Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (23): 4613-4621.doi: 10.3864/j.issn.0578-1752.2017.23.014

• HORTICULTURE • Previous Articles     Next Articles

Gene Mapping of Aphid-Resistant for Peach Using SNP Markers

ZHANG NanNan, LU ZhenHua, CUI GuoChao, PAN Lei, ZENG WenFang, NIU Liang, WANG ZhiQiang   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach and Grape Improvement Center/ Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou 450009
  • Received:2017-06-02 Online:2017-12-01 Published:2017-12-01

Abstract: 【Objective】 The objective of this study is to identify the SNP loci tightly linked to peach( Prunus persica (L.) Batsch ) aphid(Myzus persicae (Sulzer)) resistance traits, revealing its genetic basis and laying a foundation for the marker assistant selection in resistance breeding of peach.【Method】In this study, the population used for the mapping study consisted of141 individuals which were obtained from a cross between female parent (‘01-77-3’ ) and male parent (‘CN13’). Referencing the peach genome and using Sanger sequencing, single nucleotide polymorphism (SNP) markers were developed in female and male parents and 8 progenies to obtain markers linked to the target loci which were tested on the whole population. Subsequently, using whole genome re-sequencing data of two parents, SNPs for fine mapping were selected based on the genotype of two parents, andemployed to conduct genotyping to obtain the SNP marker linked to resistance traits. Ultimately, the fine mapping region was validated by using an InDel marker to verify the genotype of F1 population generated from 96-5-1× ‘10-7’. 【Result】 As a result of phenotype identification of 141 progenies, the segregation ratio of resistance to aphid to susceptible ones showed 1﹕1 (P: 0.556; χ2: 0.348). Using Sanger sequencing we mapped the resistant gene to an approximate 9.92 Mb physical distance between two SNP markers, Pp01_38011783 and Pp01_47231340 on Pp01. For fine mapping, a total of 17.109 Gb clean data was generated from genome re-sequencing and the average coverage depth is 75.19×. 11 of 29 pairs of primers which were designed based on genome re-sequencing data were effective and linked to target trait. As a result of genotyping, we obtained two SNP makers tightly linked to desired trait, SNP_Pp01_45665389 and SNP_Pp01_46120950, with genetic distance of 1.4 cM and 2.1 cM, respectively. The target locus was between these two markers, an approximate physical distance of 460 Kb, and the gene was co-segregating with another marker SNP_Pp01_45712702. With fine gene mapping region, an InDel marker, KYYZ_Pp01_45799758, was designed and used to verify the phenotype of 92 individuals generated from an F1 segregation population of ‘96-5-1’ ב10-7’ with 98.91% accuracy.【Conclusion】The SNP loci and candidate genes related closely with aphid-resistant gene of peach were identified in this study. The resistant gene had been mapped to an approximate 460 kb physical distance between two SNP markers, SNP_Pp01_45665389 and SNP_Pp01_46120950 at the bottom of Pp01 which contains 56 transcripts (52 candidate genes).

