Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (15): 2604-2615.doi: 10.3864/j.issn.0578-1752.2019.15.005

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Ceriporia lacerata on Gummy Stem Blight Control, Growth Promotion and Yield Increase of Cucumbers

BAI RuXia,ZENG HuiWen,FAN Qian,YIN Jie,SUI ZongMing,YUAN Ling()   

  1. College of Resources and Environment, Southwest University, Chongqing 400716
  • Received:2018-12-25 Accepted:2019-02-23 Online:2019-08-01 Published:2019-08-06
  • Contact: Ling YUAN E-mail:lingyuanh@aliyun.com

Abstract:

【Objective】The objective of this study is to clarify the effects of Ceriporia lacerata on plant disease control and growth promotion, and to provide a basis for reducing the application of chemical pesticides and fertilizers.【Method】A new self-isolated C. lacerata (fungal strain HG2011) was grown in Bonnet liquid medium and mixture made of vermiculite, maize powder, and rice husk, respectively, to produce culture broth (CLB) and solid inoculant (CLA). CLB and CLA were prepared and conduced to evaluate the effect of C. lacerata on the antagonistic activity against Mycosphaerella melonis, control of gummy stem blight, vegetative growth of cucumber seedlings, yield of cucumbers, soil enzyme activity, and quality of cucumbers with the method of antagonistic assay, confront culture, greenhouse pot experiments, and field experiments, respectively.【Result】In the antagonistic assay, the inhibition rate of 50% CLB against M. melonis was 32.39% in agar medium at the 6th day, which was similar to that of thiophanate methyl (TM). In the confront culture assay, C. lacerata HG2011 inhibited the growth of M. melonis, this antagonistic fungus could cover M. melonis colonies and make the hyphae deformed, shrunken and disappeared. In greenhouse pot experiments, the incidence of pathogen inoculation (PI) treatment was 36.67% and the disease index was 38.40. Compared with PI, CLB could significantly reduce the incidence and disease index of gummy stem blight, and the relative control efficacy was 79.69%, which was also similar to that of TM (75.57%). Compared with single conventional fertilization (CF), the application of CLB could promote the seedling growth, increase the biomass, root activity and chlorophyll content in leaves by 5.87%-21.45%, 36.50%-38.83% and 10.54%-19.80%, respectively. The nutrient uptake by cucumber seedlings increased by 45.24%-69.05% (nitrogen), 20.51%-43.59% (phosphorus), and 19.88%-38.51% (potassium), respectively. The activities of urease, acid phosphatase, catalase, cellulase, dehydrogenase, and protease increased by 8.73%-35.84%, 7.55%-10.74%, 25.32%-26.49%, 186.21%-279.23%, 47.99%-76.51% and 49.00%-100.00%. The effect of high dose (150 mL) CLB treatment was better than that of low dose (75 mL) CLB treatment. In field experiments, application of CLA on the basis of CF (CF+CLA10) increased fruit quantity of plant by 13.61%, yield by 13.87%, and free amino acids content by 71.54%. Application of CLA on the basis of reducing 25% CF (75% CF+CLA10) increased fruit quantity of plant by 11.51%, yield by 11.71%, and free amino acids content by 54.37%. In addition, compared with CF, 75% CF+CLA10 significantly decreased nitrate content by 14.93%. 【Conclusion】 C. lacerata HG2011 strain can inhibit hyphal growth of M. melonis. Spraying CLB can control gummy stem blight, reduce the incidence and disease index, and improve the control efficacy. Pot application of CLB can increase the activity of soil enzyme, promote the absorption of nutrients by cucumber seedlings, and make the healthy growth of cucumber. Field application of CLA can increase the yield of cucumber and the content of free amino acids in fruits, reduce the content of nitrate content and improve the quality, which is beneficial to reduce application and increase efficiency of chemical fertilizer. C. lacerata HG2011 strain can decompose lignin and cellulose, and grow rapidly in crop straw. Composting with this biological agent can both prevent disease and promote growth.

