Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (2): 257-267.doi: 10.3864/j.issn.0578-1752.2018.02.006

• PLANT PROTECTION • Previous Articles     Next Articles

The Function of the Carbon Metabolism Regulator FgCreA in Fusarium graminearum

HOU Rui1, WANG ChenFang2   

  1. 1College of Forestry, Guizhou University, Guiyang 550025; 2College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2017-07-21 Online:2018-01-16 Published:2018-01-16

Abstract: 【Objective】The objective of this study is to knock out the FgCreA of Fusarium graminearum, which is the carbon source metabolic regulation factor, to research the vegetative growth, sexual reproduction and pathogenicity of the knock out mutant, and to provide a basis for carbon source metabolic mechanism of F. graminearum. 【Method】 According to the budding yeast carbon source regulation factorMig1gene sequence on SGD and NCBI databases, the carbon source regulation factor FgCreA in F. graminearum was determined. the sequences of FgCreA orthologs of other species were retrieved from NCBI database. multiple sequence alignment of CreA orthologs was performed with ClustalW2 software, and phylogenetic tree was constructed by MEGA5 software to determine their evolutionary relationships. The protein properties of FgCreA were predicted via InterProScan. The promotor regions of the carbon absorption structure genes and DON biosynthesis genes were obtained from the NCBI database, then the potential FgCreA binding sites in these promotor regions were analyzed. Primer5 software was used to design primers, the FgCREA gene knockout construct was generated by Split-PCR and then introduced into the wild type strain PH-1 by PEG-mediated protoplast transformation. PCR and Southern blot were used to confirm the FgCREA gene deletion mutants (Fgcrea). The function of FgCREA was analyzed according to the vegetative growth, sexual reproduction and pathogenicity of the Fgcrea mutants. 【Result】There is only one carbon metabolism regulator gene FgCREA (FGSG_09715) in F. graminearum. The 416-amino acid protein encoded by FgCREA has two conserved C2H2 zinc finger regions. FgCreA homologue proteins have a certain degree of homology and are highly conserved in fungi. The promoter regions of the carbon absorption structure genes (XYL2, ARA1, ICL1, PG1, SUC2) and DON biosynthesis genes (TRI1, TRI3, TRI4, TRI5, TRI6, TRI7, TRI8, TRI10, TRI12, TRI101) contained FgCreA DNA binding sites. Two FgCREA gene knockout mutants were obtained and screened by PCR and Southern blot. The growth rate of Fgcrea mutants was 90% lower than that of wild type. The conidia morphology of mutants was normal, but the conidiation decreased by 88% compared with the wild type. In the sexual reproduction stage, the Fgcrea mutants could produce normal perithecia, ascus and ascospore, but it delayed 20-28 d longer than the wild type. The Fgcrea mutants were sensitive to salt stress, and were almost non-pathogenic on wheat. 【Conclusion】The carbon metabolic regulator FgCreA plays important roles in vegetative growth and sexual reproduction, and is essential for plant infection in F. graminearum. However, whether FgCreA affects transcription of the carbon absorption structure genes and DON biosynthesis genes remains to be verified.

Key words: Fusarium graminearum, FgCREA, gene knockout, phenotype, carbon metabolism

