Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (17): 3249-3257.doi: 10.3864/j.issn.0578-1752.2018.17.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of High Efficient Genetic Transformation System for Diploid Potatoes

YE MingWang1, ZHANG ChunZhi2, HUANG SanWen1,2   

  1. 1 School of Life Science, Yunnan Normal University/Joint Academy of Potato Sciences, Kunming 650500; 2 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong
  • Received:2018-04-04 Online:2018-09-01 Published:2018-09-01

Abstract: 【Background】Potato is the most important tuber crop. Cultivated potatoes are mainly tetraploid, of which the improvement is hampered by tetrasomic genetics and clonal propagation. Thus, more and more scientists are appealing to re-domesticate potato into an inbred line-based crop propagated by seeds at the diploid level. There are four diploid landraces in the nature, which contains abundant genetic variations. But the genetic transformation of diploid landraces is immature. 【Objective】This study will construct the high efficient genetic transformation system of diploid potato, which is necessary for exploiting the beneficial genes and molecular breeding in diploid potato. 【Method】In this study, we used GFP (green fluorescent protein) as a reporter gene, and explored the genetic transformation in diploid clones Solanum phureja CIP 703541. Different conditions were tested, including pre-culture time, ratio of plant hormones during regeneration, concentration of antibiotics, transformation efficiency.. In addition, we tested the screening system in another 17 diploid landraces. The regeneration efficiencies of different genotypes using various hormone concentrations were compared, and the genotypes with high regeneration efficiency were selected for large-scale transformation. Rooting screening and PCR amplification were performed for the regeneration seedlings, to obtain the positive transformants. The ploidy of regenerated seedlings were detected by flow cytometry to calculate the frequency of chromosome doubling. 【Result】The optimal pre-culture time was 2 days (d). The optimal ratio of hormones for regeneration of CIP 703541 was 2.0 mg·L-1 Zeatin (ZT) and 0.1 mg·L-1 Naphthaleneacetic acid (NAA). The optimal concentrations of kanamycin for regeneration and rooting were 100 mg·L-1 and 50 mg·L-1, respectively. Three diploid clones (CIP 703308, CIP 703312 and CIP 703541) with high regeneration capacity were obtained, and the optimal ratio of hormones varied among these genotypes, the regeneration rates were 45%, 40% and 52%, respectively, on the regeneration medium with 100 mg·L-1 kanamycin,  and their transformation rates were 2.8%, 4.2% and 5.3%, respectively. The frequency of chromosome doubling is high during the genetic transformation of diploid potatoes. The ratio diploid transformants in CIP 703308, CIP 703312 and CIP 703541 were 5.26%, 10.53% and 38.46%, respectively. 【Conclusion】We constructed the high efficient genetic transformation system in diploid potato, and obtained three diploid clones with high regeneration capacity. In addition, the ratio of regenerated seedlings with chromosome doubling is high in the positive transformants of diploid potatoes.

