Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (6): 1110-1118.doi: 10.3864/j.issn.0578-1752.2019.06.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Infection Status and Genetic Relationship of Crithidia bombi in Different Regions of China

TANG YuJie,WANG LiuHao,LI Kai,LI JiLian()   

  1. Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093
  • Received:2018-10-12 Accepted:2018-11-07 Online:2019-03-16 Published:2019-03-22
  • Contact: JiLian LI E-mail:bumblebeeljl@hotmail.com

Abstract:

【Objective】The objective of this study is to clarify the prevalence of Crithidia bombi, an intestinal parasite of bumblebees, and its genetic relationship among different species in different regions.【Method】In this study, the infection status of 1 007 bumblebees from 25 species in four provinces (autonomous region) including Inner Mongolia, Gansu, Qinghai, and Sichuan was investigated, and the infection rate of C. bombi in different species and regions was analyzed by chi-square test (SPSS 22.0). PCR amplification, cloning and sequencing were carried out based on the ITS sequences of C. bombi. The specific ITS primers were used to amplify the total DNA in the intestines of bumblebees, and gel electrophoresis was performed. The infection status of bumblebee colony was determined by whether 675 bp of ITS gene fragment of C. bombi was amplified or not, and further sequencing was carried out to analyze the genetic relationship of C. bombi in different species and regions. 【Result】Out of all the samples investigated, 262 bumblebees of 20 species were infected by C. bombi, with an infection rate of 26.0%. Among them, Bombus festivus and B. pyrosoma had the highest infection rates, and B. sibiricus had the lowest infection rate. The infection rate of bumblebee was the highest in Qinghai Province and lowest in Inner Mongolia. The infection rate of male bee was significantly higher than that of worker bee and queen bee. The genetic relationship of most C. bombi was relatively close, except for B. melanurus and B. difficillimus in Gansu Province, and B. remotus, B. impetuosus, B. friseanus in Sichuan Province.【Conclusion】The infection of C. bombi is widespread in China, and the infection rate is different among different species, regions and castes of bumblebee. After a long-term of population evolution, the dominant species of bumblebee are relatively fixed in different regions, so the bumblebee species collected in different regions are different. The statistical analysis of the infection of C. bombi in different regions of China focused on the sample size ≥30, which are the dominant species in each region. Some bumblebees have not collected enough samples, but the infection rate is high according to the sample that we already get. There is host specificity in C. bombi, and C. bombi are adaptive to the infection of the host. In some regions of China, the genetic relationship between the C. bombi is relatively strong on the whole, but it is also affected by the geographical location and the species of bumblebee.

Key words: bumblebee (Bombus spp.), Crithidia bombi, internal transcribed space (ITS), infection rate, genetic relationship

Table 1

The species and number of bumblebees in different regions "

