Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (21): 4065-4075.doi: 10.3864/j.issn.0578-1752.2018.21.006

• PLANT PROTECTION • Previous Articles     Next Articles

Control Efficacy of Pyraclostrobin and Triazole Fungicides Against Tomato Crown and Root Rot

HaiChao CAO1(),XiuHuan LI1,XiaoKun WANG1,HaiXiu BAI2,Wei MU1,Feng LIU1()   

  1. 1College of Plant Protection, Shandong Agricultural University/Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests/Shandong Key Laboratory of Pesticide Toxicology & Application Technique, Taian 271018, Shandong
    2Shandong Medical Technician College, Taian 271016, Shandong
  • Received:2018-05-07 Accepted:2018-07-03 Online:2018-11-01 Published:2018-11-01
  • Contact: HaiChao CAO,Feng LIU E-mail:caohaichao666@outlook.com;fliu@sdau.edu.cn

Abstract:

【Objective】 The objective of this study is to evaluate the potential efficacy of pyraclostrobin as well as tebuconazole, propiconazole and flusilazole against tomato crown and root rot, which caused by Fusarium oxysporum f. sp. radicis-lycopersici. 【Method】The laboratory toxicity of 4 fungicides to mycelial growth, conidial germination and germ tube elongation of F. oxysporum f. sp. radicis-lycopersici were determined by mycelial growth rate and conidial germination methods. In greenhouse pot experiment, the root-irrigation method was used to treat tomato seedlings. At 7 d and 15 d after treatment, the increment of plant height and stem diameter was measured to evaluate the safety of fungicides on tomato seedlings. In the laboratory, the method of first inoculating and then applying fungicides was adopted. The control efficacy of fungicides on tomato crown and root rot at 7, 15 and 30 d after application was investigated, respectively. In field experiment, same root-irrigation method was used to investigate the incidence of tomato crown and root rot at 60, 90 and 150 d after treatment and the tomato yield statistic, and to evaluate the efficacy of fungicides against the disease in field and the effect on yield of tomato.【Result】Pyraclostrobin showed high toxicity to mycelial growth, conidial germination and germ tube elongation of F. oxysporum f. sp. radicis-lycopersici, with EC50 of 0.055, 0.012 and 0.010 μg·mL -1, followed by propiconazole, EC50 was 0.058, 0.060, 0.011 μg·mL -1, respectively. The inhibitory effect of tebuconazole on mycelial growth was strong, and the toxicity of tebuconazole to conidial germination and germ tube elongation was relatively low, with EC50 of 0.075, 0.255 and 0.455 μg·mL -1, respectively. The toxicity of flusilazole to conidial germ tube elongation was high, but the toxicity of flusilazole to mycelial growth and conidial germination was low, with EC50 of 0.013, 0.078 and 0.457 μg·mL -1, respectively. Tebuconazole at 25, 50 mg a.i./plant, propiconazole at 5, 10 mg a.i./plant and flusilazole at 5, 10 mg a.i./plant significantly inhibited tomato seedling height and increased stem diameter, but pyraclostrobin at 30, 60 mg a.i./plant had no effect on tomato seedling. In greenhouse pot experiment, 30 days after treatment (DAT), pyraclostrobin had the highest control efficacy (87.12%) on this disease at 60 mg a.i./plant, followed by propiconazole 10 mg a.i./plant, the control efficacy was 82.17%, and the control efficacy of tebuconazole at 50 mg a.i./plant and flusilazole at 10 mg a.i./plant was 79.40% and 71.67%, respectively. At 90 DAT in field experiment, the best control efficacy on the disease was 90.36% by pyraclostrobin at 60 mg a.i./plant, followed by tebuconazole at 50 mg a.i./plant and propiconazole at 10 mg a.i./plant, which was 84.20% and 82.55%, respectively. The lowest one was flusilazole at 5 mg a.i./plant (65.06%). At 150 DAT, the control efficacy of each treatment on the disease significantly declined, just tebuconazole at 50 mg a.i./plant was 40.40%. According to field statistics, pyraclostrobin at 60 mg a.i./plant had the highest yield in field, the increased production rate was 50.63%, and propiconazole at 5 mg a.i./plant was the lowest, with the rate of -2.61%. 【Conclusion】Pyraclostrobin, tebuconazole, propiconazole and flusilazole had similar toxicity on F. oxysporum f. sp. radicis-lycopersici mycelial growth, however, pyraclostrobin had higher toxicity on the conidial germination and germ tube elongation of the pathogen than the other three fungicides. Pyraclostrobin, propiconazole and tebuconazole could be used to control tomato crown and root rot in greenhouse. The control efficacy of pyraclostrobin at 60 mg a.i./plant was the highest, which was safe and increased production significantly. However, the dosages of propiconazole and tebuconazole should be concerned before application.