Key words: diploid potato, genetic transformation, chromosome doubling

[1]    LINDHOUT P, MEIJER D, SCHOTTE T, RCB H, RGF V, VAN ECK H J. Towards f1 hybrid seed potato breeding. Potato Research, 2011, 54(4): 301-312.
[2]    李颖, 李广存, 李灿辉, 屈冬玉, 黄三文. 二倍体杂种优势马铃薯育种的展望. 中国马铃薯, 2013(2): 96-99.
LI Y, LI G C, LI C H, QU D Y, HUANG S W. Prospects of diploid hybrid breeding in potato. Chinese Potato Journal, 2013(2): 96-99. (in Chinese)
[3]    JANSKY S H, CHARKOWSKI A O, DOUCHES D S, GUSMINI G, RICHAEL C, BETHKE P C, SPOONER D M, NOVY R G, JONG H D, DE JONG W S, BAMBERG J B, THOMPSON A L, BIZIMUNGU B, HOLM D J, BROWN C R, HAYNES K G, SATHUVALLI V R, VEILLEUX R E, CREIGHTON M J, JR, BRADEEN J M, JIANG J M. Reinventing potato as a diploid inbred line-based crop. Crop Science, 2016, 56(4): 1-11.
[4]    HAWKES J G, PRESS B. the potato: Evolution, biodiversity and genetic resources. London: Smithsonian Institution Press, 1990: 733-735.
[5]    CONSORTIUM T P G S. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475(7355): 189-195.
[6]    AVERSANO R, CONTALDI F, ERCOLANO M R, GROSSO V, LORIZZO M, TATINO F, XUMERLE L, MOLIN A D, AVANZATO C, FERRARINI A, DELLEDONNE M, SANSEVERINO W, CIGLIANO R A, CAPELLAGUTIERREZ S, GABALDÓN T, FRUSCIANTE T, BRADEEN J M, CARPUTO D. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. The Plant Cell, 2015, 27(4): 954-968.
[7]    KOENIG D, JIMÉNEZGÓMEZ J M, KIMURA S, FULOP D, CHITWOOD D H, HEADLAND L R, KUMAR R, COVINGTON M F, DEVISETTY U K, TAT A V, TOHGE T, BOLGER A, SCHNEEBERGER K, OSSOWSKI S, LANZ C, XIONG G Y, TAYLOR-TEEPLES M, BRADY S M, PAULY M, WEIGEL D, USADEL B, FERNIE A R, PENG J, SINHA N R, MALOOF J N. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): E2655-E2662.
[8]    HARDIGAN M A, FPE L, NEWTON L, CRISOVAN E, HAMILTON J P, VAILLANCOURT B, WIEGERT-RININGER K, WOOD J C, DOUCHES D S, FARRÉ E M, VEILLEUX R E, ROBIN BUELL C. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): E9999-E10008.
[9]    LI Y, COLLEONI C, ZHANG J, LIANG Q, HU Y, RUESS H, SIMON R, LIU Y, LIU H, YU G, SCHMIITT E, PONITZKI C, LIU G, HUANG H, ZHAN F, CHEN L, HUANG Y, SPOONER D, HUANG B. Genomic analyses yield markers for identifying agronomically important genes in potato. Molecular Plant, 2018, 11(3): 473-484.
[10]   OOMS G, KARP A, ROBERTS J. From tumour to tuber; tumour cell characteristics and chromosome numbers of crown gall-derived tetraploid potato plants (Solanum tuberosum cv. ‘Maris Bard’). Theoretical & Applied Genetics, 1983, 66(2): 169-172.
[11]   DE B M. Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theoretical & Applied Genetics, 1988, 76(5): 767-774.
[12]   王丹, 朱常香, 郑成超, 温孚江. 根癌农杆菌介导的马铃薯遗传转化条件的优化. 山东农业大学学报(自然科学版), 2002, 33(1): 23-27.
WANG D, ZHU C X, ZHENG C C, WEN F J. Optimization of factors affecting genetic transformation of potato via Agrobacterium tumefaciens. Journal of Shandong Agricultural University (Natural Science), 2002, 33(1): 23-27. ( in Chinese)
[13]   TRUJILLO C, RODRÍGUEZ-ARANGO E, JARAMILLO S, HOYOS R, ORDUZ S, ARANGO R. One-step transformation of two Andean potato cultivars(Solanum tuberosum L. subsp. andigena). Plant Cell Reports, 2001, 20(7): 637-641.
[14]   GUSTAFSON V, MALLUBHOTLA S, MACDONNELL J, SANYAL-BAGCHI M, CHAKRAVARTY B, WANG-PRUSKI G, ROTHWELL C, AUDY P, DEKOEYER D, SIAHBAZI M, FLINN B, REGAN S. Transformation and plant regeneration from leaf explants of Solanum tuberosum, L. cv. ‘Shepody’. Plant Cell Tissue & Organ Culture, 2006, 85(3): 361-366.
[15]   KLOOSTERMAN B, NAVARRO C, BIJSTERBOSCH G, LANGE T, PRAT S, VISSER R G F, BACHEM C W M. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. The Plant Journal, 2007, 52(2): 362-373.
[16]   PASARE S A, DUCREUX L J, MORRIS W L, CAMPBELL R, SHARMA S K, ROUMELIOTIS E, KOHLEN W, KROL S, BRAMLEY P M, ROBERTS A G, FRASER P D, TAYLOR M A. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytologist, 2013, 198(4): 1108-1120.
[17]   NICOLAS M, RODRÍGUEZ-BUEY M L, FRANCO-ZORRILLA J M, CUBAS P. A recently evolved alternative splice site in the branched1a gene controls potato plant architecture. Current Biology, 2015, 25(14): 1799-1809.
[18]   ZHU S, LI Y, VOSSEN J H, VISSER R G F, JACOBSEN E. Functional stacking of three resistance genes against Phytophthora infestans, in potato. Transgenic Research, 2012, 21(1): 89-99.
[19]   SUN K, WOLTERS A M A, LOONEN A E H M, HUIBERS R P, VLUGT R, GOVERSE A, JACOBSEN E, VISSER R G F, BAI Y. Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Research, 2016, 25(2): 123-138.
[20]   CLASEN B M, STODDARD T J, LUO S, DEMOREST Z L, LI J, CEDRONE F, TIBEBU R, DAVISON S, RAY E E, DAULHAC A, COFFMAN A, YABANDITH A, RETTERATH A, HAUN W, BALTES N J, MATHIS L, VOYTAS D F, ZHANG F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal, 2015, 14(1): 169-176.