Key words: Ceriporia lacerata, Mycosphaerella melonis, cucumber, gummy stem blight, control efficacy, growth promotion

Fig. 1

Antagonistic effect of CLB against M. melonis"

Fig. 2

Confront culture test of C. lacerata strain HG2011 and M. melonis The left is C. lacerata strain HG2011 and the right is M. melonis;B:中间为甜瓜球腔菌,四周菌株为撕裂蜡孔菌HG2011 The middle is M. melonis and the around strain is C. lacerata HG2011"

Fig. 3

Effect of C. lacerata strain HG2011 on hyphal morphology of M. melonis a:撕裂蜡孔菌菌株HG2011的正常菌丝 Normal hyphae of C. lacerata strain HG2011 (400×);b:甜瓜球腔菌的正常菌丝 Normal hyphae of M. melonis (400×);C:撕裂蜡孔菌对其产生对峙作用后的甜瓜球腔菌异常菌丝 Abnormal M. melonis hyphae after C. lacerate confront culture (400×)"

Table 1

Effect of CLB on control of gummy stem blight and related physiological indexes in leaves of cucumber seedlings"

处理
Treatment
病情指数
Disease index
发病率
Incidence (%)
防治效果
Control efficacy (%)
丙二醛含量
Malondialdehyde content (μmol·g-1)
相对电导率
Relative electric conductivity (%)
CK 0c 0c 3.95±0.03d 100.00±0.58c
PI 38.40±1.11a 36.67±3.33a 0b 8.14±1.37a 148.55±3.79a
TM+PI 9.38±1.20b 10.00±0b 75.57±3.11a 5.47±0.26b 129.48±5.57b
CLB+PI 7.80±0.92b 10.00±3.33b 79.69±2.40a 5.03±0.33c 128.32±6.09b

Fig. 4

The biomass, vines length, root activity, and chlorophyll content of cucumber plants under different treatments"

Table 2

The content and absorption of nutrient in cucumber seedlings under different treatments"

处理
Treatment
含量 Content (%)
吸收量 Absorption (g/plant)
氮N 磷P 钾K 氮N 磷P 钾K
CK 1.36±0.06b 1.34±0.01c 4.86±0.09c 0.30±0.05d 0.30±0.04d 1.10±0.12d
CF 1.46±0.03b 1.35±0.03c 5.57±0.21c 0.42±0.03c 0.39±0.03c 1.61±0.10c
CF+CLB75 1.88±0.10a 1.46±0.04b 5.95±0.12b 0.61±0.03b 0.47±0.06b 1.93±0.25b
CF+CLB150 1.94±0.07a 1.52±0.03a 6.27±0.05a 0.71±0.03a 0.56±0.01a 2.23±0.17a

Fig. 5

Enzyme activities in the soil of different experimental treatments"

Table 3

Effect of CLA on the yield and quality of cucumber fruits"