[1]    Muriuki J G. Deoxynivalenol and nivalenol in pathogenesis of Fusarium head blight in wheat[D]. USA: University of Minnesota, 2001.
[2]    Bai G H, Shaner G. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 2004, 42(1): 135-161.
[3]    Goswami R S, Kistler H C. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 2004, 5(6): 515-525.
[4]    王裕中, J D米勒. 中国小麦赤霉病菌优势种—禾谷镰刀菌产毒素能力的研究. 菌物学报, 1994, 13(3): 229-234.
Wang Y Z, Miller J D. Toxin producing potential of Fusarium graminearum from China. Mycosystema, 1994, 13(3): 229-234. (in Chinese)
[5]    O’Donnell K, Kistler H C, Tacke B K, Casper H H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(14): 7905-7910.
[6]    王琢, 闫培生. 真菌毒素产生菌的分子鉴定研究进展. 中国农业科技导报, 2010, 12(5): 42-50.
Wang Z, Yan P S. Research progress on molecular identification of mycotoxin-producing fungi. Journal of Agricultural Science and Technology, 2010, 12(5): 42-50. (in Chinese)
[7]    Cuomo C A, Güldener U, Xu J R, Trail F, Turgeon B G, Di Pietro A, Walton J D, Ma L J, Baker S E, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang Y L, Decaprio D, Gale L R, Gnerre S, Goswami R S, Hammond-Kosack K, Harris L J, Hilburn K, Kennell J C, Kroken S, Magnuson J K, Mannhaupt G, Mauceli E, Mewes H W, Mitterbauer R, Muehlbauer G, Münsterkötter M, Nelson D, O'donnell K, Ouellet T, Qi W, Quesneville H, Roncero M I, Seong K Y, Tetko I V, Urban M, Waalwijk C, Ward T J, Yao J, Birren B W, Kistler H C. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 2007, 317(5843): 1400-1402.
[8]    张大军, 邱德文, 蒋伶活. 禾谷镰刀菌基因组学研究进展. 安徽农业科学, 2009, 37(17): 7892-7894.
Zhang D J, QIu D W, JIang L H. Research progress on the genomics of Fusarium graminearum. Journal of Anhui Agricultural Sciences, 2009, 37(17): 7892-7894. (in Chinese)
[9]    Brown D W, Cheung F, Proctor R H, Butchko R A, Zheng L, Lee Y, Utterback T, Smith S, Feldblyum T, Glenn A E, Plattner R D, Kendra D F, Town C D, Whitelaw C A. Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genetics and Biology, 2005, 42(10): 848-861.
[10]   Sikhakolli U R, Lopez-Giraldez F, Li N, Common R, Townsend J P, Trail F. Transcriptome analyses during fruiting body formation in Fusarium graminearum and Fusarium verticillioides reflect species life history and ecology. Fungal Genetics and Biology, 2012, 49(8): 663-673.
[11]   Lysoe E, Seong K Y, Kistler H C. The transcriptome of Fusarium graminearum during the infection of wheat. Molecular Plant-Microbe Interactions, 2011, 24(9): 995-1000.
[12]   Kumaraswamy K G, Kushalappa A C, Choo T M, Dion Y, Rioux S. Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against fusarium head blight (Fusarium graminearum). Journal of Chemical Ecology, 2011, 37(8): 846-856.
[13]   Ruiz B, Chavez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Rodríguez-Sanoja R, Sánchez S, Langley E. Production of microbial secondary metabolites: regulation by the carbon source. Critical Reviews in Microbiology, 2010, 36(2): 146-167.
[14]   Ruijter G J, Visser J. Carbon repression in Aspergilli. Fems Microbiology Letters, 1997, 151(2): 103-114.
[15]   Ries L N, Beattie S R, Espeso E A, Cramer R A, Goldman G H. Diverse regulation of the CreA carbon catabolite repressor in Aspergillus nidulans. Genetics, 2016, 203(1): 335-352.
[16]   Carlson M. Glucose repression in yeast. Current Opinion in Microbiology, 1999, 2(2): 202-207.
[17]   Gancedo J M. Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews, 1998, 62(2): 334-361.
[18]   Johnston M. Feasting, fasting, and fermenting: glucose sensing in yeast and other cells. Trends in Genetics, 1999, 15(1): 29-33.
[19]   Trumbly R J. Glucose repression in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 1992, 6(1): 15-21.
[20]   Treitel M A, Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(8): 3132-3136.
[21]   Tzamarias D, Struhl K. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes & Development, 1995, 9(7): 821-831.
[22]   Treitel M A, Kuchin S, Carlson M. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1998, 18(11): 6273-6280.
[23]   Park S H, Koh S S, Chun J H, Hwang H J, Kang H S. Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1999, 19(3): 2044-2050.
[24]   Zhai Z, Yurimoto H, Sakai Y. Molecular characterization of Candida boidinii MIG1 and its role in the regulation of methanol- inducible gene expression. Yeast, 2012, 29(7): 293-301.