[21]   NICOLIA A, PROUX-WÉRA E, ÅHMAN I, ONKOKESUNG N, ANDERSSON M, ANDREASSON E, ZHU L H. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. Journal of Biotechnology, 2015, 204: 17-24.
[22]   BUTLER N M, ATKINS P A, VOYTAS D F, DOUCHES D S. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. Plos One, 2015, 10(12): e0144591.
[23]   DUCREUX L J M, MORRIS W L, TAYLOR M A, MILLAM S. Agrobacterium-mediated transformation of Solanum phureja. Plant Cell Reports, 2005, 24(1): 10-14.
[24]   VISSER R G, JACOBSEN E, HESSELINGMEINDERS A, SCHANS M J, WITHOLT B, FEENSTRA W J. Transformation of homozygous diploid potato with an Agrobacterium tumefaciens binary vector system by adventitious shoot regeneration on leaf and stem segments. Plant Molecular Biology, 1989, 12(3): 329-337.
[25]   ISHIZAKI T, KATO A. Introduction of the tobacco retrotransposon Tto1 into diploid potato. Plant Cell Reports, 2005, 24(1): 52-58.
[26]   施春晖, 徐兰兰, 王晓庆, 骆军. 流式细胞仪鉴定猕猴桃倍性技术研究. 植物研究, 2014, 34(6): 845-849.
SHI C H, LAN-LAN X U, WANG X Q, LUO J. Identification of kiwifruit ploidy using flow cytometry. Bulletin of Botanical Research, 2014, 34(6): 845-849. (in Chinese)
[27]   HEERES P, SCHIPPERSROZENBOOM M, JACOBSEN E, VISSER R G F. Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability. Euphytica, 2002, 124(1): 13-22.
[28]   KARP A, JONES M G K, FOULGER D, FISH N, BRIGHT S W J. Variability in potato tissue culture. American Potato Journal, 1989, 66(10): 669-684.
[29]   BEAUJEAN A, SANGWAN R S, LECARDONNEL A, SANGWANNORREEL B S. Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. Journal of Experimental Botany, 1998, 49(326): 1589-1595.
[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[3] LIU MengQi,WU FengYing,WANG YueJin. Expression of Stilbene Synthase Gene and Resistance to Powdery Mildew Analysis of Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2019, 52(14): 2436-2449.
[4] LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming. Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23 [J]. Scientia Agricultura Sinica, 2016, 49(20): 3927-3933.
[5] LIU Rui, ZHANG Huan-Huan, CHEN Zhi-Xiong, SHAHID Muhammad Qasim, FU Xue-Lin, LIU Yao-Guang, LIU Xiang-Dong, LU Yong-Gen. Development of Drought-Tolerant Rice Germplasm by Screening and Transforming TAC Clones of Oryza officinalis Wall. [J]. Scientia Agricultura Sinica, 2014, 47(8): 1445-1457.
[6] XIN Yan-Hua-1, XIAO Zhao-Yan-1, YOU Lin-Feng-1, GUO Li-Qiong-1, 2 , LIN Jun-Fang-1, 2 . Heterologous Expression of Taxadiene Synthase Gene in Ganoderma lucidum [J]. Scientia Agricultura Sinica, 2014, 47(3): 546-552.
[7] WANG Hai-Yan, LI Bao-Hua, ZHANG Qing-Ming, LI Gui-Fang, DONG Xiang-Li, WANG Cai-Xia. Transformation of Agrobacterium tumefaciens-Mediated Colletotrichum gloeosporioides and Identification of Transformants [J]. Scientia Agricultura Sinica, 2013, 46(9): 1799-1807.
[8] DU Kun, GAO Ya-Nan, KONG Yue-Qin, FAN Yun, WANG You-Ping. Effects of OsLTP Gene on Salt Tolerance of Transgenic Brassica napus [J]. Scientia Agricultura Sinica, 2013, 46(13): 2625-2632.
[9] XIE Chao, YANG Qing, SHI Ce, JUE Deng-Wei, ZHU Yan-Ping, LIU Shui-Ping. Cloning and Analysis of StLTPa7 from Solanum torvum [J]. Scientia Agricultura Sinica, 2012, 45(8): 1505-1512.
[10] YAN Li-Min, WANG Xiao-Ming, XU Rong-Qi, DONG Fang-Yang, LI Hong-Jie. Root and Leaf Infection as Revealed by Autofluorescent Reporter Protein GFP Labeled Bipolaris sorokiniana in Wheat [J]. Scientia Agricultura Sinica, 2012, 45(17): 3506-3514.
[11] WU Li, LI Yan-Jun, ZHANG Xin-Yu, WANG Ya-Qin, SUN Jie. Functional Analysis of Cyclophilin (GhCYP1) in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2012, 45(17): 3624-3631.
[12] FAN Su-Jie, WU Jun-Jiang, CHEN Chen, WANG Xin, JIANG Liang-Yu, WANG Jin-Sheng, LI Wen-Bin, XU Peng-Fei, ZHANG Shu-Zhen. Isolation and Functional Analysis of Resistance Gene SDR1 to Phytophthora sojae in Soybean [J]. Scientia Agricultura Sinica, 2012, 45(11): 2139-2146.
[13] LI Hao, ZHANG Wen, ZHAO Xu-Mian, REN Xue-Qin, ZHU Yuan-Di. Molecular Cloning of Isopentenyl Transferases Genes Family in Malus domestica Borkh. and a Preliminary Functional Analysis of MdIPT5a [J]. Scientia Agricultura Sinica, 2011, 44(19): 4029-4036.
[14] WANG Jun. Biotechnology and Genetic Breeding of Grapevine
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2862-2874 .
[15]

. Expression Analysis and Establishment of Regeneration System of Oleate Desaturase Gene in Peanut
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1827-1832 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!