省(自治区)
Province (autonomous region)
纬度
Latitude
经度
Longitude
海拔
Elevation (m)
蜂种
Species
采集数
Collection number
感染数
Infected number
内蒙古
Inner Mongolia
48°41.448′ 122°45.290′ 419 密林熊蜂B. patagiatus 41 5
48°41.448′ 122°45.290′ 419 明亮熊蜂B. lucorum 4 3
49°31.497′ 117°16.951′ 712 西伯熊蜂B. sibiricus 50 0
49°28.953′ 119°40.439′ 602 盗熊蜂B. filchnerae 2 2
49°28.953′ 119°40.439′ 602 藓状熊蜂B. muscorum 1 0
甘肃
Gansu
36°34.728′ 102°58.077′ 2096 黑尾熊蜂B. melanurus 7 1
36°34.728′ 102°58.077′ 2096 西伯熊蜂B. sibiricus 1 1
36°49.855′ 102°39.003′ 2210 火红熊蜂B. pyrosoma 19 13
36°49.855′ 102°39.003′ 2210 明亮熊蜂B. lucorum 2 1
36°49.855′ 102°39.003′ 2210 盗熊蜂B. filchnerae 3 1
34°25.522′ 102°17.784′ 3454 稳纹熊蜂B. waltoni 7 0
34°25.522′ 102°17.784′ 3454 拉熊蜂B. laesus 1 0
34°42.456′ 102°30.892′ 3288 密林熊蜂B. patagiatus 52 12
34°42.456′ 102°30.892′ 3288 兴熊蜂B. impetuosus 2 0
38°09.402′ 100°11.705′ 2912 红束熊蜂B. rufofasciatus 103 15
38°09.402′ 100°11.705′ 2912 苏氏熊蜂B. sushkini 3 2
38°09.402′ 100°11.705′ 2912 伪猛熊蜂B. personatus 2 0
38°09.402′ 100°11.705′ 2912 克什米尔熊蜂B. kashmirensis 2 1
38°09.402′ 100°11.705′ 2912 越熊蜂B. supremus 3 1
37°56.221′ 100°57.951′ 3418 猛熊蜂B. difficillimus 4 1
37°59.971′ 100°45.020′ 3214 拉达克熊蜂B. ladakhensis 6 0
37°59.971′ 100°45.020′ 3214 昆仑熊蜂B. keriensis 7 1
38°13.043′ 100°56.944′ 2835 小雅熊蜂B. lepidus 3 0
青海
Qinghai
37°10.689′ 102°03.091′ 2596 明亮熊蜂B. lucorum 10 9
37°10.689′ 102°03.091′ 2596 火红熊蜂B. pyrosoma 11 7
37°10.689′ 102°03.091′ 2596 西氏熊蜂B. sichelii 5 4
37°10.689′ 102°03.091′ 2596 小雅熊蜂B. lepidus 9 7
37°10.689′ 102°03.091′ 2596 密林熊蜂B. patagiatus 1 0
37°10.689′ 102°03.091′ 2596 兴熊蜂B. impetuosus 3 0
37°41.408′ 100°34.319′ 3461 稳纹熊蜂B. waltoni 10 0
37°41.408′ 100°34.319′ 3461 拉达克熊蜂B. ladakhensis 3 0
37°41.408′ 100°34.319′ 3461 伪猛熊蜂B. personatus 2 0
37°41.408′ 100°34.319′ 3461 红束熊蜂B. rufofasciatus 1 0
37°41.408′ 100°34.319′ 3461 克什米尔熊蜂B. kashmirensis 1 0
四川
Sichuan
28°19.672′ 103°07.999′ 2062 兴熊蜂B. impetuosus 80 12
28°19.672′ 103°07.999′ 2062 小雅熊蜂B. lepidus 12 2
28°19.672′ 103°07.999′ 2062 三条熊蜂B. trifasciatus 8 5
28°19.672′ 103°07.999′ 2062 白背熊蜂B. festivus 40 28
28°19.672′ 103°07.999′ 2062 常熊蜂B. avanus 10 10
30°02.905′ 101°58.049′ 2833 疏熊蜂B. remotus 159 32
28°32.822′ 102°10.638′ 1785 弗里熊蜂B. friseanus 317 86
合计Total 1007 262

Table 2

Infection situations of C. bombi in different bumblebee species"

蜂种
Species
样本数(只)
Sample number
感染率
Infection rate (%)
卡方值
χ2 value
P
P value
白背熊蜂B. festivus 40 70.0A 36.368 1.63E-09
火红熊蜂B. pyrosoma 30 66.7A 23.695 0.000001
弗里熊蜂B. friseanus 317 27.1B 0.057 0.812
疏熊蜂B. remotus 159 20.1BC 2.931 0.087
密林熊蜂B. patagiatus 94 18.1BC 3.178 0.075
红束熊蜂B. rufofasciatus 104 14.4C 7.274 0.007
兴熊蜂B. impetuosus 85 14.1C 6.323 0.012
西伯熊蜂B. sibiricus 51 2.0D 15.457 0.000084

Table 3

Infection situations of C. bombi of different bumblebee species in the same region"

蜂种
Species
四川Sichuan 甘肃Gansu 内蒙古Inner Mongolia
样本数(只)
Sample number
感染率
Infection rate (%)
样本数(只)
Sample number
感染率
Infection rate (%)
样本数(只)
Sample number
感染率
Infection rate (%)
白背熊蜂B. festivus 40 70.0A
弗里熊蜂B. friseanus 317 27.1B
疏熊蜂B. remotus 159 20.1B
兴熊蜂B. impetuosus 80 15.0B
密林熊蜂B. patagiatus 52 23.1A 41 12.2A
红束熊蜂B. rufofasciatus 103 14.6A
西伯熊蜂B. sibiricus 50 0B