Key words: tomato crown and root rot, pyraclostrobin, triazole fungicide, toxicity, control efficacy

Table 1

Toxicity of 4 fungicides to mycelia growth of F. oxysporum f. sp. radicis-lycopersici"

杀菌剂
Fungicide
毒力回归方程
Toxicity regression equation (y=)
相关系数
Correlation coefficient
EC50
(μg·mL-1)
(95% CL)
毒力比值
Toxicity ratio
EC90
(μg·mL-1)
(95% CL)
毒力比值
Toxicity ratio
吡唑醚菌酯Pyraclostrobin 5.8470+0.6733x 0.9886 0.055 (0.040-0.076) 1.42 4.421 (2.233-8.751) 2.72
丙环唑Propiconazole 5.6961+0.5616x 0.9952 0.058 (0.046-0.073) 1.34 11.025 (7.213-16.851) 1.09
戊唑醇Tebuconazole 5.7890+0.6997x 0.9839 0.075 (0.057-0.101) 1.04 5.057 (2.181-11.723) 2.38
氟硅唑Flusilazole 5.6493+0.5855x 0.9850 0.078 (0.056-0.109) 1.00 12.023 (4.567-31.652) 1.00

Table 2

Toxicity of 4 fungicides to conidial germination of F. oxysporum f. sp. radicis-lycopersici"

杀菌剂
Fungicide
毒力回归方程
Toxicity regression equation (y=)
相关系数
Correlation coefficient
EC50
(μg·mL-1)
(95% CL)
毒力比值Toxicity ratio EC90
(μg·mL-1)
(95% CL)
毒力比值Toxicity ratio
吡唑醚菌酯Pyraclostrobin 6.7863+0.9234x 0.9894 0.012 (0.008-0.018) 38.10 0.284 (0.123-0.658) 113.52
丙环唑Propiconazole 5.6962+0.5708x 0.9884 0.060 (0.033-0.109) 7.62 10.603 (4.018-27.978) 3.21
戊唑醇Tebuconazole 5.3619+0.6097x 0.9898 0.255 (0.140-0.465) 1.79 32.239 (15.506-67.031) 1.00
氟硅唑Flusilazole 5.2939+0.8644x 0.9861 0.457 (0.276-0.756) 1.00 13.885 (6.805-28.327) 2.32

Table 3

Toxicity of 4 fungicides to tube elongation of F. oxysporum f. sp. radicis-lycopersici"

杀菌剂
Fungicide
毒力回归方程
Toxicity regression equation (y=)
相关系数
Correlation coefficient
EC50
(μg·mL-1)
(95% CL)
毒力比值Toxicity ratio EC90
(μg·mL-1)
(95% CL)
毒力比值
Toxicity ratio
吡唑醚菌酯Pyraclostrobin 6.4970+0.7440x 0.9848 0.010 (0.005-0.019) 45.50 0.513 (0.293-0.900) 22.57
丙环唑Propiconazole 6.0244+0.5246x 0.9862 0.011 (0.006-0.020) 41.36 3.091 (0.596-16.045) 3.75
氟硅唑Flusilazole 6.1709+0.6252x 0.9861 0.013 (0.007-0.027) 35.00 1.503 (0.652-3.464) 7.70
戊唑醇Tebuconazole 5.3116+0.9119x 0.9896 0.455 (0.244-0.850) 1.00 11.577 (6.722-19.939) 1.00

Fig. 1

Effect of 4 fungicides on increment of tomato plant Different letters in the same color indicate significant differences at P<0.05 level by Duncan’s new multiple range test. The same as Fig.3"

