Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (S): 58-66.doi: 10.3864/j.issn.0578-1752.2015.S.007

Previous Articles     Next Articles

Phylogenetic Analysis of Seven Different Geographical Populations of Wild Boar in China

BAI Li-jing1,2, LIU Bo2, LI Lin2, MU Yu-lian1, LI Kui1   

  1. 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 Institute of Shenzhen Agricultural genome, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong
  • Received:2015-09-22 Online:2015-10-20 Published:2015-10-20

Abstract: 【Objective】 The mitochondria DNA is the unique genetic material outside the nuclear within eukaryotic cells, having a relatively constant and different bioinformation from the nucleus DNA. The analysis of mitochondria DNA sequence could provide theoretical basis for researching the origin and evolution of the species. Therefore, based on the analysis of mitochondria DNA sequence mutation between different wild boars, we could study the genetic resources of wild boar from different geographical populations, and explain genetic relationships between different subspecies in China. 【Method】A total of 26 wild boars belonging to seven regions, including Inner Mongolia, Sichuan, Shanxi, Zhejiang, Jiangxi, Hunan and Fujian, were selected for DNA extraction using ear tissues and/or tail tissues based on Phenol - chloroform method. For each individual, according to Covaris System (Life Technologies), 3μg of DNA was sheared into DNA fragments of 200-800 bp. The DNA fragments were treated based on the Illumina DNA sample preparation protocol. Fragments were ending repaired, A-tailed, ligated to paired-end adaptors and PCR amplified with 500-bp inserts for library construction. Sequencing was performed to generate 125bp paired-end reads on the HiSeq2500 platform (Illumina). To compare the difference between wild boars in China and other countries, we downloaded the resequencing data of 12 wild boars, including six European wild boars, one Japanese wild boar, one Sumatra wild boar and four Chinese wild boars from NCBI website. We used the 12 resequencing data of wild boars and 26 resequencing data sequenced by ourselves to identify the mutation between the 38 wild boars. Based on the average of sequencing quality of paired-end reads, we filtered out the quality of paired-end reads less than the Q30. To identify the SNPs between 38 wild boars in whole mitochondria DNA sequence, the software BWA and samtools were used in this study. And then, we used minor allele frequency (MAF) more than 0.05 to filter SNP in wild boars population. Based on the reliable SNPs, we used maximum likelihood (ML) to construct the phylogenetic tree, principal component analysis (PCA) and nucleotide diversity analysis (π) in 38 wild boars. 【Result】A total of 226 SNP (0.014 SNPs/bp) were identified in 38 wild boars in whole genome sequence of mitochondria DNA, including 33 SNPs (0.028 SNPs/bp) in D-loop region. Based on different geographical populations, the 38 wild boars could be divided into nine groups, including Sumatra, Europe, Japan, Shanxi, Sichuan, Hunan, Jiangxi, Zhejiang and Inner Mongolia. For the analysis of GC content in whole genome sequence of mitochondria DNA in each group, the GC contents were not much changed, 34.7% for A, 26.2% for C, 13.3% for G and 25.8% for T, respectively. For the D-loop region, compared to whole genome sequence of mitochondria DNA , A content reduced 1% and G content raised 1%. The analysis of phylogenetic tree and PCA show that there was significantly divided into two groups between European group and Asian group. It indicates that the two groups were independent evolution. On the other hand, seven different geographical populations in China could be divided into three subspecies (Mongolian, Sichuan-Shaanxi, and South China wild boar). The results of nucleotide diversity analysis showed that the genetic distance were smaller (average π is 0.0022; range from 0.00024 to 0.0037) amongst the wild boars in China. However, there was large nucleotide diversity (average is 0.0049; range from 0.0044 to 0.0052) between European group and Chinese group. Sumatra and Japan groups were average 0.0025 nucleotide diversity compared to Chinese group. It indicates that comparing to Sumatra and Japanese wild boars, the European ones have large nucleotide diversity with Chinese wild boars. 【Conclusion】 Although there were abundant polymorphism haploid type in Chinese wild boars, the risk of losing the genetic diversity were increasing, which suggested that the scientific planning and protection of germplasm resources should be strengthened.

