Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (14): 2450-2467.doi: 10.3864/j.issn.0578-1752.2019.14.006

• PLANT PROTECTION • Previous Articles     Next Articles

Proposition, Development and Application of the Integrated Microbiome Agent (IMA)

Bo LIU1,QianQian CHEN1,JiePing WANG1,ChuanQing RUAN1,YanPing CHEN1,JiangPing XIA2,JianMei CHE1,Zheng CHEN1,ZhiZhen PAN1,Xiao WEN2,YuJing ZHU1,HaiFeng ZHANG1,XueFang ZHENG1   

  1. 1Agricultural Bioresources Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003
    2Xiamen Jiangping Biology Substrate Technology Co. Ltd., Xiamen 361009, Fujian
  • Received:2019-03-19 Accepted:2019-05-09 Online:2019-07-16 Published:2019-07-26

Abstract:

【Objective】Using microbial fermentation bed as fermentation tank, pig manure nitrogen was continuously added to achieve aerobic fermentation in medium temperature. Microbiome with high bacterial content identified by metagenomic technology was named as integrated microbiome. Integrated microbiome agent (IMA) was produced as plant disease biocontrol agent.【Method】The production process is as follows: material preparation→fermentation→nitrogen feeding→aerobic fermentation control→product processing→product packaging, etc. The fully manufacturing processes of IMAs were as follows: the litters consisting of soybean cake powders (30%) and Pleurotus eryngii mushroom substrates (70%) were added onto the pig microbial fermentation bed that had been used for more than one year with 10 cm thick; the aerobic fermentation was conducted for 20 days by ploughing the litters mixing with pig manures one time per day; then, the upper 20 cm litters were removed to produce IMAs by drying, crushing, screening and packaging.【Result】The physicochemical properties of the IMA products were moisture content 29.74%, pH 7.56, organic matter content 44.46%, total nitrogen content 2.23%, humic acid content 11.20%, crude fiber content 14.06%, and the amount of bacteria was 145×10 8cfu/g. The results of metagenomic determination showed that the average number of the short sequences (reads) was 99 701.75 in the IMA samples, and the IMA samples contained 39 phyla, 96 classes, 189 orders, 383 families, 786 genera, and 1 281 species of bacteria per gram. Among bacteria, 46 Bacillus-like species were detected, and 9 species were the new records in China, namely: (1) Bacillus aerophilus, (2) Bacillus eiseniae, (3) Bacillus filamentosus, (4) Bacillus kochii, (5) Bacillus rhizosphaerae, (6) Lysinibacillus macroides, (7) Oceanobacillus caeni, (8) Ornithinibacillus scapharcae, (9) Virgibacillus oceani. Importantly, no bacterial pathogen of pig was found in the IMA products. The total content of the cultural Bacillus-like species was 2.062×10 8cfu/g, and they accounted for 1.42% of total bacterial abundance in the metagenomic data. Therefore, the total amount of effective bacteria was estimated to be 145×10 8cfu/g in the IMA products based on the cultural Bacillus-like species content and total abundance of metagenomic detecting. The germination rate of mung bean in the IMA group was 96.67%, which was not significantly different from that in the clear water control group (P>0.05), but the radicle length was 58.08% higher than that in the control group. When the seedling-raising substrate was mixed with 5%-10% of IMAs, the emergence rate and plant height of tomato were increased by 3.0% and 25.1%, respectively, and the corrected control efficacy on tomato bacterial wilt was 79.41%. According to the national quality standards for the bio-organic fertilizers (NY884-2012), those of the IMA products were initially set as followings: organic matter content≥40%, moisture content≤30%, pH 5.5-7.5, fecal coliform count≤100 cfu/g, mortality of ascarid egg>95%, expiry date>6 months; The contents of heavy metals: As<15 mg·kg -1, Cd≤15 mg·kg -1, Pb ≤15 mg·kg -1, Cr≤15 mg·kg -1, and Hg≤15 mg·kg -1; The amount of living bacteria was adjusted to the total living bacteria amount≥30×10 8cfu/g, Bacillus-like species amount≥2×10 8cfu/g.【Conclusion】The concept and product technical standard of the integrated microbiome agents (IMAs) were proposed. The IMA can promote the growth of seed root and have a good control efficacy on tomato bacterial wilt.