Table 4

Control efficacy of 4 fungicides against tomato crown and root rot in greenhouse"

杀菌剂
Fungicide
有效剂量
Dosage (mg a.i./plant)
施药后7 d
7 DAT (%)
施药后15 d
15 DAT (%)
施药后30 d
30 DAT (%)
吡唑醚菌酯
Pyraclostrobin
30 92.06±4.83ab 79.85±2.93cd 79.21±3.30abc
60 97.62±2.38a 94.87±2.56a 87.12±2.68a
戊唑醇
Tebuconazole
25 92.09±4.45ab 87.36±2.75abc 74.45±1.61bcd
50 97.22±2.78a 89.93±2.66ab 79.40±2.81abc
丙环唑
Propiconazole
5 81.99±2.63bc 74.91±2.88d 66.54±2.86de
10 92.67±4.13ab 90.11±2.20ab 82.17±1.84ab
氟硅唑
Flusilazole
5 79.40±2.81c 77.47±4.48d 58.82±3.02e
10 89.90±2.10abc 82.60±2.01bcd 71.67±2.96cd
清水对照Control

Table 5

Control efficacy of 4 fungicides against tomato crown and root rot in field"

杀菌剂
Fungicide
有效剂量
Dosage
(mg a.i./plant)
施药后60 d 60 DAT 施药后90 d 90 DAT 施药后150 d 150 DAT
病株率
Incidence (%)
防治效果
Control efficacy (%)
病株率
Incidence (%)
防治效果
Control efficacy (%)
病株率
Incidence (%)
防治效果
Control efficacy (%)
吡唑醚菌酯Pyraclostrobin 30 4.17±1.60bc 84.03±5.60ab 10.83±1.60cd 79.16±3.43bc 66.67±1.36b 18.11±3.54b
60 1.67±0.96c 94.10±3.42a 5.00±0.96e 90.36±2.02a 62.50±1.60bc 23.33±2.61b
戊唑醇
Tebuconazole
25 3.33±1.36bc 85.76±6.95ab 14.17±1.60bc 72.78±3.56cd 57.50±2.50c 29.21±4.91ab
50 2.50±0.83c 89.14±3.72a 8.33±0.96de 84.20±1.45ab 48.33±3.19d 40.40±5.50a
丙环唑
Propiconazole
5 7.50±0.83b 69.59±3.28b 16.67±1.36b 68.32±2.02d 66.67±3.00b 17.99±5.47b
10 4.17±0.83bc 82.19±5.22ab 9.17±1.60de 82.55±2.90ab 58.33±1.67c 28.55±1.33ab
氟硅唑
Flusilazole
5 5.83±1.60bc 76.44±6.73ab 18.33±0.96b 65.06±1.32d 66.67±3.04b 18.23±4.10b
10 4.17±2.10bc 83.93±6.83ab 14.17±1.59bc 72.69±3.80cd 64.17±2.85bc 21.32±3.60b
清水对照Control 25.00±2.15a 52.50±2.09a 81.67±2.15a

Fig. 2

Accumulative incidence of tomato crown and root rot after 4 fungicides treatment in field"

Fig. 3

Effect of 4 fungicides treatment on tomato yield"

