Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (7): 1491-1500.doi: 10.3864/j.issn.0578-1752.2020.07.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Genome-Wide Identification and Characterization of Transposable Elements in Xichuan Black-Bone Chicken

DongHua LI,YaWei FU,ChenXi ZHANG,YanFang CAO,WenTing LI,ZhuanJian LI,XiangTao KANG(),GuiRong SUN()   

  1. College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046
  • Received:2019-01-22 Accepted:2020-01-13 Online:2020-04-01 Published:2020-04-14
  • Contact: XiangTao KANG,GuiRong SUN E-mail:xtkang2001@263.net;grsun2000@126.com

Abstract: 【Objective】The aim of the study was to analyze the whole genome re-sequencing data of Xichuan black-bone chicken to obtain the identification, classification, distribution of the transposon of Xichuan black-bone chicken, and to explore the pathways involved in transposon-related genes, which not only had important significance for studying the biological function of the Xichuan black-bone chicken transposon elements (TEs), but also provided important basic data for exploring genome amplification, genome function and evolution research. 【Method】In this study, whole genome resequencing of blood DNA of Xichuan black-bone chicken was performed, and the paired-end mapping methods alignment genome was used. The TEs was identified, constructed, corrected and classified by RepeaterModeler, TEclass, RepeatMasker and other processes. All TEs in the whole genome of Xichuan black-bone chicken were obtained to analyze the characteristics, distribution and relationship of their genes. All genes inserted in the TEs were subjected to GO and KEGG databases enrichment, and the functions were described in combination with GO and KEGG annotation results, respectively. 【Result】 After identification, classification and annotation, 370 252 TEs sequences were identified in Xichuan black-bone chicken, which were divided into 19 superfamilies, mainly CR1, TcMar-Mariner, ERVL, ERV1 and other superfamilies, further indicated that the TEs types of Xichuan black-bone chicken were major TEs. The number of TEs was related to chromosome length, and longer the chromosome was, the more the number of TEs was. Number of TEs was inversely proportional to the density of gene. TEs density was relatively low in gene dense regions. The insertion of TEs in genome was not random, LTR/ERVL, LTR/ERV1, DNA/PIF-Harbinger, DNA/Hat-Charlie, RC/Helitron tend to be inserted outside the gene. GO enrichment analysis indicated some of these genes related to TEs were enriched in the following biological process terms: cell process, single-organism process, metabolic process, biological regulation, response to stimulus. In addition, some of these genes related to TEs were enriched in the following molecular function terms: binding and catalytic activity. Furthermore, some of these genes related to TEs were enriched in the following cell component terms: cell parts, organelles, and membranes. KEGG enrichment analysis indicated that these genes related to TEs mainly focused on Glycerolipid metabolism, PPAR signaling pathway, PI3K-Akt signaling pathway, Insulin resistance, and Jak-STAT signaling pathway. This study mainly focused on the pathways related to the characteristics of Xichuan black-bone chicken, such as tyrosine metabolism related to pigmentation, lipid metabolism related to meat quality, fatty acid synthesis, and PI3K-Akt signaling pathway. 【Conclusion】 There was a positive correlation between TEs content and genome size of Xichuan black-bone chicken. Moreover, the TEs of Xichuan black-bone chicken had a certain preference in the distribution of genome. TEs related genes were enriched in the pigmentation related pathway, which might be related to the germplasm characteristics of Xichuan black-bone chicken. The specific regulatory mechanisms remained to be further studied.

Key words: chicken, whole genome resequencing, transposon elements, characterization analysis

Table 1

Statistical analysis of genome TEs"

分类
Class
类别
Order
超家族
Superfamily
数量
Counts
逆转录转座子
Retrotransposons
LTR Copia 2 182
Gypsy 424
ERV1 12 026
ERVK 7 502
ERVL 57 233
ERV 5 265
LINE CR1 243 531
I 489
L2 591
RTE-X 259
SINE SINE/MIR 208
DNA转座子
DNA transposons
DNA CMC-EnSpm 1 808
hAT-Ac 486
hAT-Charlie 9 076
MULE-MuDR 462
P 2 853
PIF-Harbinger 4 148
TcMar-Mariner 18 304
RC/Helitron RC/Helitron 3 405

Table 2

Annotation of TEs superfamilies in whole-genome resequencing assembly"