Table 4

Infection situations of C. bombi of the same bumblebee species from different regions"

省(自治区)Province (autonomous region) 密林熊蜂B. patagiatus 火红熊蜂B. pyrosoma 稳纹熊蜂B. waltoni
样本数(只)
Sample number
感染率
Infection rate (%)
样本数(只)
Sample number
感染率
Infection rate (%)
样本数(只)
Sample number
感染率
Infection rate (%)
内蒙古Inner Mongolia 41 12.2A
甘肃 Gansu 52 23.1A 19 68.4A 7 0A
青海 Qinghai 11 63.6A 10 0A

Table 5

Infection situations of C. bombi from different regions"

省(自治区)Province (autonomous region) 样本数(只)
Sample number
感染率
Infection rate (%)
卡方值
χ2 value
P
P value
青海 Qinghai 56 48.2A 12.668 0.000372
四川 Sichuan 626 28.0B 0.457 0.499
甘肃 Gansu 227 22.0B 1.945 0.163
内蒙古Inner Mongolia 98 10.2C 12.655 0.000375

Table 6

Infection situations of C. bombi from different castes"

级型 Caste 样本数(只)Sample number 感染率 Infection rate (%) 卡方值 χ2 value PP value
雄蜂 Male 76 44.7A 12.467 0.000414
工蜂 Worker 929 24.5B 0.556 0.456
蜂王 Queen 2 0C 0.703 0.402

Fig. 1

Phylogenetic tree of C. bombi of closely related species from different regions based on NJ algorithm"