[1] BENAOUALI H, HAMINI-KADAR N, BOURAS A, BENICHOU S L, KIHAL M, HENNI E . Isolation, pathogenicity test and physicochemical studies of Fusarium oxysporum f. sp. radicis lycopersici. Advances in Environmental Biology, 2014,8(810):36-49.
[2] JONES J B, JONES J P, STALL R E, ZITTER T A . Compendium of tomato disease. Mycologia, 1992,84(1):133.
[3] SZCZECHURA W, STANIASZEK M, HABDAS H . Fusarium oxysporum f. sp. radicis-lycopersici-the cause of Fusarium crown and root rot in tomato cultivation. Journal of Plant Protection Research, 2013,53(2):172-176.
[4] 中国农药信息网. .
China Pesticide Information Network. .(in Chinese)
[5] ROWE R C . Comparative pathogenicity and host ranges of Fusarium oxysporum isolates causing crown and root rot of greenhouse and field-grown tomatoes in North America and Japan. Phytopathology, 1980,70(12):1143-1148.
doi: 10.1094/Phyto-70-1143
[6] MENZIES J G, KOCH C, SEYWERD F . Additions to the host range of Fusarium oxysporum f. sp. radicis-lycopersici. Plant Disease, 1990,74(8):569-572.
[7] 耿丽华, 李常保, 迟胜起, 王丽君, 柴敏 . 番茄颈腐根腐病病原鉴定及不同条件对其生长的影响. 植物病理学报, 2012,42(5):449-455.
doi: 10.3969/j.issn.0412-0914.2012.05.001
GENG L H, LI C B, CHI S Q, WANG L J, CHAI M . Identification of the pathogen causing Fusarium crown and root rot of tomato and its growth affecting factors. Acta Phytopathologica Sinica, 2012,42(5):449-455. (in Chinese)
doi: 10.3969/j.issn.0412-0914.2012.05.001
[8] 左文静, 主艳飞, 庄占兴, 崔蕊蕊, 郭雯婷, 刘钰, 范金勇 . 吡唑醚菌酯研究开发现状与展望. 世界农药, 2017,39(1):22-25.
ZUO W J, ZHU Y F, ZHUANG Z X, CUI R R, GUO W T, LIU Y, FAN J Y . Research status and prospects of pyraclostrobin. World Pesticides, 2017,39(1):22-25. (in Chinese)
[9] 杨丽娟, 柏亚罗 . 甲氧基丙烯酸酯类杀菌剂——吡唑醚菌酯. 现代农药, 2012,11(4):46-50.
doi: 10.3969/j.issn.1671-5284.2012.04.013
YANG L J, BAI Y L . Strobilurin fungicide——pyraclostrobin. Modern Agrochemicals, 2012,11(4):46-50. (in Chinese)
doi: 10.3969/j.issn.1671-5284.2012.04.013
[10] CHEN Y, ZHANG A F, GAO T C, ZHANG Y, WANG W X, DING K J, CHEN L, SUN Z, FANG X Z, ZHOU M G . Integrated use of pyraclostrobin and epoxiconazole for the control of Fusarium head blight of wheat in Anhui Province of China. Plant Disease, 2012,96(10):1495-1500.
doi: 10.1094/PDIS-01-12-0099-RE
[11] 管磊 . 防治花生土传真菌病害种子处理药剂的筛选[D]. 泰安: 山东农业大学, 2015.
GUAN L . Screening for controlling peanut soilbrone fungal diseases on peanut by seed-coating[D]. Taian: Shandong Agriculture University, 2015. ( in Chinese)
[12] 吴祥, 姚克兵, 吉沐祥, 陈宏州, 杨敬辉, 李金凤, 王莉莉 . 句容地区草莓枯萎病病原菌的分离鉴定及田间防治. 江苏农业学报, 2015,31(4):764-770.
doi: 10.3969/j.issn.1000-4440.2015.04.009
WU X, YAO K B, JI M X, CHEN H Z, YANG J H, LI J F, WANG L L . Isolation and identification and field control of strawberry fusarium wilt in Jurong, Jiangsu province. Jiangsu Journal of Agricultural Sciences, 2015,31(4):764-770. (in Chinese)
doi: 10.3969/j.issn.1000-4440.2015.04.009
[13] 李梦姣, 王振军, 刘红彦 . 8种杀菌剂对芝麻尖孢镰刀菌的室内毒力测定. 安徽农业科学, 2014,42(16):5010-5011.
doi: 10.3969/j.issn.0517-6611.2014.16.024