分类
Class
类别
Order
超家族
Superfamily
数量
Counts
比对序列
Masked (bp)
Masked序列所占比
Percentage of Masked (%)
逆转录转座子Retrotransposons
LTR LTR 77112 34594642 2.81
ERVL 45563 18364082 1.49
ERV_classI 11039 5027391 0.41
ERV_classII 3659 2027848 0.16
SINE SINE 208 16102 0.01
LINE LINE 234961 79044697 6.43
LINE2 589 336996 0.03
L3/CR1 233726 78474296 6.38
DNA转座子
DNA transposons
DNA DNA 36568 14908973 1.21
hAT-Charlie 8963 1578789 0.13
未分类 Unclassified 60019 25121370 2.04
总计 Total 635295 224900544 18.29

Table 3

Distribution of transposons on chromosomes"

染色体
Chromosome
TEs数量
TEs Counts
所占比例
Proportion (%)
染色体
Chromosome
TEs数量
TEs Counts
所占比例
Proportion (%)
Chr1 71257 26.74 Chr15 1767 0.66
Chr2 47150 17.69 Chr17 1584 0.59
Chr3 29426 11.04 Chr18 1732 0.65
Chr4 20621 7.74 Chr19 1511 0.57
Chr5 11618 4.36 Chr20 2043 0.77
Chr6 5725 2.15 Chr21 434 0.16
Chr7 6196 2.32 Chr22 863 0.32
Chr8 5233 1.96 Chr23 901 0.34
Chr9 3829 1.44 Chr24 626 0.23
Chr10 2981 1.12 Chr26 534 0.20
Chr11 2963 1.11 Chr27 1503 0.56
Chr12 2911 1.09 Chr28 753 0.28
Chr13 2670 1.00 ChrZ 33206 12.46
Chr14 1656 0.62 ChrW 4822 0.01

Fig. 2

Distribution of TEs and genes A: Chromosome 1;B: Chromosome 2; C: Chromosome 4; D:Chromosome Z. Green line: TEs number; Blue line: Genes number"

Fig. 2

Preferential distribution of TEs in genes in genome"

Fig. 3

GO categories enrichment analysis of genes related to TEs"

Table 4

Top 20 metabolic pathways involving genes related to TEs"

代谢通路 KEGG ID KEGG通路名称 Name of KEGG 数量 Numbers
ko00561 甘油酯代谢 Glycerolipid metabolism 392
ko03320 PPAR信号通路 PPAR signaling pathway 391
ko04151 PI3K-Akt信号通路 PI3K-Akt signaling pathway 211
ko04931 胰岛素抵抗 Insulin resistance 173
ko04630 Jak-STAT信号通路 Jak-STAT signaling pathway 169
ko04810 肌动蛋白细胞骨架调节 Regulation of actin cytoskeleton 143
ko04120 泛素介导的蛋白水解 Ubiquitin mediated proteolysis 139
ko00240 嘧啶代谢 Pyrimidine metabolism 137
ko04020 钙信号途径 Calcium signaling pathway 136
ko05205 癌症中的蛋白多糖 Proteoglycans in cancer 129
ko04080 神经活性配体-受体相互作用 Neuroactive ligand-receptor interaction 123
ko04510 粘附斑激酶 Focal adhesion 121
ko04014 Ras信号通路 Ras signaling pathway 116
ko04724 谷氨酸突触 Glutamatergic synapse 115
ko04010 MAPK信号通路 MAPK signaling pathway 109
ko05166 HTLV-I感染 HTLV-I infection 106
ko04024 cAMP信号通路 cAMP signaling pathway 98
ko04072 磷脂酶D信号通路 Phospholipase D signaling pathway 98
ko01521 表皮生长因子受体酪氨酸激酶抑制剂耐药性 EGFR tyrosine kinase inhibitor resistance 92
ko04144 胞吞 Endocytosis 92

Fig. 4

Pathway enrichment analysis of TEs related genes"