[25]   Jonkers W, Rep M. Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Molecular Microbiology, 2009, 74(5): 1100-1113.
[26]   Tamayo E N, Villanueva A, Hasper A A, de Graaff L H, Ramón D, Orejas M. CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genetics and Biology, 2008, 45(6): 984-993.
[27]   Espeso E A, Fernández-Cañón J, Peñalva M A. Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of mutations in creB and creC. Fems Microbiology Letters, 1995, 126(1): 63-67.
[28]   Tudzynski, B, Liu S, Kelly J M. Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes. Fems Microbiology Letters, 2000, 184(1): 9-15.
[29]   Brown D W, Butchko R A E, Proctor R H. Fusarium genomic resources: Tools to limit crop diseases and mycotoxin contamination. Mycopathologia, 2006, 162(3): 191-199.
[30]   Catlett N L, Lee B N, Yoder O C, Turgeon B G. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Newsletter, 2003, 50: 9-11.
[31]   Zhao X H, Xu J R. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea. Molecular Microbiology, 2007, 63(3): 881-894.
[32]   McCormick S P, Harris L J, Alexander N J, OUELLET T, Saparno A, Allard S, Desjardins A E. Tri1 in Fusarium graminearum encodes a P450 oxygenase. Applied and Environmental Microbiology, 2004, 70(4): 2044-2051.
[33]   Tokai T, Takahashi-Ando N, Izawa M, Kamakura T, Yoshida M, Fujimura M, Kimura M. 4-O-acetylation and 3-O-acetylation of trichothecenes by trichothecene 15-O-acetyltransferase encoded by Fusarium Tri3. Bioscience, Biotechnology and Biochemistry, 2008, 72(9): 2485-2489.
[34]   Menke J, Weber J, Broz K, Kistler H C. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. Plos One, 2013, 8(5): e63077.
[35]   Boenisch M J, Schafer W. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biology, 2011, 11: 110.
[36]   Seong K Y, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu J R, Kistler H C. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Molecular Microbiology, 2009, 72(2): 354-367.
[37]   Chandler E A, Simpson D R, Thomsett M A, Nicholson P. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiological and Molecular Plant Pathology, 2003, 62(6): 355-367.
[38]   McCormick S P, Alexander N J. Fusarium Tri8 encodes a trichothecene C-3 esterase. Applied and Environmental Microbiology, 2002, 68(6): 2959-2964.
[39]   Menke J, Dong Y, Kistler H C. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation. Molecular Plant-Microbe Interactions, 2012, 25(11): 1408-1418.
[40]   Garvey G S, McCormick S P, Alexander N J, Rayment  I. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides. Protein Science, 2009, 18(4): 747-761.
[41]   Park Y, Cho Y, Lee Y H, Lee Y W, Rhee S. Crystal structure and functional analysis of isocitrate lyases from Magnaporthe oryzae and Fusarium graminearum. Journal of Structural Biology, 2016, 194(3): 395-403.
[42]   AndreLeroux G, Tessier D, Bonnin E. Action pattern of Fusarium moniliforme endopolygalacturonase towards pectin fragments: Comprehension and prediction. Biochimica et Biophysica Acta, 2005, 1749(1): 53-64.
[43]   Needham P G, Trumbly R J. In vitro characterization of the Mig1 repressor from Saccharomyces cerevisiae reveals evidence for monomeric and higher molecular weight forms. Yeast, 2006, 23(16): 1151-1166.
[44]   Qin S, Ji C, Li Y, Wang Z. Comparative transcriptomic analysis of race 1 and race 4 of Fusarium oxysporum f. sp. cubense induced with different carbon sources. G3: Genes, Genomes, Genetics, 2017, 7(7): 2125-2138.
[45]   Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo  J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M. Global analysis of protein phosphorylation in yeast. Nature, 2005, 438(7068): 679-684.
[46]   Sharifpoor S, Dyk D V, Costanzo M, Baryshnikova A, Friesen H, Douglas A C, Youn J Y, VanderSluis B, Myers C L, Papp B, Boone C, Andrews B J. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Research, 2012, 22(4): 791-801.
[47]   Zheng D W, Zhang S J, Zhou X Y, Wang C, Xiang P, Zheng Q, Xu J R. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. Plos one, 2012, 7(11): e49495.
[48]   Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, Zheng D, Wang G, Liu H, Gao X, Ma J W, Kistler H C, Kang Z, Xu J R. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. Plos Pathogen, 2011, 7(12): e1002460.