处理
Treatment
单果重
Fruit weight
(g)
单株结果数
Fruit quantity of plant
产量
Yield
(kg·667 m-2)
可溶性糖
Soluble sugar (%)
维生素C
Vitamin C (mg·100 g-1)
可溶性蛋白
Soluble protein (mg·100 g-1)
游离氨基酸
Free amino acid (mg·100 g-1)
硝酸盐
Nitrate
(μg·g-1)
CK 210.42±14.76b 3.68±0.17c 2709.58±172.18c 2.30±0.08a 7.40±0.46b 98.32±5.88a 54.16±5.12b 59.76±2.24c
CF 241.77±11.21a 6.17±0.13b 5216.28±210.63b 2.66±0.30a 8.29±0.34a 101.57±8.23a 52.36±2.21b 80.20±6.64a
CF+CLA10 241.58±6.98a 7.01±0.29a 5939.75±412.63a 2.69±0.07a 8.59±0.64a 100.60±9.58a 89.82±4.24a 75.11±2.01ab
75% CF+CLA10 233.86±16.79a 6.88±0.31a 5826.92±411.05a 2.66±0.34a 8.71±0.32a 103.77±11.63a 80.83±11.58a 68.23±6.79bc
[1] ST AMAND P C, WEHNER T C . Generation means analysis of leaf and stem resistance to gummy stem blight in cucumber. Journal of the American Society for Horticultural Science, 2001,126(1):95-99.
[2] WEHNER T C, ST AMAND P C . Field tests for cucumber resistance to gummy stem blight in North Carolina. HortScience, 1993,28(4):327-329.
[3] 李英 . 瓜类蔓枯病菌的生物学特性和黄瓜抗病资源的筛选[D]. 南京: 南京农业大学, 2007.
LI Y . Study on biology characteristics of Didymella bryoniae and screening of resistance germplasm of cucumber[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese)
[4] 孙元超 . 怎样防治黄瓜蔓枯病. 现代农村科技, 2010(17):24-25.
SUN Y C . How to control gummy stem blight in cucumber. Modern Agricultural Science and Technology, 2010(17):24-25. (in Chinese)
[5] 吴建寨, 韩书庆 . 黄瓜2016年市场分析及2017年市场预测. .
WU J Z, HAN S Q. Market analysis of cucumber in 2016 and market forecast in 2017. (in Chinese)
[6] SHARMA V, SALWAN R, SHARMA P N, KANWAR S S . Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. International Journal of Biological Macromolecules, 2017,95:72-79.
[7] 殷洁, 袁玲 . 寡雄腐霉菌剂对辣椒疫病的防治及促生效应. 园艺学报, 2017,44(12):2327-2337.
YIN J, YUAN L . Phytophthora disease control and growth promotion of pepper by Pythium oligandrum. Acta Horticulturae Sinica, 2017,44(12):2327-2337. (in Chinese)
[8] GHOLAMI A, SHAHSAVANI S, NEZARAT S . The effect of plant growth promoting Rhizobacteria(PGPR) on germination, seedling growth and yield of maize. Proceedings of World Academy of Science: Engineering and Technology, 2009,49(1):19-24.
[9] ARSENEAULT T, GOYER C, FILION M . Pseudomonas fluorescens LBUM223 increases potato yield and reduces common scab symptoms in the field. Phytopathology, 2015,105(10):1311-1317.
[10] 彭于发 . 荧光假单胞菌Tn5诱变防病增产研究初报. 中国农业科学, 1990,23(1):88-89.
PENG Y F . Effects of Pseudomonas fluorescens mutated by Tn5 on disease suppression and crop yield increase. Scientia Agricultura Sinica, 1990,23(1):88-89. (in Chinese)
[11] SOWMYA D S, RAO M S, KUMAR R M, GAVASKAR J, PRITI K . Bio-management of Meloidogyne incognita and Erwinia carotovora in carrot(Daucus carota L.) using Pseudomonas putida and Paecilomyces lilacinus. Nematologia Mediterranea, 2012,40:189-194.
[12] 段佳丽, 薛泉宏, 舒志明, 王东胜, 何斐 . 放线菌Act12与腐植酸钾配施对丹参生长及其根域微生态的影响. 生态学报, 2015,35(6):1807-1819.
doi: 10.5846/stxb201305231154
DUAN J L, XUE Q H, SHU Z M, WANG D S, HE F . Effects of combined application of actinomycetes Act12 bio-control agents and potassium humate on growth and microbial flora in rooting zone of Salvia miltiorrhiza Bge. Acta Ecologica Sinica, 2015,35(6):1807-1819. (in Chinese)