[1] OKADA N . Transfer RNA-like structure of the human Alu family: implications of its generation mechanism and possible functions. Journal of Molecular Evolution, 1990,31(6):500-510.
[2] FINNEGAN D J . Eukaryotic transposable elements and genome evolution. Trends in Genetics, 1989,5(4):103-107.
[3] LISCH D . How important are transposons for plant evolution? Nature Reviews Genetics, 2013,14(1):49.
[4] MCCLINTOCK B . The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences of the United States of America, 1950,36(6):344.
[5] DOOLITTLE W F, SAPIENZA C . Selfish genes, the phenotype paradigm and genome evolution. Nature, 1980,284(5757):601-603.
[6] HOSKINS R A, CARLSON J W, KENNEDY C, ACEVEDO D, EVANSHOLM M, FRISE E, WAN K H, PARK S, MENDEZLAGO M, ROSSI F . Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science, 2007,316(5831):1625-1628.
[7] NENE V, WORTMAN J R, LAWSON D, HAAS B, KODIRA C, TU Z J, LOFTUS B, XI Z, MEGY K, GRABHERR M . Genome sequence of Aedes aegypti, a major arbovirus vector. Science, 2007,316(5832):1718-1723.
[8] GALLAGHER L A, SHENDURE J, MANOIL C . Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. mBio, 2011,2(1):00315-00310.
[9] REARDEN A, MAGNET A, KUDO S, FUKUDA M . Glycophorin B and glycophorin E genes arose from the glycophorin A ancestral gene via two duplications during primate evolution. Journal of Biological Chemistry. 1993,268(3):2260-2267.
[10] MANDAOKAR A, KUMAR V D, AMWAY M, BROWSE J . Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Molecular Biology, 2003,52(4):775.
[11] MACIA A, BLANCO-JIMENEZ E, GARC A-P REZ J L. Retrotransposons in pluripotent cells: Impact and new roles in cellular plasticity. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2015,1849(4):417-426.
[12] SLOTKIN R K, MARTIENSSEN R . Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 2007,8(4):272-285.
[13] TIAN Z, ZHAO M, SHE M, DU J, CANNON S B, LIU X, XU X, QI X, LI M W, LAM H M . Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean. Plant Cell, 2012,24(11):4422-4436.
[14] CLARK L A, WAHL J M, REES C A, MURPHY K E . Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proceedings of the National Academy of Sciences of the United States of America, 2006; 103(5):1376-1381.
[15] STEFANIA DO, EMILIO S, LUCA F, MARCO T . Analysis of the 227 bp short interspersed nuclear element (SINE) insertion of the promoter of the myostatin (MSTN) gene in different horse breeds. Veterinaria Italiana, 2014; 50(3):193-197.
[16] MIKAWA S, SATO S, NII M, MOROZUMI T, GOU Y, IMAEDA N, YAMAGUCHI T, HAYASHI T, AWATA T . Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genetics,12,1(2011-01-14). 2011,12(1):5-5.
[17] IVICS Z, GARRELS W, MÁTÉS L, YAU T Y, BASHIR S, ZIDEK V, LANDA V, GEURTS A, PRAVENEC M, RÜLICKE T, KUES W A, IZSVÁK Z. Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nature Protocols, 2014, 9(4):810-827.
[18] BAILLIE J K, BARNETT M W, UPTON K R, GERHARDT D J, RICHMOND T A, DE S F, BRENNAN P M, RIZZU P, SMITH S, FELL M . Somatic retrotransposition alters the genetic landscape of the human brain. Nature, 2011, 479(7374):534-537.
[19] GOODIER J L . Retrotransposition in tumors and brains. Mobile DNA, 2014,5(1):11-17.
[20] WICKER T, SABOT F, HUAVAN A, BENNETZEN J L, CAPY P, CHALHOUB B, FLAVELL A, LEROY P, MORGANTE M, PANAUD O . A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007(8):973-982.
[21] CONESA A, GTZ S, GARC A G, MEZ J M, TEROL J, TAL N M, ROBLES M . Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005,21(18):3674-3676.
[22] ASAF L, SCHRAGA S, GIL A . Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Research, 2009,38(5):1515-1530.
[23] LINHEIRO R S, BERGMAN C M . Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLoS ONE, 2012,7(2):e30008.
[24] INITIATIVE AG . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000,408(6814):796-815.
[25] SCHNABLE P S, WARE D, FULTON R S, STEIN J C, WEI F, PASTERNAK S, LIANG C, ZHANG J, FULTON L, GRAVES T A . The B73 maize genome: complexity, diversity, and dynamics. Science, 2009,326(5956):1112-1115.
[26] MA B, XIN Y, KUANG L, HOU F, HE N . Identification and characterization of reverse transcriptase fragments of long interspersed nuclear elements (LINEs) in the Morus notabilis genome. American Journal of Molecular Biology, 2017, 7(3):138-152.
[27] MILLS R E, BENNETT E A, ISKOW R C, DEVINE S E . Which transposable elements are active in the human genome? Trends in Genetics, 2007, 23(4):183-191.