[49]   Jiao F, Kawakami A, Nakajima T. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. Fems Microbiology Letters, 2008, 285(2): 212-219.
[50]   Karunanithi S, Cullen P J. The filamentous growth MAPK pathway responds to glucose starvation through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics, 2012, 192(3): 869-887.
[51]   Jenczmionka N J, Maier F J, Losch A P, Schäfer W. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Current Genetics, 2003, 43(2): 87-95.
[52]   Balciunas D, Ronne H. Yeast genes GIS1-4: multicopy suppressors of the Gal- phenotype of snf1 mig1 srb8/10/11 cells. Molecular and General Genetics, 1999, 262(4/5): 589-599.
[53]   Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C F, Xu J R. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environmental Microbiology, 2016, 18(11): 3689-3701.
[54]   Zaragoza O, Rodríguez C, Gancedo C. Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. Journal of Bacteriology, 2000, 182(2): 320-326.
[55]   Cziferszky A, Seiboth B, Kubicek C P. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation- relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1. Fungal Genetics and Biology, 2003, 40(2): 166-175.
[1] LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System [J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
[2] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[3] CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae [J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812.
[4] WANG ChengLi,YIN ZhiYuan,NIE JiaJun,LIN YongHui,HUANG LiLi. Identification and Virulence Analysis of CAP Superfamily Genes in Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(16): 3440-3450.
[5] Cong GUO,Wei GUAN,XiangGuo ZENG,QingHua ZHANG,FaYun XIANG,YueJun SONG,YongChao HAN. Phenotype Character Analysis and Evaluation of Modern Rose Cultivars [J]. Scientia Agricultura Sinica, 2019, 52(24): 4632-4646.
[6] HAO QingTing,ZHANG Fei,JI XiaJie,XUE JinAi,LI RunZhi. Phenotypic Analysis of Epoxygenase-Transgenic Soybeans [J]. Scientia Agricultura Sinica, 2019, 52(2): 191-200.
[7] WANG DanDan, TANG YuTing, MA YueHui, WANG LiGang, PAN DengKe, JIANG Lin. Studying the Molecular Mechanism of Heart Development by Using ZBED6 Gene Knockout Pig [J]. Scientia Agricultura Sinica, 2018, 51(7): 1390-1400.
[8] LIU ZhiGuo, WANG BingYuan, MU YuLian, WEI Hong, CHEN JunHai, LI Kui. Breeding by Molecular Writing (BMW): the Future Development of Animal Breeding [J]. Scientia Agricultura Sinica, 2018, 51(12): 2398-2409.
[9] MA HongXia, SUN Hua, GUO Ning, ZHANG HaiJian, SHI Jie, CHANG JiaYing. Analysis of Toxigenic Chemotype and Genetic Diversity of the Fusarium graminearum Species Complex [J]. Scientia Agricultura Sinica, 2018, 51(1): 82-95.
[10] YU RongRong, DING GuoWei, LIU WeiMin, ZHANG Min, ZHAO XiaoMing, HAN PengFei, MA EnBo, ZHANG JianZhen. Molecular Characterization and Biological Function of Chitin Deacetylase Genes in Locusta migratoria [J]. Scientia Agricultura Sinica, 2017, 50(13): 2498-2507.
[11] CHANG JianFeng, DONG PengFei, WANG XiuLing, LIU WeiLing, LI ChaoHai . Effect of Nitrogen Application on Carbon and Nitrogen Metabolism of Different Summer Maize Varieties [J]. Scientia Agricultura Sinica, 2017, 50(12): 2282-2293.
[12] LIU YunPeng, LIANG XiaoGui, SHEN Si, ZHOU LiLi, GAO Zhen, ZHOU ShunLi. Diurnal Variation and Directivity of Photosynthetic Carbon Metabolism in Maize Hybrids Under Gradient Drought Stress [J]. Scientia Agricultura Sinica, 2017, 50(11): 2083-2092.
[13] XU Chun-jing, WU Yu-xing, DAI Qing-qing, LI Zheng-peng, GAO Xiao-ning, HUANG Li-li. Function of Polygalacturonase Genes Vmpg7 and Vmpg8 of Valsa mali [J]. Scientia Agricultura Sinica, 2016, 49(8): 1489-1498.
[14] LOU Can, DENG Kai-dong, JIANG Cheng-gang, MA Tao, JI Shou-kun, CHEN Dan-dan, ZHANG Nai-feng, TU Yan, DIAO Qi-yu. Effects of Different Feeding Levels on Energy Metabolism Balance of Meat Ewes During Non-Pregnancy and Lactation [J]. Scientia Agricultura Sinica, 2016, 49(5): 988-997.
[15] LIANG Rong, QIN Ran, ZENG Dong-dong, ZHENG Xi, JIN Xiao-li, SHI Chun-hai. Phenotype Analysis and Gene Mapping of Narrow and Rolling Leaf Mutant nrl4 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2016, 49(20): 3863-3873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!