doi: 10.5846/stxb201305231154
[13] JANG Y, CHOI H E, LIM Y W, LEE J S, KIM J J . The first report ofCeriporia lacerate(Phanerochaetaceae, Basidiomycota) in Korea. Mycotaxon, 2012,119(1):397-403.
[14] YUAN H S . A new species of Junghuhnia(Basidiomycota, Meruliaceae) from tropical China. Mycotaxon, 2011,117(1):255-260.
[15] 贾碧丝 . 中国蜡孔菌属分类与系统发育研究[D]. 北京: 北京林业大学, 2012.
JIA B S . Taxonomy and phylogeny of Ceriporia in China[D]. Beijing: Beijing Forestry University, 2012. (in Chinese)
[16] JIA B S, ZHOU L W, CUI B K, RIVOIRE B, DAI Y C . Taxonomy and phylogeny of Ceriporia(Polyporales, Basidiomycota) with an emphasis of Chinese collections. Mycological Progress, 2014,13(1):81-93.
[17] SHIN E J, KIM J E, KIM J H, PARK Y M, YOON S K, JANG B C, LEE S P, KIM B C . Hypoglycemic effects of submerged culture of Ceriporia lacerata mycelium. Korean Journal of Food Preservation, 2015,22(1):145-153.
[18] 王娜, 于圣, 褚衍亮, 徐翔宇, 林陈强 . 撕裂蜡孔菌在开放体系中对甲基橙染料的静态脱色研究. 菌物学报, 2015,34(6):1196-1204.
WANG N, YU S, CHU Y L, XU X Y, LIN C Q . Decolorization of methyl orange dye by Ceriporia lacerata under statically air-opened condition. Mycosystema, 2015,34(6):1196-1204. (in Chinese)
[19] WANG N, CHU Y L, WU F, ZHAO Z L, XU X Y . Decolorization and degradation of Congo red by a newly isolated white rot fungus,Ceriporia lacerata, from decayed mulberry branches. International Biodeterioration and Biodegradation, 2017,117:236-244.
[20] 黄建国, 殷洁, 袁玲 . 一株撕裂蜡孔菌及其防治作物真菌病害的应用: CN 107201317 A[P]. ( 2017-09-26) [2018-12-25].
HUANG J G, YIN J, YUAN L . Disease control by application of a strain of Ceriporia lacerate: CN 107201317 A[P]. ( 2017-09-26) [2018-12-25]. (in Chinese)
[21] 袁玲, 殷洁, 黄建国 . 一株撕裂蜡孔菌的促生作用及应用: CN 107164245 A[P]. ( 2017 -09-15) [2018-12-25].
YUAN L, YIN J HUANG J G, . Growth promotion by application of a strain of Ceriporia lacerate: CN 107164245 A[P]. (2017 -09-15) [2018-12-25]. (in Chinese)
[22] 殷洁, 范倩, 黄建国 . 撕裂蜡孔菌的新功能——防治茄子绵疫病及促生效应. 中国农业科学, 2018,51(12):2300-2310.
YIN J, FAN Q, HUANG J G . New functions of Ceriporia lacerate in phytophthora blight control and growth promotion of eggplants. Scientia Agricultura Sinica, 2018,51(12):2300-2310. (in Chinese)
[23] DIK A J, KONING G, KÖHL J . Evaluation of microbial antagonists for biological control of Botrytis cinerea stem infection in cucumber and tomato. European Journal of Plant Pathology, 1999,105(2):115-122.
[24] 何金环, 连艳鲜 . 生物化学实验技术. 2版. 北京: 中国轻工业出版社, 2014: 156-158.
HE J H, LIAN Y X. Biochemistry Experiment and Technology. 2nd ed. Beijing: China Light Industry Press, 2014: 156-158. (in Chinese)
[25] 杨剑虹, 王成林, 代亨林 . 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008: 282-287.
YANG J H, WANG C L, DAI H L. Soil Chemical Analysis and Environmental Monitoring . Beijing: China Earth Press, 2008: 282-287. (in Chinese)
[26] 关松荫 . 土壤酶及其研究法. 北京: 农业出版社, 1986: 274-339.
GUAN S Y. Soil Enzymes and Its Research Methods. Beijing: Agriculture Press, 1986: 274-339. (in Chinese)