[28] SMIT A F . Interspersed repeats and other mementos of transposable elements in mammalian genomes. Current Opinion in Genetics & Development, 1999,9(6):657-663.
[29] 高波, 王伟, 钱跃, 陈才, 钟继汉, 沈丹, 陈伟, 宋成义 . 斑马鱼转座子时空表达特性. 生物信息学, 2017,15(4):201-206.
GAO B, WANG W, QIAN Y, CHEN C, ZHONG J H, SHEN D, CHEN W, SONG C Y . Temporal and spatial expression characteristics of transposons in zebrafish. Chinese Journal of Bioinformatics, 2017, 15(4):201-206. (in Chinese)
[30] HAWKINS J S, GROVER C E, WENDEL J F . Repeated big bangs and the expanding universe: Directionality in plant genome size evolution. Plant Science, 2008,174(6):557-562.
[31] SANMIGUEL P, BENNETZEN J L . Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals of Botany, 1998, 82(suppl_1):37-44.
[32] PEREIRA V . Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biology, 2004,5(10):R79.
[33] WRIGHT S I, AGRAWAL N, BUREAU T E . Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Research ,2003, 13(8):1897.
[34] LOWE C B, BEJERANO G, HAUSSLER D . Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(19):8005-8010.
[35] IZSV K Z, IVICS Z, PLASTERK R H . Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. Journal of Molecular Biology, 2000,302(1):93-102.
[36] HORIE K, KUROIWA A, IKAWA M, OKABE M, KONDOH G, MATSUDA Y, TAKEDA J . Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(16):9191-9196.
[37] CARLSON C M, DUPUY A J, FRITZ S, ROBERGPEREZ K J, FLETCHER C F, LARGAESPADA D A . Transposon mutagenesis of the mouse germline. Genetics, 2003, 165(1):243.
[38] MISKEY C, IZSV K Z, PLASTERK R H, IVICS Z . The Frog Prince: A reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Research, 2003, 31(23):6873-6881.
[39] MISKEY C, PAPP B, MÁTÉS L, SINZELLE L, KELLER H, IZSV K Z, IVICS Z. The ancient mariner sails again: Transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends. Molecular & Cellular Biology, 2007,27(12):4589-4600.
[40] TAKEUCHI M, MATSUDA K, YAMAGUCHI S, ASAKAWA K, MIYASAKA N, LAL P, YOSHIHARA Y, KOGA A, KAWAKAMI K, SHIMIZU T . Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry. Developmental Biology, 2015,397(1):1-17.
[41] ASAKAWA K, SUSTER M L, MIZUSAWA K, NAGAYOSHI S, KOTANI T, URASAKI A, KISHIMOTO Y, HIBI M, KAWAKAMI K . Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(4):1255.
[42] ZHONGJIE Y, QIPENG L, SHAN C, XIAOYU L . The function of LINE-1-encoded reverse transcriptase in tumorigenesis. Hereditas, 2017,39(5):368-376.
[43] QIAN L, JINHUI W, XIAOYU L, SHAN C . The connection between LINE-1 retrotransposition and human tumorigenesis. Hereditas, 2016: 93-102.
[44] BOULLIOU A, LE P J, HUBERT G, DONAL R, SMILEY M . The endogenous retroviral ev21 locus in commercial chicken lines and its relationship with the slow-feathering phenotype (K). Poultry Science, 1992,71(1):38.
[45] LU X Q, HAN J R, LIU X F, LIN T H, LI Y L . The LTR of endogenous retrovirus ev21 retains promoter activity and exhibits tissue specific transcription in chicken. Chinese Science Bulletin, 2009,54(24):4664-4670.
[46] GAVORA J S, KUHNLEIN U, CRITTENDEN L B, SPENCER J L, SABOUR M P . Endogenous viral genes: Association with reduced egg production rate and egg size in White Leghorns. Poult Sciences, 1991,70(3):618-623.
[47] WANG Z, QU L, YAO J, YANG X, LI G, ZHANG Y, LI J, WANG X, BAI J, XU G . An EAV-HP Insertion in 5′ flanking region of SLCO1B3 causes Blue Eggshell in the chicken. Plos Genetics, 2013,9(1):e1003183.
[1] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[2] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[5] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[6] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[7] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[8] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[9] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[10] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] ZHU Mo,ZHENG MaiQing,CUI HuanXian,ZHAO GuiPing,LIU Yang. Comparison of Genomic Prediction Accuracy for Meat Type Chicken Carcass Traits Based on GBLUP and BayesB Method [J]. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131.
[13] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[14] ZHU XingHao,CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun,CHEN Wen. Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens [J]. Scientia Agricultura Sinica, 2021, 54(1): 213-223.
[15] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!