[1] WILLIAMS P H . An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bulletin of the Natural History Museum Entomology, 1998,67(1):79-152.
[2] WILLIAMS P, TANG Y, YAO J, CAMERON S . The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini). Systematics and Biodiversity, 2009,7(2):101-189.
doi: 10.1017/S1477200008002843
[3] CAMERON S A, HINES H M, WILLIAMS P H . A comprehensive phylogeny of the bumble bees ( Bombus). Biological Journal of the Linnean Society, 2007,91(1):161-188.
doi: 10.1111/j.1095-8312.2007.00784.x
[4] 黄家兴, 安建东 . 中国熊蜂多样性、人工利用与保护策略. 生物多样性, 2018,26(5):486-497.
doi: 10.17520/biods.2018068
HUANG J X, AN J D . Species diversity, pollination application and strategy for conservation of the bumblebees of China. Biodiversity Science, 2018,26(5):486-497. (in Chinese)
doi: 10.17520/biods.2018068
[5] 方文富 . 熊蜂的生物学. 养蜂科技, 2003(1):5-9.
FANG W F . The biology of bumblebees. Apicultural Science and Technology, 2003(1):5-9. (in Chinese)
[6] 彭文君, 安建东, 梁诗魁 . 蜜蜂科中几个具有重要经济价值的昆虫及其利用概况. 蜜蜂杂志, 1999(12):7-8.
PENG W J, AN J D, LIANG S K . Several economically valuable insects in Apidae and their utilization.Journal of Bee, 1999(12):7-8. (in Chinese)
[7] LI J L, WU J, PENG W J, AN J D, GUO Z B, TONG Y M . Nosema bombi, a microsporidian pathogen of the bumble bee Bombus lucorum. Journal of Apicultural Science, 2005,49(1):53-57.
[8] 李继莲, 吴杰, 彭文君, 安建东, 国占宝, 童越敏 . 熊蜂的病虫害. 蜜蜂杂志, 2004(12):12-13.
LI J L, WU J, PENG W J, AN J D, GUO Z B, TONG Y M . Bumblebee pathogens and internal enemies.Journal of Bee, 2004(12):12-13. (in Chinese)
[9] YOURTH C P, SCHMID-HEMPEL P . Serial passage of the parasite Crithidia bombi within a colony of its host, Bombus terrestris, reduces success in unrelated hosts. Proceedings of the Royal Society B: Biological Sciences, 2006,273(1587):655-659.
[10] HOARE C A, WALLACE F G . Developmental stages of trypanosomatid flagellates: a new terminology. Nature, 1966,212(5068):1385-1386.
doi: 10.1038/2121385a0
[11] 武文杰 . 熊蜂短膜虫(Crithidia bombi)微观进化的研究. 寄生虫与医学昆虫学报, 1997,4(1):27-32.
WU W J . Microevolutionary studies on Crithidia bombi. Acta Parasitologica et Medica Entomologica Sinica, 1997,4(1):27-32. (in Chinese)
[12] 武文杰 . 自然界熊蜂短膜虫的多克隆感染. 中国人兽共患病学报, 1997,13(2):3-6.
WU W J . Muticle clones infection of Crithidia bombi in the nature. Chinese Journal of Zoonoses, 1997,13(2):3-6. (in Chinese)
[13] 武文杰 . 不同株的熊蜂短膜虫与宿主生存的关系. 动物学报, 1998,44(2):235-236.
doi: 10.3969/j.issn.1674-5507.1998.02.019
WU W J . The relationship between different strains of Crithidia bombi and the survival of their host bumble bees. Acta Zoologica Sinica, 1998,44(2):235-236. (in Chinese)
doi: 10.3969/j.issn.1674-5507.1998.02.019
[14] HILLIS D M, DIXON M T . Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology, 1991,66(4):411-453.
doi: 10.1086/417338
[15] 林睿 . 吸虫种株基因差异的研究进展. 应用预防医学, 2002,8(5):310-313.
doi: 10.3969/j.issn.1673-758X.2002.05.021
LIN R . Advances in genetic differences of trematode strains. Journal of Applied Preventive Medicine, 2002,8(5):310-313. (in Chinese)
doi: 10.3969/j.issn.1673-758X.2002.05.021
[16] 翁亚彪, 谢德华, 林瑞庆, 李华文, 张德林, 吴绍强, 朱兴全 . 弓形虫ITS及5.8S序列的PCR扩增、克隆及分析. 畜牧兽医学报, 2005,36(1):70-73.
doi: 10.3321/j.issn:0366-6964.2005.01.015
WENG Y B, XIE D H, LIN R Q, LI H W, ZHANG D L, WU S Q, ZHU X Q . PCR amplification, cloning and sequencing analysis of ITS and 5.8S of rDNA from Toxoplasma gondii. Acta Veterinaria et Zootechnica Sinica, 2005,36(1):70-73. (in Chinese)