Key words: wild boar, mitochondrial DNA, genetic distance, phylogenetic relationship

[1]    于萍, 曹婷, 施力光, 刘雅芳, 张立岭, 侯冠彧. 猪线粒体DNA研究应用进展. 家畜生态学报, 2014, 35(7): 1-6.
Yu P, , Cao, T, Shi, L G, Liu Y F, Zhang L L, Hou G Y. Study and application progress of mitochondrial DNA in pig breeds. Journal of Domestic Animal Ecology, 2014, 35(7): 1-6. (in Chinese)
[2]    Lla P. Foundations of the new phylogenetics. Zhurnal Obshche? Biologii, 2004. 65: 334-366.
[3]    Lindblad-Toh K, Wade C M, Mikkelsen T S, Karlsson E K, Jaffe D B, Kamal M, Clamp M, Chang J L, Kulbokas E J 3rd, Zody M C, Mauceli E, Xie X, Breen M, Wayne R K, Ostrander E A, Ponting C P, Galibert F, Smith D R, DeJong P J, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin C W, Cook A, Cuff J, Daly M J, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli K P, Parker H G, Pollinger J P, Searle S M, Sutter N B, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger J P, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O'Neill B, O'Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander E S. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 2005, 438: 803-819.
[4]    Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley- Conwy P, Andersson L, Cooper A. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science, 2005, 307: 1618-1621.
[5]    Fang M, Andersson L. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proceedings Biological Sciences, 2006, 273, 1803-1810.
[6]    张劲硕. 世界猪的种类, 分布和现状. 动物学杂志, 2007, 42(1):  7.
Zhang J S. The species, distribution and the status quo of wild boar in the worldwide. Chinese Journal of Zoology, 2007, 42: 7. (in Chinese)
[7]    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Eprint Arxiv, 2013 http: //www. researchgate. net/ publication/236935760_Li_H._Aligning_sequence_reads_clone_sequences_and_assembly_contigs_with_BWA-MEM._arXiv_%281303.3997%29
[8]    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 genome project data processing subgroup. The sequence alignment/map format and samtools. Bioinformatics, 2009, 25: 2078-2079.
[9]    Guindon S, Delsuc F, Dufayard J F, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods in Molecular Biology, 2009, 537: 113-137.
[10]   Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88: 76-82.
[11]   Vilella A J, Blanco-Garcia A, Hutter S, Rozas J. VariScan: Analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics, 2005, 21: 2791-2793.
[12]   Nei M. Masatoshi N, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS, 1979, 76: 5269-5273.
[13]   郝荣超, 王国华, 常玉霞, 杨国忠, 昝林森. 中国荷斯坦牛和鲁西黄牛mtDNA D-loop序列多态性分析. 基因组学与应用生物学, 2011, 30(5): 544-549.
Hao R C, Wang G H, Chang Y X, Yang G Z, Zan L S. Sequence diversity of mitochondrial DNA D-loop region in the population of Chinese Holstein Cattle and Luxi Cattle. Genomics and Applied Biology, 2011, 30(5): 544-549. (in Chinese)
[14]   张冰, 孙俊丽, 潘天彪, 蓝海恩, 秦谦涛, 黄敏瑞. 广西5个猪种mtDNA D-loop序列遗传多样性及系统进化研究. 中国畜牧兽医学会养猪学分会第五次全国会员代表大会暨养猪业创新发展论坛, 2010.
Zhang B, Sun J L, Pan T B, Lan H E, Qin Q T, Huang M R. Genetic diversity and phylogeny of domestic bactrian camel revealed by mtDNA D-loop. China animal husbandry and veterinary institute- pigs learn branch of China-The fifth national member representative assembly and The industry innovation and development BBS, 2010. (in Chinese)
