Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (20): 4078-4085.doi: 10.3864/j.issn.0578-1752.2014.20.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Research Progress in Muscular Growth and Development of Long Noncoding RNAs

WEI Cai-hong, WU Ming-ming, LIU Rui-zao, ZHAO Fu-ping, ZHANG Li, DU Li-xin   

  1. National Center for Molecular Genetics and Breeding of Animal/Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2013-12-21 Revised:2014-07-16 Online:2014-10-16 Published:2014-10-16

Abstract: It is well known that the growth traits are complex traits which are jointly or mutually affected by genetic and environmental factors. Although the genome-wide association analyses can be used to analyze all genes on the genome and screen out SNPs associated with certain traits, it is hardly and comprehensively to evaluat the exact role of one gene. One of the goals of breeders is to find the precise gene associated with growth and development, the researches on gene expression and regulation in the past were mainly through the regulation of gene transcription which are mediated by transcription factors, and the protein-coding genes were of the biggest concern, and so the RNA once thought to be transition between proteins and DNA , but the role of RNA in the process of life is far more than people imagine, especially long noncoding RNA (LncRNA) which was recently discovered. LncRNA played a key role in almost all important life events, such as cell proliferation and differentiation, ontogeny, signal transduction, stem cell maintenance and metabolism and so on. It also could regulate the expression of genes on the epigenetic level, the level of transcription and post-transcriptional level, etc., and closely related to the occurrence of many major human diseases. The long noncoding RNA is longer than 200 nt and does not show the potential of coding protein. LncRNA exerts its biological function through multiple mechanisms, which participates in X chromosome silencing, genomic imprinting, chromatin modification, transcriptional activation, transcriptional interference, nuclear transport and other important regulatory process. And LncRNA relates to epigenetic regulation, transcriptional regulation and post-transcriptional regulation. Through in-depth understanding of LncRNA function to adjust the depth LncRNA new molecular pathways regulating muscle development and differentiation through myogenic factor, a new perspective to examine and explain the molecular events mammalian myogenic, and to find new LncRNA molecules in muscle tissue related to growth and development, and to find the LncRNA molecular which are closely related to growth and development and biological function of the target gene in-depth study, and to clarify the molecular mechanisms of LncRNA regulation in muscle growth and development, and it’s the main contents of the genetic breeding researches in terms of muscle development. This article focused the research progress on LncRNA’ s role in mammalian development, cell growth, differentiation and proliferation.

Key words: LncRNA, mammals, muscular growth and development, cells, proliferation, differentiation