Key words: integrated microbiome agent (IMA), bio-organic fertilizer, mung bean, germination rate, radicle length, growth rate, bacterial wilt, control efficacy

Fig. 1

Production process of the integrated microbiome agent"

Table 1

Nutrient components analysis of the integrated microbiome agent"

样品序号
Sample number
水分含量
Water content (%)
pH 有机质
Organic material (%)
全氮
Total nitrogen (%)
腐殖酸
Humic acid (%)
粗纤维
Coarse fiber (%)
g1 31.60 9.20 45.30 2.42 11.10 11.40
g2 27.60 7.10 38.90 2.31 9.31 11.30
g3 27.70 6.30 45.90 2.00 9.88 17.80
g4 33.60 6.20 45.10 2.10 11.40 14.80
g5 31.40 9.50 42.20 2.08 12.70 12.80
g6 28.70 8.10 45.30 2.62 12.90 13.00
g7 27.60 6.50 48.50 2.09 11.10 17.30
平均值Average 29.74 7.56 44.46 2.23 11.20 14.06

Table 2

Identification of Bacillus-like species in the product of the integrated microbiome agent"

菌落编号
Colony number
菌株编号
Strain number
标准菌株学名
Name of Bacillus-like species
16S rDNA相似度
16S rDNA similarity (%)
1. FJAT-46225 [1] 芽孢杆菌Bacillus sp. 97.13
2. FJAT-46301 [2] 嗜气芽孢杆菌Bacillus aerophilus 28KT 100.00
3. FJAT-46217 100.00
4. FJAT-46253 [3] 高地芽孢杆菌Bacillus altitudinis 41KF2bT 100.00
5. FJAT-46318 [4] 解淀粉芽孢杆菌Bacillus amyloliquefaciens FZB42T 99.72
6. FJAT-46213 [5] 蜡样芽孢杆菌Bacillus cereus ATCC 14579T 99.70
7. FJAT-46201 99.64
8. FJAT-46307 [6] 阿氏芽孢杆菌Bacillus aryabhattai B8W22T 100.00
9. FJAT-46281 97.89
10. FJAT-46278 100.00
11. FJAT-46272 100.00
12. FJAT-46223 100.00
13. FJAT-46186 99.86
14. FJAT-46270 [7] 克劳氏芽孢杆菌Bacillus clausii DSM 8716T 99.50
15. FJAT-46194 99.20
菌落编号
Colony number
菌株编号
Strain number
标准菌株学名
Name of Bacillus-like species
16S rDNA相似度
16S rDNA similarity (%)
16. FJAT-46263 [8] 蚯蚓芽孢杆菌Bacillus eiseniae A1-2T 99.58
17. FJAT-46178 99.72
18. FJAT-46289 [9] 丝状芽孢杆菌Bacillus filamentosus SGD-14T 100.00
19. FJAT-46204 100.00
20. FJAT-46297 [10] 柯赫芽孢杆菌Bacillus kochii WCC 4582T 99.93
21. FJAT-46258 99.79
22. FJAT-46246 100.00
23. FJAT-46230 99.65
24. FJAT-46221 99.65
25. FJAT-46208 99.72
26. FJAT-46202 99.86
27. FJAT-46176 98.86
28. FJAT-46175 99.72
29. FJAT-46313 [11] 地衣芽孢杆菌Bacillus licheniformis ATCC 14580T 99.10
30. FJAT-46312 99.30
31. FJAT-46296 99.70
32. FJAT-46271 99.37
33. FJAT-46268 99.23
34. FJAT-46266 99.37
35. FJAT-46260 99.40
36. FJAT-46244 99.72
37. FJAT-46239 99.30
38. FJAT-46237 97.70
39. FJAT-46235 99.16
40. FJAT-46233 99.37
41. FJAT-46218 98.30
42. FJAT-46215 99.65
43. FJAT-46212 97.50
44. FJAT-46203 99.93
45. FJAT-46200 99.72
46. FJAT-46196 99.79
47. FJAT-46188 99.60
48. FJAT-46182 99.70
49. FJAT-46180 99.60
50. FJAT-46173 99.23
51. FJAT-46197 [12] 甲基营养型芽孢杆菌Bacillus methylotrophicus KACC 13105T 100.00
52. FJAT-46274 [13] 根际芽孢杆菌Bacillus rhizosphaerae SC-N012T 99.09
53. FJAT-46174 [14] 沙福芽孢杆菌Bacillus safensis FO-36bT 100.00
54. FJAT-46311 [15] 索诺拉沙漠芽孢杆菌Bacillus sonorensis NBRC 101234T 99.44
55. FJAT-46255 99.30
56. FJAT-46199 99.37
57. FJAT-46177 99.44
菌落编号
Colony number
菌株编号
Strain number
标准菌株学名
Name of Bacillus-like species
16S rDNA相似度
16S rDNA similarity (%)
58. FJAT-46316 [16] 枯草芽孢杆菌茵氏亚种Bacillus subtilis subsp. inaquosorum KCTC 13429T 99.72
59. FJAT-46298 99.93
60. FJAT-46295 99.93
61. FJAT-46279 99.93
62. FJAT-46259 99.93
63. FJAT-46252 99.79
64. FJAT-46251 99.72
65. FJAT-46248 99.93
66. FJAT-46247 99.93
67. FJAT-46242 99.79
68. FJAT-46238 99.93
69. FJAT-46231 99.93
70. FJAT-46229 99.93
71. FJAT-46220 99.37
72. FJAT-46211 99.93
73. FJAT-46206 99.93
74. FJAT-46185 99.79
75. FJAT-46184 99.93
76. FJAT-46262 [17] 枯草芽孢杆菌枯草亚种Bacillus subtilis subsp. subtilis NCIB 3610T 99.93
77. FJAT-46241 99.93
78. FJAT-46234 99.93
79. FJAT-46219 99.93
80. FJAT-46214 99.93
81. FJAT-46190 99.93
82. FJAT-46179 99.93
83. FJAT-46314 [18] 特基拉芽孢杆菌Bacillus tequilensis KCTC 13622T 100.00
84. FJAT-46257 100.00
85. FJAT-46250 99.79
86. FJAT-46216 100.00
87. FJAT-46191 99.86
88. FJAT-46249 [19] 人参哈格瓦氏菌Bhargavaea ginsengige 14T 99.79
89. FJAT-46227 99.93
90. FJAT-46224 99.93
91. FJAT-46192 99.79
92. FJAT-46276 [20] 赖氨酸芽孢杆菌Lysinibacillus sp. 97.76
93. FJAT-46275 [21] 淤泥大洋芽孢杆菌Oceanobacillus caeni S-11T 99.30
94. FJAT-46254 [22] 拾蛤鸟氨酸芽孢杆菌Ornithinibacillus scapharcae TW25T 98.47
95. FJAT-46303 [23] 盐反硝化枝芽孢杆菌Virgibacillus halodenitrificans DSM10037T 99.79
96. FJAT-46195 99.86
97. FJAT-46309 [24] 海洋枝芽孢杆菌Virgibacillus oceani MY11T 98.70
98. FJAT-46232 98.30
99. FJAT-46198 98.29
100. FJAT-46222 [25] 盐湖枝芽孢杆菌Virgibacillus salinus XH-22T 98.48