[15]   Brown W M. Evolution of animal mitochondrial DNA. Evolution of Genes and Proteins, 1983, 1: 62-88.
[16]   韩春梅, 高庆华, 赵书红, 龚慧婷, 赵余. 新疆野猪mtDNA 控制区序列遗传多样性分析 . 安徽农业科学, 2008 , 36(8): 3142-3143.
Han C M, Gao Q H, Zhao S H, Gong H T, Zhao Y. Genetic diversity analysis of mtdna control region sequence in xinjiang wild pig. Journal of Anhui Agricultural Sciences, 2008, 36: 3142-3143. (in Chinese)
[17]   Wu G S, Yao Y G, Qu K X, Ding Z L, Li H, Palanichamy M G, Duan Z Y, Li N, Chen Y S, Zhang Y P. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biology, 2007, 8: 245.
[18]   Lu H, Zhang J, Liu K B, Wu N, Li Y, Zhou K, Ye M, Zhang T, Zhang H, Yang X, Shen L, Xu D, Li Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10, 000 years ago. PNAS, 2009, 106: 7367-7372.
[19]   Yu G, Xiang H, Wang J, Zhao X. The phylogenetic status of typical Chinese native pigs: analyzed by Asian and European pig mitochondrial genome sequences. Journal Animal Science and Biotechnology, 2013, 4: 9.
[20]   黄勇富, 张亚平, 邱祥聘, 曾凡同, 肖永祚. 猪线粒体DNA多态性与中国地方猪种起源分化的关系. 遗传学报, 1998, 25(4): 322-329.
Huang Y F, Zhang Y P, Qiu X P, Zeng F T, Xiao Y Z. The relationship between mitochondrial dna polymorphism and origin and differentiation of native pig breeds in China. Acta Genetica Sinica, 1998, 4: 322-329. (in Chinese)
[21]   李洪涛, 肖 东, 袁 进, 吴清洪, 王万山, 张嘉宁, 顾为望. 西藏小型猪线粒体DNA控制区的分子遗传学研究. 畜牧兽医学报, 2008, 40(6): 800-805.
Li H T, Xiao D, Yuan J, Wu Q H, Wang W S, Zhang J N, Gu W W. Genetic analysis of mitochondrial DNA D-loop region sequences in Tibet mini-pigs. Chinese Journal of Animal & Veterinary Sciences, 2008, 40(6): 800-805. (in Chinese)
[22]   刘娣, 杨秀芹, 杨甲芳, 张向喆, 马建章. 野猪及其与家猪杂种猪Myostatin基因3' 编码区的克隆和序列分析. 兽类学报, 2003, 23(3): 270-272.
Liu D, Yang X Q, Yang J F, Zhang X Z, Ma J Z. Clone and sequence analysis on 3' coding region of wild boar and crossbred pig myostatin gene. Acta Genetica Sinica, 2003, 23: 270-272. (in Chinese)
[23]   张冬杰, 刘娣, 杨国伟, 汪晓鸿, 孙丽华. 野猪骨桥蛋白基因表达及与家猪的对比分析. 动物学杂志, 2009, 44(2): 41-47.
Zhang D J. Liu D, Yang G W, Wang X H, Sun L H. Expression of osteopontin gene in sus scrofa and its comparison with swine. Chinese Journal of Zoology, 2009, 44(2): 41-47. (in Chinese)
[24]   Yang J, Wang J, Kijas J, Liu B, Han H, Yu M, Yang H, Zhao S, Li K. Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs. Journal of Heredity, 2003, 94: 381-385.
[25]   王继英, 郭建凤, 孙守礼, 王诚, 张印, 武英. 山东猪种mtDNA D-loop 区部分序列遗传多样性及系统进化研究. 畜牧兽医学报, 2009, 40(6): 792-799.
Wang J Y, Guo J F, Sun S L, Wang C, Zhang Y, Wu Y. The genetic diversity and phylogenetic relationships among pig breeds of shandong province based on partial sequence of mtdna d-loop region. Chinese Journal of Animal & Veterinary Sciences, 2009, 40(6): 792-799. (in Chinese)
[26]   张汤杰, 李慧芳, 陈宽维, 常洪, 汤青萍, 张晶鑫. 利用线粒体D-loop 区分析家鸭品种遗传多态性与系统进化. 畜牧兽医学报, 2007, 38(11): 1168-1175.
Zhang T J, Li H F, Chen K W, Chang H, Tang Q P, Zhang J X. Analysis on the genetic polymorphism and systematic evolution in domestic ducks by mitochondrial DNA D-loop region. Chinese Journal of Animal & Veterinary Sciences, 2007, 38(11): 1168-1175. (in Chinese)