Key words: Prunus persica, SNP markers, aphid-resistant, gene mapping

[1]    牛良, 鲁振华, 曾文芳, 崔国朝, 潘磊, 徐强, 李国怀, 王志强. ‘粉寿星’对桃绿蚜抗性的遗传分析. 果树学报, 2016, 33(5): 578-584.
NIU L, LU Z H, ZENG W F, CUI G C, PAN L, XU Q, LI G H, WANG Z Q. Inheritance analysis of resistance to green peach aphid (Myzus persicae (Sulzer)) for peach cultivar ‘Fen Shouxing’ (Prunus persica var. densa). Journal of Fruit Science, 2016, 33(5): 578-584. (in Chinese)
[2]    SMITH C M, CHUANG W B. Plant resistance to aphid feeding: Behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Management Science, 2014, 70(40): 528-540.
[3]    BLACKMAN R L, EASTOP V F. Aphids on the world's crops. John Wiley & Sons Ltd, 2000.: an identification and information guide
[4]    DEVONSHIRE A L, FIELD L M, FOSTER S P. The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353(1376): 1677-1684.
[5]    FUENTES-CONTRERAS E, FIGUEROA C C, REYES M.Genetic diversity and insecticide resistance of Myzus persicae (Hemiptera: Aphididae) populations from tobacco in Chile: evidence for the existence of a single predominant clone. Bulletin of Entomological Research, 2004, 94(1): 11-18.
[6]    FOSTER J C, RIDEOUT W. Storm enhanced density: Magnetic conjugacy effects.Annales Geophysicae, 2007, 25(8): 1791-1799.
[7]    MASSONIÉ G, MAISON P, MONET R. Résistance au puceron vert du pêcher Myzus persicae Sulzer (Homoptera: Aphididae) chez Prunus persicaL. Batsch. et d’autres espèces de prurrus. Agronomie, 1982, 2(1): 63-70.
[8]    MONET R, MASSONIÉ G. Déterminisme génétique de la résistance au puceron vert (Myzus persicae) chez le pêcher Résultats complémentaires. Agronomie, 1994, 14(3): 177-182.
[9]    SAUGE M H, KERVELLA J, RAHBÉ Y. Probing behaviour of the green peach aphid Myzus persicae on resistant Prunus genotypes. Entomologia Experimentalis et Applicata, 1998, 89(3): 223-232.
[10]   SAUGE M H, LACROZE J P, POËSSEL J L. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomologia Experimentalis et Applicata, 2002, 102(1): 29-37.
[11]   SAUGE M H, MUS F, LACROZE J P. Genotypic variation in induced resistance and induced susceptibility in the peach-Myzus persicae aphid system. Oikos, 2006, 113(2): 305-313.
[12]   PASCAL T, PFEIFFER F, KERVELLA J, LACROZE J P, Sauge M H, Weber W E. Inheritance of green peach aphid resistance in the peach cultivar ‘Rubira’. Plant Breeding, 2002, 121(5): 459-461.
[13]   LU Z, NIU L, CHAGNÉ D. Fine mapping of the temperature- sensitive semi-dwarf (Tssd) locus regulating the inter-node length in peach (Prunus persica). Molecular Breeding, 2016, 36(2): 1-11.
[14]   鲁振华, 牛良, 张南南, 崔国朝, 潘磊, 曾文芳, 王志强. 基于HRM获得与桃Tssd紧密连锁的SNP标记. 中国农业科学, 2017, 50(8): 1505-1513.
LU Z H, NIU L, ZHANG N N, CUI G C, PAN L, ZENG W F, WANG Z Q. SNP marker tightly linked to Tssd for peach using high resolution melting analysis. Scientia Agricultura Sinica, 2017, 50(8): 1505-1513. (in Chinese)
[15]   BROOKES A J. The essence of SNPs. Gene, 1999, 234(2): 177-186.
[16]   MURANTY H, JORGE V, BASTIEN C.Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genetics & Genomes, 2014, 10(6): 1491-1510.
[17]   DIRLEWANGER E, COSSON P, BOUDEHRI K. Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch]         and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes, 2006, 3(1): 1-13.
[18]   PICAÑOL R, EDUARDO I, ARANZANA M J. Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica, 2013, 190(2): 279-288.
[19]   MARTÍNEZ GARCÍA J S. Fracaso escolar, PISA y la difícil ESO. RASE: Revista de la Asociación de Sociología de la Educación, 2013, 2(1): 56-85.
[20]   HAN Y, CHAGNÉ D, GASIC K. BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics, 2009, 93(3): 282-288.
[21]   VERDE I, BASSIL N, SCALABRIN S. Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One, 2012, 7(4): e35668.
[22]   许建兰, 张斌斌, 马瑞娟, 俞明亮, 沈志军, 周懋. 春季异常气候对桃树蚜虫发生及坐果率的影响. 江西农业学报, 2014, 26(11): 21-23, 28.
XU J L, ZHANG B B, MA R J, YU M L, SHEN Z J, ZHOU M. Effects of Spring abnormal climate on aphid occurrence and fruit setting rate of peach. Acta Agriculturae Jiangxi, 2014, 26(11): 21-23, 28. (in Chinese)
[23]   乔岩, 董杰, 王品舒, 岳瑾, 张保常, 张金良, 袁志强, 杨建国. 三种生物源农药对桃树蚜虫的防治效果研究. 生物技术进展, 2015, 5(6): 468-470.
QIAO Y, DONG J, WANG P S, YUE J, ZHANG B C, ZHANG J , YUAN Z Q, YANG J G. Control effects of three biogenic pesticides on controlling peach aphids. Current Biotechnology, 2015, 5(6): 468-470. (in Chinese)
[24]   MENG J Y, ZHANG C Y, CHEN X J. Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid. Pesticide Biochemistry and Physiology, 2014, 115: 1-8.
[25]   CRAVEDI P, CERVATO P. Resistance to insecticides of the green peach aphid and integrated fruit production guidelines.  IOBC wprs Bulletin, 1997, 20: 75-78.
[26]   PAUQUET J, BURGET E, HAGEN L. Map-based cloning of the Vat gene from melon conferring resistance to both aphid colonization and aphid transmission of several viruses//Proceedings of the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding: Cucurbitaceae, 2004: 325-329.
[27]   KALOSHIAN I, YAGHOOBI J, LIHARSKA T. Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Molecular and General Genetics, 1998, 257(3): 376-385.
[28]   MILLIGAN S B, BODEAU J, YAGHOOBI J. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 1998, 10(8): 1307-1319.
[29]   ALSTON F H, BRIGGS J B. Resistance to Sappaphis devecta (Wlk.) in apple. Euphytica, 1968, 17(3): 468-472.
[30]   MONET R, GUYE A, MASSONIE G. Breeding for resistance to green aphid Myzus persicae Sulzer in the peach. IV International Peach Symposium 465, 1997: 171-176.
[31]   LAMBERT P, PASCAL T. Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar ‘Rubira®’. Tree Genetics & Genomes, 2011, 7(5): 1057-1068.
[32]   PASCAL T, ABERLENC R, CONFOLENT C. Mapping of new resistance (Vr2, Rm1) and ornamental (Di2, pl) Mendelian trait loci in peach. Euphytica, 2017, 213(6): 132.
[33]   FURBANK R T. Plant phenomics: from gene to form and function. Functional Plant Biology, 2009, 36(10): 5-6.
[1] LIANG Rong, QIN Ran, ZENG Dong-dong, ZHENG Xi, JIN Xiao-li, SHI Chun-hai. Phenotype Analysis and Gene Mapping of Narrow and Rolling Leaf Mutant nrl4 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2016, 49(20): 3863-3873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!