURTU V, KAIN S R . An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochemical and Biophysical Research Communications, 1996,227(3):707-711.
doi: 10.1006/bbrc.1996.1573 pmid: 8885998
[30] WELSH S, KAY S A . Reporter gene expression for monitoring gene transfer. Current Opinion in Biotechnology, 1997,8(5):617-622.
doi: 10.1016/s0958-1669(97)80038-9 pmid: 9353237
[31] 雷建峰 . 棉花U6启动子克隆与功能分析及拟南芥GGB突变体的创制[D]. 乌鲁木齐: 新疆农业大学, 2016.
LEI J F . Cloning and functional analysis of U6 promoters in cotton and creation of Arabidopsis GGB mutant[D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese)
[32] KHAOULA B, ANGELA C G, SOPHIEN K, NEKRASOV V . Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 2013,9(1):39.
doi: 10.1186/1746-4811-9-39 pmid: 24112467
[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] HOU SiYu,WANG XinFang,DU Wei,FENG JinHua,HAN YuanHuai,LI HongYing,LIU LongLong,SUN ZhaoXia. Genome-Wide Identification of WOX Family and Expression Analysis of Callus Induction Rate in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2021, 54(17): 3573-3586.
[3] ZHAO Juan,YIN YiZhen,WANG XiaoLu,MA ChunYing,YIN MeiQiang,WEN YinYuan,SONG XiE,DONG ShuQi,YANG XueFang,YUAN XiangYang. Physiological Response of Millet Callus with Different Herbicide-Resistance to Sethoxydim Stress [J]. Scientia Agricultura Sinica, 2020, 53(5): 917-928.
[4] TIAN Yuan,WANG Li,LONG Feng,ZAN LinSen,CHENG Gong. Codon Optimization of Human Lysozyme and High-Efficiency Expression in Bovine Mammary Cells [J]. Scientia Agricultura Sinica, 2020, 53(18): 3805-3817.
[5] WEI Xi,WANG QianHua,GE XiaoYang,CHEN YanLi,DING YanPeng,ZHAO MingZhe,LI FuGuang. Effects of Different Red and Blue Ratios on the Somatic Embryogenesis and Plant Regeneration of Cotton [J]. Scientia Agricultura Sinica, 2019, 52(6): 968-980.
[6] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[7] ZHANG Wen, XU Hou-qiang, CHEN Wei, CHEN Xiang, ZHAO Jia-fu, HUAN Cong-cong, XIA Dan, ZHOU Di. Influence of MyoD1 Promoter Activity by MyoD Family of Guangling Cattle [J]. Scientia Agricultura Sinica, 2016, 49(6): 1196-1206.
[8] LIU Yan-rong, CEN Hui-fang, YAN Jian-ping, ZHANG Wan-jun. Optimizing of Agrobacterium-Mediated Transformation of Switchgrass Cultivars [J]. Scientia Agricultura Sinica, 2016, 49(1): 80-89.
[9] LEI Jian-feng, WU Juan, CHEN Xiao-jun, YU Tian-ping, NI Zhi-yong, LI Yue, ZHANG Ju-song, LIU Xiao-dong(College of Agronomy, Xinjiang Agricultural University/Research Center of Cotton Engineering, Mini. Cloning and Functional Analysis of Cotton U6 Promoter with High Transcription Activity in Cotton Pollen [J]. Scientia Agricultura Sinica, 2015, 48(19): 3794-3802.
[10] JIA Xiao-yun, JIN Lei-hao, MIAO Lian-juan, DING Na, FAN Rui-wen, DONG Chang-sheng. Melanin Synthesis of Alpaca Melanocytes Regulated by miR-663 Through Targeting TGF-β1 [J]. Scientia Agricultura Sinica, 2015, 48(1): 165-173.
[11] WEN Feng, XIAO Shi-Xin, NIE Yang-Mei, MA Qiu-Xiang, ZHANG Peng, GUO Wen-Wu. Protoplasts Culture Isolated from Friable Embryogenic Callus of Cassava and Plant Regeneration [J]. Scientia Agricultura Sinica, 2012, 45(19): 4050-4056.
[12] CHEN Jing, DONG Hao, MA Hai-Zhen, SUN Quan-Xi, LIU Jiang, QI Bao-Xiu, LI Xin-Zheng, DONG Shu-Ting. Comparison of Induction and Regeneration of Embryogenic Callus Initiated from Immature Embryos and Seedling-Derived Young Leaf Segments of Maize [J]. Scientia Agricultura Sinica, 2011, 44(17): 3676-3682.
[13] ZHANG Li-ming,WANG Yun-sheng,GAO Li-ping,XIA Tao
. Analysis of Differential Protein Expression of Tea Callus with Different Catechins Contents
[J]. Scientia Agricultura Sinica, 2010, 43(19): 4053-4062 .
[14] LI Hui-hua,LAI Zhong-xiong,LIN Yu-ling,SU Ming-hua
. Cloning of ACO Gene from Embryogenic Calli of Longan (Dimocarpus longan Lour.) and Its Expression During Longan Somatic Embryogenesis
[J]. Scientia Agricultura Sinica, 2010, 43(18): 3798-3808 .
[15] HAN Feng-tong,LIN Xiu-kun,LIU Di,WU Ning,LIAO Bing
. Identification of the Regulation Sequences of Bovine Sry Promoter
[J]. Scientia Agricultura Sinica, 2010, 43(14): 2996-3004 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!