[1]    Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White C I, Rendtlew Danielsen J M, Yang Y G, Qi Y. A role for small RNAs in DNA double-strand break repair. Cell, 2012, 149(1):101-112.
[2]    Shirayama M, Seth M, Lee H C, Gu W, Ishidate T, Conte D, Jr Mello C C: piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell, 2012, 150(1):65-77.
[3]    Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D: A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 2012, 149(4):819-831.
[4]    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2):358-369.
[5]    Spizzo R, Almeida MI, Colombatti A, Calin GA: Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene, 2012, 31(43):4577-4587.
[6]    Wapinski O, Chang H Y. Long noncoding RNAs and human disease. Trends in Cell Biology, 2011, 21(6):354-361.
[7]    于红,表观遗传学:生物细胞非编码RNA调控的研究进展. 遗传, 2009, 31(11):1077-1086.
Yu H. Epigenetics: advances of non-coding RNAs regulation in mammalian cells. Hereditas, 2009, 31(11):1077-1086.(in Chinese)
[8]    张绍峰, 李晓荣, 孙传宝, 何玉科. 植物非编码RNA调控春化作用的表观遗传.遗传, 2012, 34(7):38-43.
Zhang S F, Li X R, Sun C B , He Y K. Epigenetics of plant vernalization regulated by non-coding RNAs. Hereditas, 2012, 34(7):38-43. (in Chinese)
[9]    Xiao B, Zhang X, Li Y, Tang Z, Yang S, Mu Y, Cui W, Ao H, Li K. Identification, bioinformatic analysis and expression profiling of candidate mRNA-like non-coding RNAs in Sus scrofa. Journal of Genetics and Genomics, 2009, 36(12):695-702.
[10]   Brown C J, Ballabio A, Rupert J L, Lafreniere R G, Grompe M, Tonlorenzi R, Willard H F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 1991, 349(6304):38-44.
[11]   Brannan C I, Dees E C, Ingram R S, Tilghman S M.The product of the H19 gene may function as an RNA. Molecular and Cellular Biology, 1990, 10(1):28-36.
[12] Okazaki Y, Furuno M, Kasukawa T, etal. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420(6915):563-573.
[13]   Dinger M E, Amaral P P, Mercer T R, Pang K C, Bruce S J, Gardiner B B, Askarian-Amiri ME, Ru K, Solda G, Simons C, Sunkin S M, Crowe M L, Grimmomd S M, Perkins A C, Mattick J S. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 2008, 18(9):1433-1445.
[14]   Prasanth K V, Spector D L. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes & Development, 2007, 21(1):11-42.
[15]   Mercer T R, Dinger M E, Sunkin S M, Mehler M F, Mattick J S. Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2):716-721.
[16]   International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011): 931-945.
[17]   Pauli A, Valen E, Lin M F, Garber M, Vastenhouw N L, Levin J Z, Fan L, Sandelin A, Rinn J L, Regev A, Schier A F. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research, 2012, 22(3):577-591.
[18]   Maenner S, Blaud M, Fouillen L, Savoye A, Marchand V, Dubois A, Sanglier-Cianferani S, Van Dorsselaer A, Clerc P, Avner P, Visvikis A, Branlant C. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biology, 2010, 8(1): e1000276.
[19]   Kino T, Hurt DE, Ichijo T, Nader N, Chrousos G P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signaling, 2010, 3(107): ra8.doi:10. 1126/scisignal.200568.
[20]   Hung T, Wang Y, Lin M F, Koegel A K, Kotake Y, Grant G D, Horlings H M, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerod A, Borresen-Dale A, Kim S K, van de Vijver M, Sukumar S, Whitfield M L, Kellis M, Xiong Y, Wong D J, Chang H Y. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genetics, 2011, 43(7):621-629.
[21]   Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G, Lu X. Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cellular Signalling, 201325: 1086-1095.
[22]   Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi P P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3):353-358.
[23]   Jalali S, Bhartiya D, Lalwani M K, Sivasubbu S, Scaria V. Systematic Transcriptome Wide Analysis of lncRNA-miRNA Interactions. PloS One, 2013, 8(2):e53823.
[24]   Karreth F A, Tay Y, Perna D, Ala U, Tan S M, Rust A G, DeNicola G, Webster K A, Weiss D, Perez-Mancera P A, Krauthammer M, Halaban R, Provero P, Adams D J, Yuveson D A, Pandofi P P. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 2011, 147(2): 382-395.
[25]   Tay Y, Kats L, Salmena L, Weiss D, Tan S M, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi P P. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 2011, 147(2):344-357.
[26]   Mourtada-Maarabouni M, Pickard M R, Hedge V L, Farzaneh F, Williams G T. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 2009, 28(2): 195-208.
[27]   Huarte M, Guttman M, Feldser D, Garber M, Koziol M J, Kenzelmann-Broz D, Khalil A M, Zuk O, Amit I, Rabani M, Attardi L D,Regev A, Lander E S. Jacks T, Rinn J L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142(3):409-419.
[28]   Tian D, Sun S, Lee J T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell, 2010, 143(3):390-403.
[29]   Sanchez-Elsner T, Gou D, Kremmer E, Sauer F. Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science, 2006, 311(5764):1118-1123.
[30]   Tsai M C, Manor O, Wan Y, Mosammaparast N, Wang J K, Lan F, Shi Y, Segal E, Chang H Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992):689-693.
[31]   Gupta R A, Shah N, Wang K C, Kim J, Horlings H M, Wong D J, Tsai M C, Hung T, Argani P, Rinn J L, Wang Y L, Brzoska P, Kong B, Li R, West R B, van de Vijver M J, Sukumar S, Chang H Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291):1071-1076.