[27]   益平, 邢光东, 陈仕毅, 任守文, 刘铁铮. 苏钟猪和太湖猪的线粒体D 环部分序列比较分析. 江苏农业学报, 2007, 23(3) : 200-203.
Liu Y P, Xing G D, Chen S Y, Ren S W, Liu T Z. Analysis of mtDNA partial D-loop sequences in Suzhong and Taihu pig. Jiangsu Journal of Agricultural Sciences, 2007, 23(3): 200-203. (in Chinese)
[1] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[2] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[3] WANG LiMing,YAN HongDong,JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan. Heterosis Prediction of Sweet Sorghum Based on Combining Ability and Genetic Distance [J]. Scientia Agricultura Sinica, 2020, 53(14): 2786-2794.
[4] WANG Yi,LI Miao,LI YongFeng,SUN Yuan,QIU HuaJi. Identification and Properties of Lactic Acid Bacteria Isolated from Wild Boar Feces [J]. Scientia Agricultura Sinica, 2020, 53(14): 2964-2973.
[5] QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing. Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton [J]. Scientia Agricultura Sinica, 2019, 52(9): 1488-1501.
[6] WANG Jiong, GONG GuiZhi, PENG ZhuChun, LI YiBing, WANG YanJie, HONG QiBin. Genetic and Phylogenetic Relationships Among Citrus and Its Close and Distant Relatives Based on COS Marker [J]. Scientia Agricultura Sinica, 2017, 50(2): 320-331.
[7] CAI KeQi, YANG XuanKe, WANG Peng, WU KeBang. Change Regularity and Correlation Analysis of Hainan Special wild Boar Taint Substances [J]. Scientia Agricultura Sinica, 2017, 50(15): 3024-3032.
[8] LI Zong-yan1, QIN Yan-ling1, MENG Jin-fang2, TANG Dai1, WANG Jin1. Study on the Origin of Tree Peony Cultivars from Southwest China Based on ISSR Technology [J]. Scientia Agricultura Sinica, 2015, 48(5): 931-940.
[9] WANG Rui, WANG Jin-sheng, ZHANG Fu-yao, CHENG Qing-jun, TIAN Cheng-hua, LING Liang. Evolution of Genetic Distance Between Parental Lines of Chinese Sorghum Hybrids from1970s-2000s Based on SSR Analysis [J]. Scientia Agricultura Sinica, 2015, 48(3): 415-425.
[10] SANG Shi-fei, WANG Hui, MEI De-sheng, LIU Jia, FU Li, WANG Jun, WANG Wen-xiang, HU Qiong. Correlation Analysis Between Heterosis and Genetic Distance Evaluated by Genome-Wide SNP Chip in Brassica napus [J]. Scientia Agricultura Sinica, 2015, 48(12): 2469-2478.
[11] XU Long-Xin, YANG Sheng-Lin, LI Ai-Ping, NIE Yu-Li, YANG Hai-Bing, DAI Yan. Genetic Diversity and Phylogenetic Relationship Among Five Pony Populations of China [J]. Scientia Agricultura Sinica, 2013, 46(3): 623-629.
[12] ZHANG Tao, LU Hong-Chao. Genetic Diversity of Mitochondrial DNA D-loop Sequences in Ningqiang Pony [J]. Scientia Agricultura Sinica, 2012, 45(8): 1587-1594.
[13] GUO Da-Long, LIU Chong-Huai, ZHANG Jun-Yu, ZHANG Guo-Hai. Construction of Grape Core Collections [J]. Scientia Agricultura Sinica, 2012, 45(6): 1135-1143.
[14] LIU Zun-chun,ZHANG Chun-yu,ZHANG Yan-min,ZHANG Xiao-yan,WU Chuan-jin,WANG Hai-bo,SHI Jun,CHEN Xue-sen
. Study on Method of Constructing Core Collection of Malus sieversii Based on Quantitative Traits
[J]. Scientia Agricultura Sinica, 2010, 43(2): 358-370 .
[15] . The Genetic Diversity and Phylogenetic Relationship Among Pig Breeds of Shandong Province Based on mtDNA CytB Gene
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1761-1767 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!