[27] AGROPAGES . Global pesticide market - by regions and vendors - market size, demand forecasts, industry trends and updates, supplier market shares 2014-2020. .
[28] 贾振华, 李静, 贾中雄 . 化学农药在我国农作物生产中的应用与分析//陈万全. 病虫害绿色防控与农产品质量安全——中国植物保护学会2015年学术年会论文集. 北京: 中国农业科学技术出版社, 2015: 319-322.
JIA Z H, LI J, JIA Z X. Application and analysis of chemical pesticides in crop production in China//CHEN W Q. Green Prevention and Control of Diseases and Insect Pests and Quality Safety of Agricultural Products——Proceedings of the 2015 Annual Convention of China Society of Plant Protection. Beijing: China Agricultural Science and Technology Press, 2015: 319-322. (in Chinese)
[29] 雷仲仁 . 病虫害生物防治是实现蔬菜安全生产的主要途径. 中国农业科学, 2016,49(15):2932-2934.
LEI Z R . Biological control of diseases and insect pests is valid method to ensure vegetable safe producing. Scientia Agricultura Sinica, 2016,49(15):2932-2934. (in Chinese)
[30] O’BRIEN P A . Biological control of plant diseases. Australasian Plant Pathology, 2017,46:293-304.
[31] BROGLIE K, CHET I, HOLLIDAY M, CRESSMAN R, BIDDLE P, KNOWLTON S, MAUVAIS C J, BROGLIE R . Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 1991,254(5035):1194-1197.
[32] PICARD K, TIRILLY Y, BENHAMOU N . Cytological effects of cellulases in the parasitism of Phytophthora parasitica by Pythium oligandrum. Applied and Environmental Microbiology, 2000,66(10):4305-4314.
[33] MAUCH F, MAUCH-MANI B, BOLLER T . Antifungal hydrolases in pea tissue: Ⅱ. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiology, 1988,88(3):936-942.
[34] GEREMIA R A, GOLDMAN G H, JACOBS D, ARDRTES W, VILA S B, VAN MONTAGU M, HERRERA-ESTRELLA A . Molecular characterization of the proteinase-encoding gene,prb1, related to mycoparasitism by Trichoderma harzianum. Molecular Microbiology, 1993,8(3):603-613.
[35] 管炜, 李淑菊, 王惠哲, 杨瑞环 . 几种杀菌剂对黄瓜蔓枯病菌的室内毒力测定. 天津农业科学, 2010,16(3):82-83.
GUAN W, LI S J, WANG H Z, YANG R H . Toxicity of some fungicides to Mycosphaerella melonis. Tianjin Agricultural Sciences, 2010,16(3):82-83. (in Chinese)
[36] 宋锐, 林丽果, 王康英, 宋浩然, 蒋勇斌, 刘慧霞 . 不同盐生境下硅对高羊茅生物量及生理生化特征的影响. 草业学报, 2016,25(8):91-97.
doi: 10.11686/cyxb2015501
SONG R, LIN L G, WANG K Y, SONG H R, JIANG Y B, LIU H X . Effects of silicon supply on the biomass and physiochemical features of tall fescue seedlings under different salinization conditions. Acta Prataculturae Sinica, 2016,25(8):91-97. (in Chinese)
doi: 10.11686/cyxb2015501
[37] 李书田, 金继运 . 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011,44(20):4207-4229.
doi: 10.3864/j.issn.0578-1752.2011.20.009
LI S T, JIN J Y . Characteristics of nutrient input/output and nutrient balance in different regions of China. Scientia Agricultura Sinica, 2011,44(20):4207-4229. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.20.009
[38] 王克安 . 设施蔬菜高效施肥与土壤无害化处理. 北京: 金盾出版社, 2015.
WANG K A. High Efficiency Fertilization for Vegetable Plants and Harmlessniss Treatment of Soil. Beijing: Jindun Publishing House, 2015. (in Chinese)
[39] JOHNSON S E, LOEPPERT R H . Role of organic acids in phosphate mobilization from iron oxide. Soil Science Society of America Journal, 2006,70(1):222-234.
[40] 刘丽, 梁成华, 王琦, 杜立宇, 吴玉梅, 韩巍 . 低分子量有机酸对土壤磷活化影响的研究. 植物营养与肥料学报, 2009,15(3):593-600.