LI M J, WANG Z J, LIU H Y . Toxicity test of eight fungicides to Fusarium oxysporum in laboratory. Journal of Anhui Agricultural Sciences, 2014,42(16):5010-5011. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2014.16.024
[14] JL M X, YAO K B, LI G P, WU X, CHEN H Z, ZHUANG Y Q . Control effects of Bacillus subtilis DJ-6 and pyraclostrobin alone and in combination against Fusarium oxysporum. Agricultural Science and Technology, 2014, 15(11):2020-2025.
[15] 周子燕, 李昌春, 高同春, 檀根甲 . 三唑类杀菌剂的研究进展. 安徽农业科学, 2008,36(27):11842-11844.
ZHOU Z Y, LI C C, GAO T C, TAN G J . Research progress of triazole fungicides. Journal of Anhui Agricultural Sciences, 2008,36(27):11842-11844. (in Chinese)
[16] SUN H Y, ZHU Y F, LIU Y Y, DENG Y Y, LI W, ZHANG A X, CHEN H G . Evaluation of tebuconazole for the management of Fusarium head blight in China. Australasian Plant Pathology, 2014,43(6):631-638.
doi: 10.1007/s13313-014-0309-4
[17] 陈志谊, 任海英, 刘永锋, 许志刚 . 戊唑醇和枯草芽孢杆菌协同作用防治蚕豆枯萎病及增效机理初探. 农药学学报, 2002,4(4):40-44.
doi: 10.3321/j.issn:1008-7303.2002.04.008
CHEN Z Y, REN H Y, LIU Y F, XU Z G . Synergism between tebuconazole and Bacillus subtilis against faba bean Fusarium wilt and mechanism of increasing effect. Chinese Journal of Pesticide Science, 2002,4(4):40-44. (in Chinese)
doi: 10.3321/j.issn:1008-7303.2002.04.008
[18] BALMAS V, DELOGU G, SPOSITO S, RAU D, MIGHELI Q . Use of a complexation of tebuconazole with beta-cyclodextrin for controlling foot and crown rot of durum wheat incited by Fusarium culmorum. Journal of Agricultural and Food Chemistry, 2006,54(2):480-484.
doi: 10.1021/jf0523014 pmid: 16417308
[19] 王翠霞, 纪莉景, 栗秋生, 李聪聪, 孔令晓 . 西瓜枯萎病药剂筛选及其防效研究. 北方园艺, 2013(13):154-157.
WANG C X, JI L J, LI Q S, LI C C, KONG L X . Study on screening of fungicide and control effect of Fusarium wilt in watermelon. Northern Horticulture, 2013(13):154-157. (in Chinese)
[20] 范怀峰 . 山东番茄土传病害调查与化学防治技术研究[D]. 泰安: 山东农业大学, 2014.
FAN H F . Investigation and chemical control on tomato soil-borne diseases techniques in Shandong province[D]. Taian: Shandong Agriculture University, 2014. ( in Chinese)
[21] 王拱辰, 刘文军, 陈辉珍 . 镰孢属李瑟组研究——促进李瑟组产孢的VBC培养基. 浙江农业大学学报, 1995,21(4):353-356.
WANG G C, LIU W J, CHEN H Z . Studies on the section Liseola of Fusarium-The VBC medium for promoting sporulation of section Liseola. Journal of Zhejiang Agricultural University, 1995,21(4):353-356. (in Chinese)
[22] 孙广宇, 宗兆锋 . 植物病理学实验技术. 北京: 中国农业出版社, 2002: 139-146.
SUN G Y, ZONG Z F. Plant Pathology Experiment Technology. Beijing: China Agriculture Press, 2002: 139-146. (in Chinese)
[23] D’ENFERT C . Fungal spore germination: Insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genetics and Biology, 1997,21(2):163-172.
[24] YANAGITA T, YAMAGISHI S . Comparative and quantitative studies of fungitoxicity against fungal spores and mycelia. Applied Microbiology, 1958,6(6):375-381.
doi: 10.1016/S0303-8467(97)82466-3 pmid: 13595645
[25] 陈雨, 张爱芳, 夏本勇, 王文相 . 吡唑醚菌酯对大豆炭疽病防效及保健增产作用. 农药, 2011,50(9):697-699.
CHEN Y, ZHANG A F, XIA B Y, WANG W X . Efficacy of pyraclostrobin in controlling soybean anthracnose and their effects on the health protection and yield increase. Agrochemicals, 2011,50(9):697-699. (in Chinese)