doi: 10.3321/j.issn:0366-6964.2005.01.015
[17] ZHU X Q, GASSER R B, JACOBS D E, HUNG G C, CHILTON N B . Relationships among some ascaridoid nematodes based on ribosomal DNA sequence data. Parasitology Research, 2000,86(9):738-744.
doi: 10.1007/PL00008561 pmid: 11002982
[18] 张立海, 廖金铃, 冯志新 . 松材线虫rDNA的测序和PCR-SSCP分析. 植物病理学报, 2001,31(1):84-89.
doi: 10.3321/j.issn:0412-0914.2001.01.013
ZHANG L H, LIAO J L, FENG Z X . Sequencing and PCR-SSCP analysis of ribosomal DNA of Bursaphelenchus nematodes. Acta Phytopathologica Sinica, 2001,31(1):84-89. (in Chinese)
doi: 10.3321/j.issn:0412-0914.2001.01.013
[19] 周荣琼, 李国清, 肖淑敏, 郭远忠, 夏艳勋, 林瑞庆, 朱兴全 . 安氏隐孢子虫ITS-1序列的PCR扩增、克隆及分析. 中国预防兽医学报, 2005,27(5):369-372.
doi: 10.3969/j.issn.1008-0589.2005.05.014
ZHOU R Q, LI G Q, XIAO S M, GUO Y Z, XIA Y X, LIN R Q, ZHU X Q . PCR amplification, cloning and sequencing of ITS-1 rDNA from Cryptosporidium andersoni. Chinese Journal of Preventive Veterinary Medicine, 2005,27(5):369-372. (in Chinese)
doi: 10.3969/j.issn.1008-0589.2005.05.014
[20] 邹志文, 陈芬, 夏斌, 吴瑜, 张宇 . 几种钝绥螨ITS基因片段的序列分析. 中国农业科学, 2011,44(23):4945-4951.
doi: 10.3864/j.issn.0578-1752.2011.23.023
ZOU Z W, CHEN F, XIA B, WU Y, ZHANG Y . Sequence analysis of ITS gene in several Amblyseiinae (Acari: Phytoseiidae). Scientia Agricultura Sinica, 2011,44(23):4945-4951. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.23.023
[21] 艾琳, 王春仁, 唐剑栋, 林瑞庆, 朱兴全 . 绒山羊和绵羊源东毕吸虫ITS rDNA的PCR扩增及序列分析. 热带医学杂志, 2007,7(3):209-211.
doi: 10.3969/j.issn.1672-3619.2007.03.005
AI L, WANG C R, TANG J D, LIN R Q, ZHU X Q . PCR amplification and sequence analysis of the ITS rDNA of Orientobilharzia spp. from goat and sheep in Heilongjiang Province. Journal of Tropical Medicine, 2007,7(3):209-211. (in Chinese)
doi: 10.3969/j.issn.1672-3619.2007.03.005
[22] LIU J L, YIN H, LIU G Y, GUAN G Q, MA M L, LIU A H, LIU Z J, LI Y Q, REN Q Y, DANG Z S, GAO J L, BAI Q, ZHAO H P, LUO J X . Discrimination of Babesia major and Babesia ovata based on ITS1-5.8S-ITS2 region sequences of rRNA gene. Parasitology Research, 2008,102(4):709-713.
[23] 李继莲, 吴杰, 彭文君, 安建东, 罗术东, 黄家兴 . 熊蜂短膜虫的分子检测方法: CN 103820540 A[P]. ( 2014 -05-28)[2018-10-12].
LI J L, WU J, PENG W J, AN J D, LUO S D , HUANG J X . Molecular detection method for Crithidia bombi: CN 103820540 A[P]. (2014-05-28)[2018-10-12]. (in Chinese)
[24] SOUFFREAU C, VERBRUGGEN H, WOLFE A P, VANORMELINGEN P, SIVER P A, COX E J, MANN D G , VAN DE VIJVER B, SABBE K, VYVERMAN W . A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. Molecular Phylogenetics and Evolution, 2011,61(3):866-879.
doi: 10.1016/j.ympev.2011.08.031 pmid: 21930222
[25] ALTSCHUP S F, GISH W, MILLER W, MYERS E W, LIPMAN D J . Basic local alignment search tool. Journal of Molecular Biology, 1990,215(3):403-410.
doi: 10.1016/S0022-2836(05)80360-2
[26] KLEE J, BESANA A M, GENERSCH E, GISDER S, NANETTI A, TAM D Q, CHINH T X, PUERT F A, RUZ J M, KRYGER P, MESSAGE D, HATJINA F, KORPELA S, FRIES I, PAXTON R J . Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. Journal of Invertebrate Pathology, 2007,96(1):1-10.
[27] 李继莲 . 熊蜂微孢子虫形态学及有关生物学的研究[D]. 北京: 中国农业科学院, 2004.
LI J L . Studies on the morphology and biology of Nosema bombi[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. (in Chinese)
[28] LIPA J J, TRIGGIANI O . Crithidia bombi sp. n. a flagellated parasites of a bumble-bee Bombus terrestris L.(Hymenoptera, Apidae). Acta Protozoologica, 1988,27(3/4):287-290.