doi: 10.11674/zwyf.2009.0315
LIU L, LIANG C H, WANG Q, DU L Y, WU Y M, HAN W . Effects of low-molecular-weight organic acids on soil phosphorus release. Plant Nutrition and Fertilizer Science, 2009,15(3):593-600. (in Chinese)
doi: 10.11674/zwyf.2009.0315
[41] 王东升, 王君 . 低分子量有机酸作用下土壤矿物钾释放机制. 辽宁工程技术大学学报(自然科学版), 2009,28(Suppl. 2):259-261.
WANG D S, WANG J . Mechanism of soil mineral potassium release extracted by low-molecular-weigh organic acids. Journal of Liaoning Technical University (Natural Science), 2009,28(Suppl. 2):259-261. (in Chinese)
[42] 杨扬, 高克祥, 吴岩, 刘晓光 . 吲哚乙酸跨界信号调节植物与细菌互作. 生物技术通报, 2016,32(8):14-21.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.003
YANG Y, GAO K X, WU Y, LIU X G . Indole-3-acetic acid-mediated cross-kingdom signalling involved in plant-bacteria interactions. Biotechnology Bulletin, 2016,32(8):14-21. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.003
[43] KLOEPPER J W, LEONG J, TEINTZE M, SCHROTH M N . Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 1980,286(2):885-886.
[44] 徐凯, 郭延平, 张上隆 . 不同光质对草莓叶片光合作用和叶绿素荧光的影响. 中国农业科学, 2005,38(2):369-375.
XU K, GUO Y P, ZHANG S L . Effect of light quality on photosynthesis and chlorophyll fluorescence in strawberry leaves. Scientia Agricultura Sinica, 2005,38(2):369-375. (in Chinese)
[45] 孙洪助 . 红蓝光比例对绿叶蔬菜生理特性及品质的影响[D]. 南京: 南京农业大学, 2014.
SUN H Z . Effects of proportions of red and blue light on physiological characteristics and quality in leafy greens[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)
[46] 王素平, 郭世荣, 李璟, 胡晓辉, 焦彦生 . 盐胁迫对黄瓜幼苗根系生长和水分利用的影响. 应用生态学报, 2006,17(10):1883-1888.
WANG S P, GUO S R, LI J, HU X H, JIAO Y S . Effects of salt stress on the root growth and leaf water use efficiency of cucumber seedlings. Chinese Journal of Applied Ecology, 2006,17(10):1883-1888. (in Chinese)
[47] 张丽娟, 曲继松, 朱倩楠, 吴涛 . 不同剂量外源纤维素酶对设施土壤生物活性与番茄生长的影响. 植物营养与肥料学报, 2017,23(4):1089-1094.
ZHANG L J, QU J S, ZHU Q N, WU T . Effects of exogenous cellulase with different dosages on the biological activity and tomato growth in greenhouse soil. Journal of Plant Nutrition and Fertilizer, 2017,23(4):1089-1094. (in Chinese)
[48] 杨丽娟, 须晖, 邱忠祥, 刘永青 . 菜田土壤酶活性与黄瓜产量的关系. 植物营养与肥料学报, 2000,6(1):113-116.
doi: 10.11674/zwyf.2000.0117
YANG L J, XU H, QIU Z X, LIU Y Q . Relationship between activities of enzyme and cucumber yield in vegetable soil. Plant Nutrition and Fertilizer Science, 2000,6(1):113-116. (in Chinese)
doi: 10.11674/zwyf.2000.0117
[49] DE LA PAZ JIMENEZ M, DE LA HORRA A, PMZZO L, PALMA R M . Soil quality: a new index based on microbiological and biochemical parameters. Biology and Fertility of Soils, 2002,35:302-306.
[50] 申卫收, 林先贵, 张华勇, 尹睿, 段增强, 施卫明 . 不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性. 生态学报, 2008,28(6):2682-2689.
SHEN W S, LIN X G, ZHANG H Y, YIN R, DUAN Z Q, SHI W M . Microbial activity and functional diversity in soils used for the commercial production of cucumbers and tomatoes in polytunnel greenhouse, under different fertilization. Acta Ecologica Sinica, 2008,28(6):2682-2689. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!