[26] 陈彦, 刘长远, 王晓红, 孙柏欣. 纪明山, 赵奎华, 苗则彦, 梁春浩 . 辣椒根腐病化学防治田间试验. 植物保护, 2008,34(6):150-152.
doi: 10.3969/j.issn.0529-1542.2008.06.041
CHEN Y, LIU C Y, WANG X H, SUN B X, JI M S, ZHAO K H, MIAO Z Y, LIANG C H . Field experiment on chemical control of pepper root rot. Plant Protection, 2008,34(6):150-152. (in Chinese)
doi: 10.3969/j.issn.0529-1542.2008.06.041
[27] 毕秋艳, 马志强, 韩秀英, 张小风, 王文桥, 赵建江 . 5种种衣剂防治小麦主要土传病害研究. 植物保护, 2014,40(4):171-176.
doi: 10.3969/j.issn.0529-1542.2014.04.035
BI Q Y, MA Z Q, HAN X Y, ZHANG X F, WANG W Q, ZHAO J J . Control effect of five kinds of seed coating formulations on soil-borne diseases in wheat. Plant Protection, 2014,40(4):171-176. (in Chinese)
doi: 10.3969/j.issn.0529-1542.2014.04.035
[28] ZHANG F Z, WANG L, ZHOU L, WU D, PAN H J, PAN C P . Residue dynamics of pyraclostrobin in peanut and field soil by QuEChERS and LC-MS/MS. Ecotoxicology and Environmental Safety, 2012,78:116-122.
doi: 10.1016/j.ecoenv.2011.11.003 pmid: 22153304
[29] 崔滢, 王晓环, 姚加加, 黄安香 . 丙环唑土壤降解影响因素研究. 广州化工, 2015,43(9):115-117, 138.
doi: 10.3969/j.issn.1001-9677.2015.09.043
CUI Y, WANG X H, YAO J J, HUANG A X . Degradation of propiconazol in soil and its affecting factors. Guangzhou Chemical Industry, 2015,43(9):115-117, 138. (in Chinese)
doi: 10.3969/j.issn.1001-9677.2015.09.043
[30] 王春伟, 王燕, 许允成, 崔丽丽, 高洁 . SPE-HPLC-MS/MS法测定人参及土壤中氟硅唑的残留及风险评估. 华南农业大学学报, 2014,35(6):58-62.
WANG C W, WANG Y, XU Y C, CUI L L, GAO J . Residue determination by SPE-HPLC-MS/MS and risk assessment of flusilazole in the ginseng and soil. Journal of South China Agricultural University, 2014,35(6):58-62. (in Chinese)
[31] 丁蕊艳 . 戊唑醇在苹果、水稻及土壤上的残留动态研究[D]. 济南: 山东大学, 2012.
DING R Y . Study on dynamics of tebuconazole residues in apple, rice and soil[D]. Ji’nan: Shandong University, 2012. ( in Chinese)
[32] Fungicide Resistance Action Committee . FRAC code list: Fungicides sorted by mode of action (including FRAC Code numbering). .
[33] 范子耀, 王文桥, 孟润杰, 韩秀英, 张小风, 马志强, 刘颖超 . 吡唑醚菌酯与苯醚甲环唑混合物对茄链格孢的联合毒力及其对马铃薯产量的影响. 农药学学报, 2011,13(6):591-596.
doi: 10.3969/j.issn.1008-7303.2011.06.06
FAN Z Y, WANG W Q, MENG R J, HAN X Y, ZHANG X F, MA Z Q, LIU Y C . Joint-toxicity of mixtures of pyraclostrobin with difenoconazole against Alternaria solani and effect of their synergistic mixture on potato yield. Chinese Journal of Pesticide Science, 2011,13(6):591-596. (in Chinese)
doi: 10.3969/j.issn.1008-7303.2011.06.06
[34] 何献声 . 吡唑醚菌酯与苯醚甲环唑混剂对花生褐斑病的防治. 农药, 2014,53(9):677-679.
HE X S . Mixture of pyraclostrobin and difenoconazole against peanut leaf spot disease. Agrochemicals, 2014,53(9):677-679. (in Chinese)
[35] SPOLTI P, GUERRA D S, BADIALE-FURLONG E, PONTE E M D . Single and sequential applications of metconazole alone or in mixture with pyraclostrobin to improve Fusarium head blight control and wheat yield in Brazil. Tropical Plant Pathology, 2013,38(2):85-96.
doi: 10.1590/S1982-56762013000200001