[1] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,LI LianWen,PIAO JiCheng. Genetic Relationship and Structure Analysis of 15 Species of Malus Mill. Based on SNP Markers [J]. Scientia Agricultura Sinica, 2020, 53(16): 3333-3343.
[2] GAO CuiZhu, YANG HongLing, HUANGXIA YuQi, HUANG JunBin, LI GuoQing, ZHENG Lu. Occurrence of Grey Mould Disease in Greenhouse-Grown Strawberry and Its Correlations with Epidemic Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1617-1623.
[3] WANG Jiong, GONG GuiZhi, PENG ZhuChun, LI YiBing, WANG YanJie, HONG QiBin. Genetic and Phylogenetic Relationships Among Citrus and Its Close and Distant Relatives Based on COS Marker [J]. Scientia Agricultura Sinica, 2017, 50(2): 320-331.
[4] BAI Li-jing, LIU Bo, LI Lin, MU Yu-lian, LI Kui. Phylogenetic Analysis of Seven Different Geographical Populations of Wild Boar in China [J]. Scientia Agricultura Sinica, 2015, 48(S): 58-66.
[5] LI Zong-yan1, QIN Yan-ling1, MENG Jin-fang2, TANG Dai1, WANG Jin1. Study on the Origin of Tree Peony Cultivars from Southwest China Based on ISSR Technology [J]. Scientia Agricultura Sinica, 2015, 48(5): 931-940.
[6] XU Long-Xin, YANG Sheng-Lin, LI Ai-Ping, NIE Yu-Li, YANG Hai-Bing, DAI Yan. Genetic Diversity and Phylogenetic Relationship Among Five Pony Populations of China [J]. Scientia Agricultura Sinica, 2013, 46(3): 623-629.
[7] MA Qing-Hua-1, CHEN Xin-2, ZHAO Tian-Tian-1, LIU Qing-Zhong-2, WANG Gui-Xi-1. Analysis of the Genetic Relationship of the Main Cultivars of Ping’ou Hybrid Hazelnut (C. heterophylla×C. avellana) by FISH-AFLP Markers [J]. Scientia Agricultura Sinica, 2013, 46(23): 5003-5011.
[8] LIU Yan, CHENG Xu-Zhen, WANG Li-Xia, WANG Su-Hua, BAI Peng, WU Chuan-Shu. Genetic Diversity Research of Mungbean Germplasm Resources by SSR Markers in China [J]. Scientia Agricultura Sinica, 2013, 46(20): 4197-4209.
[9] WANG Tao, XU Jin, ZHANG Xi-Xi, ZHAO Liang-Jun. Genetic Relationship of 43 Cultivars of Viola tricolor and Viola cornuta Using SRAP Marker [J]. Scientia Agricultura Sinica, 2012, 45(3): 496-502.
[10] LIU Li-jun,WANG Xu-xia,WANG Bo,PENG Ding-xiang. Analysis of Genetic Relationship of Ramie (Boehmeria nivea) Inbred Line Clones as Revealed by ISSR [J]. Scientia Agricultura Sinica, 2011, 44(8): 1543-1552 .
[11] WANG Kui-ling,MU Shao-hua,LIU Qing-chao,TANG Qi-he,LIU Qing-hua
. Study on the Genetic Diversity of Some Camellia japonica (Naidong) Cultivars Based on AFLP Markers
[J]. Scientia Agricultura Sinica, 2011, 44(3): 651-656 .
[12] DING An-Ming, CUI Fa, LI Jun, ZHAO Chun-Hua, WANG Xiu-Qin, WANG Hong-Gang. QTL Analysis on Grain Yield per Plant and Plant Height in Wheat [J]. Scientia Agricultura Sinica, 2011, 44(14): 2857-2867 .
[13] DUAN Yun-shang,JIANG Yan-hua,WANG Li-yuan,CHENG Hao,WANG Yu-hua,LI Xing-hui
. Analysis of Genetic Diversity and Relationship of Tea Cultivars and Lines Suitable for Making Green and Black Tea Using SSR Markers
[J]. Scientia Agricultura Sinica, 2011, 44(1): 99-109 .
[14] JIAN Li,ZHU Li-quan
. Analysis on Cymbidium kanran with SRAP Markers
[J]. Scientia Agricultura Sinica, 2010, 43(15): 3184-3190 .
[15] ZENG Li,ZHAO Liang-jun,SUN Jia,ZHAO Zi-gang,YANG-fan. Analysis of Genetic Relatedness of Genetic Resources of Tagetes as Revealed by ISSR
[J]. Scientia Agricultura Sinica, 2010, 43(1): 215-222 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!