[32]   Gibb E A, Brown C J, Lam W L. The functional role of long non- coding RNA in human carcinomas. Molecular Cancer, 2011, 10: 38.
[33]   Kelley R L, Kuroda M I. Noncoding RNA genes in dosage compensation and imprinting. Cell, 2000, 103(1):9-12.
[34]   Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2010, 32(6):473-480.
[35]   Smits G, Mungall A J, Griffiths-Jones S, Smith P, Beury D, Matthews L, Rogers J, Pask A J, Shaw G, VandeBerg J L, McCarrey J R, the SAVOIR Consortium, Renfree K B, Reik W, Dunham I. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nature Genetics, 2008, 40(8):971-976.
[36]   Zhang Y, Tycko B. Monoallelic expression of the human H19 gene. Nature Genetics, 1992, 1(1):40-44.
[37]   Arney K L. H19 and Igf2--enhancing the confusion? Trends in Genetics, 2003, 19(1):17-23.
[38]   Hark A T, Schoenherr C J, Katz D J, Ingram R S, Levorse J M, Tilghman S M.CTCF mediates methylation-sensitive enhancer- blocking activity at the H19/Igf2 locus. Nature, 2000, 405(6785): 486-489.
[39]   Schoenherr C J, Levorse J M, Tilghman S M. CTCF maintains differential methylation at the Igf2/H19 locus. Nature Genetics, 2003, 33(1):66-69.
[40]   Leighton P A, Saam J R, Ingram R S, Tilghman S M. Genomic imprinting in mice: its function and mechanism. Biology Reproduction, 1996 Feb;54(2):273-278.
[41]   Pandey R R, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C.Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 2008, 32(2):232-246.
[42]   Lee J T. The X as model for RNA's niche in epigenomic regulation. Cold Spring Harbor Perspectives in Biology, 2010, 2(9):a003749.
[43]   Guttman M, Amit I, Garber M, French C, Lin M F, Feldser D, Huarte M, Zuk O, Carey B W, Cassady J P, Cabili M N, Jaenisch R, Mikkelsen T S, Jacks T, Hacohen N, Bernstein B E, Kellis M, Regev A, Rinn J L, Lander E S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235):223-227.
[44]   Masui O, Heard E. RNA and protein actors in X-chromosome inactivation. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71:419-428.
[45]   Huang W, Long N, Khatib H. Genome-wide identification and initial characterization of bovine long non-coding RNAs from EST data. Animal Genetics, 2012, 43(6):674-682.
[46]   Ren H, Li Y, Tang Z, Yang S, Mu Y, Cui W, Ao H, Du L, Wang L, Li K. Genomic structure, chromosomal localization and expression profile of a porcine long non-coding RNA isolated from long SAGE libraries. Animal Genetics, 2009, 40(4):499-508.
[47]   Li T, Wang S, Wu R, Zhou X, Zhu D, Zhang Y. Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing. Genomic, 2012, 99(5): 292-298.
[48] Yang F, Huo X S, Yuan S X, Zhang L, Zhou W P, Wang F, Sun S H. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Molecular cell. 2013, 49(6): 1083-96.
[49]   王富博. 血浆长链非编码RNA应用于前列腺癌早期诊断的研究. 中国优秀硕士学位论文全文数据库.
Wang F B.The Study of Long Non-coding RNA as a Novel Plasma Biomarker for Early Diagnosis of Prostate Cancer, China excellent full-text database ofMaster degree theses . (in Chinese)
[50]   钱天梅, 高蓉, 于彬, 丁斐, 顾晓松. 大鼠坐骨神经缺损后背根神经节组织lncRNA表达变化. 交通医学, 2012(4): 306-308.
Qian T M, Gao R, Yu B, Ding F, Gu X S. Altered lncRNA expression following sciatic nerve resection in rats. Journal of Communications,2012(4):306-308. (in Chinese)
[51]   曹达龙, 叶定伟, 张世林, 戴波, 张海梁, 沈益君, 朱耀, 朱一平, 施国海, 马春光, 肖文军, 秦晓健, 林国文, 姚旭东. 前列腺癌特异抗原3对前列腺癌LNCaP细胞增殖的影响. 中国癌症杂志, 2012, 22(2): 135-138.
Cao D L, Ye D W, Zhang S L, Dai B, Zhang H L, Shen Y J, Zhu Y, Zhu Y P, Shi G H, Ma C G, Xiao W J, Qin X J, Yao X D. Effection of prostate cancer antigen 3 (PCA3) on proliferation of LNCaP cells. China Oncology, 2012, 22(2):135-138. (in Chinese)
[52]   Yin Q F, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael G G, Chen LL. Long noncoding RNAs with snoRNA ends. Molecular Cell,  2012, 48(2):219-230.
[53]   夏天, 肖丙秀, 郭俊明. 长链非编码RNA的作用机制及其研究方法. 遗传, 2013(3):269- 280.
Xia T, Xiao B X, Guo J M. Acting mechanisms and research methods of longnoncoding RNAs. Hereditas, 2013(3):269-280. (in Chinese)
[1] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[2] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[3] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[4] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[5] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[6] CHEN Yu,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie,ZHOU GuangHong. Differentiation of Porcine Muscle Stem Cells in Three-Dimensional Hydrogels [J]. Scientia Agricultura Sinica, 2022, 55(22): 4500-4512.
[7] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[8] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[9] ZHANG WeiDong,ZHENG YuJie,GE Wei,ZHANG YueLang,LI Fang,WANG Xin. Identification of Cashmere Dermal Papilla Cells Based on Single- Cell RNA Sequencing Technology [J]. Scientia Agricultura Sinica, 2022, 55(12): 2436-2446.
[10] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[11] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[12] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[13] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[14] JiaQi WANG,YuHong DONG,JuLing JIANG,JianNing QIAN,WenTao WEI,GuoLiang SONG,JinBo JIAO,XinXin GUAN,GuoBiao JI,YeXin ZHANG. Based on PK15 Cell Line for PCV2 Fully Suspension Culture Process [J]. Scientia Agricultura Sinica, 2021, 54(6): 1280-1287.
[15] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!