[1] Fen LU,RunJie MENG,Jie WU,JianJiang ZHAO,Yang LI,QiuYan BI,XiuYing HAN,JingHua LI,WenQiao WANG. Monitoring of Resistance Dynamics of Phytophthora infestans to Cymoxanil and Control Efficacy Validation of Cymoxanil-Containing Fungicides Against Potato Late Blight [J]. Scientia Agricultura Sinica, 2022, 55(18): 3556-3564.
[2] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[3] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[4] CUI YiFang,ZHENG Min,DING ShuangYang,ZHU Kui. Advances of Biosynthesis and Toxicity of Cereulide Produced by Emetic Bacillus cereus [J]. Scientia Agricultura Sinica, 2021, 54(12): 2666-2674.
[5] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[6] YANG Jun,CHU PinPin,SONG Shuai,CAI RuJian,YANG DongXia,BIAN ZhiBiao,GOU HongChao,LI Yan,JIANG ZhiYong,LI ChunLing,YAN He. Construction of lpxM Gene Deletion Strain of Haemophilus parasuis and It's Some Biological Characteristics [J]. Scientia Agricultura Sinica, 2020, 53(16): 3394-3403.
[7] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[8] CHUAI HongYun,SHI YanXia,CHAI ALi,YANG Jie,XIE XueWen,LI BaoJu. Development of 10% Diethofencarb·Procymidone Micropowder and Its Control Efficacy to Cucumber Corynespora Leaf Spot [J]. Scientia Agricultura Sinica, 2019, 52(6): 1009-1020.
[9] CHEN Lin,WEI JiZhen,LIU Chen,NIU LinLin,ZHANG CaiHong,LIANG GeMei. Effect of Midgut Specific Binding Protein ABCC1 on Cry1Ac Toxicity Against Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3337-3345.
[10] BAI RuXia,ZENG HuiWen,FAN Qian,YIN Jie,SUI ZongMing,YUAN Ling. Effects of Ceriporia lacerata on Gummy Stem Blight Control, Growth Promotion and Yield Increase of Cucumbers [J]. Scientia Agricultura Sinica, 2019, 52(15): 2604-2615.
[11] Bo LIU,QianQian CHEN,JiePing WANG,ChuanQing RUAN,YanPing CHEN,JiangPing XIA,JianMei CHE,Zheng CHEN,ZhiZhen PAN,Xiao WEN,YuJing ZHU,HaiFeng ZHANG,XueFang ZHENG. Proposition, Development and Application of the Integrated Microbiome Agent (IMA) [J]. Scientia Agricultura Sinica, 2019, 52(14): 2450-2467.
[12] HE LiFei, CHEN LeLe, XIAO Bin, ZHAO ShiFeng, LI XiuHuan, MU Wei, LIU Feng. Establishment of Sensitivity Baseline and Evaluation of Field Control Efficacy of Fludioxonil Against Fulvia fulva [J]. Scientia Agricultura Sinica, 2018, 51(8): 1475-1483.
[13] LU Fen, ZHAO JianJiang, LIU XiaoYun, MENG RunJie, WU Jie, HAN XiuYing, WANG WenQiao. Monitoring of Resistance of Phytophthora infestans on Potato to Metalaxyl and the Control Efficacy of Alternative Fungicides [J]. Scientia Agricultura Sinica, 2018, 51(14): 2700-2710.
[14] HUANG XuePing, SONG YuFei, LUO Jian, ZHAO ShiFeng, MU Wei, LIU Feng. Sensitivity of Sclerotinia sclerotiorum to Fluopyram and Evaluation of Its Application Potential in Controlling Sclerotinia Stem Rot [J]. Scientia Agricultura Sinica, 2018, 51(14): 2711-2718.
[15] GAO YangYang, HE LiFei, LI BeiXing, LIN Jin, MU Wei, LIU Feng. Identification of the Pathogen Causing Pepper Anthracnose in Shandong Province and Screening of Highly Effective Fungicides [J]. Scientia Agricultura Sinica, 2017, 50(8): 1452-1464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!