Table 3

Colony forming unit of the Bacillus-like species taken from the integrated microbiome agent"

样本编号
Sample number
芽孢杆菌活菌计数Colony forming unit of Bacillus species (×107cfu/g) 平均值
Average (×107cfu/g)
重复I Rep1 重复II Rep2 重复III Rep3
g1 20 31 29 26.67
g2 23 18 22 21.00
g3 19 16 18 17.67
g4 26 18 21 21.67
g5 18 19 18 18.33
g6 21 15 19 18.33
g7 19 22 21 20.67
平均值 Average (×107cfu/g) 20.85 19.85 21.14 20.62

Table 4

Determination of bacterial microbiome for the integrated microbiome agent based on metagenome analysis"

样本
Sample
短序列
Reads
种类
OTUs
在0.97的相似度下Under the similarity of 0.97
Ace指数
Ace index
Chao指数
Chao index
测序深度指数
Coverage index
香农多样性指数
Shannon index
辛普森优势度指数
Simpson index
g1 102575 1608 1824 (1779, 1882) 1879 (1809, 1973) 0.997114 5.14 (5.13, 5.15) 0.0212 (0.0208, 0.0216)
g2 129891 1698 1922 (1875, 1981) 1973 (1902, 2068) 0.997721 5.55 (5.54, 5.55) 0.0101 (0.01, 0.0103)
g3 83279 1255 1604 (1536, 1689) 1592 (1511, 1700) 0.995845 4.68 (4.67, 4.70) 0.0252 (0.0248, 0.0255)
g4 137195 1192 1381 (1337, 1438) 1421 (1356, 1512) 0.998287 4.85 (4.85, 4.86) 0.0187 (0.0185, 0.0189)
g5 119811 1711 1997 (1942, 2067) 2047 (1966, 2153) 0.997087 5.11 (5.10, 5.12) 0.0255 (0.0251, 0.026)
g6 111290 1257 1566 (1503, 1646) 1574 (1493, 1683) 0.997232 4.96 (4.95, 4.97) 0.0153 (0.0151, 0.0155)
g7 113573 1564 1791 (1744, 1851) 1817 (1752, 1904) 0.997385 5.19 (5.17, 5.20) 0.0159 (0.0157, 0.0161)
平均值Average 99701.75 1469.29 1726.42 1757.57 0.997239 5.0686 0.0188

Fig. 2

Quantity reads of bacteria microbiome at the phylum level of the integrated microbiome agent"

Table 5

The species richness of Bacillus-like species in the integrated microbiome agent"

种名
Species name
丰度Species richness (%) 平均值
Average (%)
g1 g2 g3 g4 g5 g6 g7
[1] 穿琼脂氨芽孢杆菌 Ammoniibacillus agariperforans 0.0000 0.0015 0.0000 0.0000 0.0000 0.0162 0.0000 0.0025
[2] 兼性芽孢杆菌Amphibacillus sp. 0.0000 0.0000 0.0060 0.0160 0.0000 0.0036 0.0018 0.0039
[3] 解硫胺素芽孢杆菌Aneurinibacillus sp. 0.0000 0.0008 0.0048 0.0000 0.0000 0.0009 0.0000 0.0009
[4] 产氮芽孢杆菌Bacillus azotoformans 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[5] 草坪芽孢杆菌 Bacillus graminis 0.0010 0.0023 0.0036 0.0015 0.0008 0.0018 0.0000 0.0016
[6] 土地芽孢杆菌Bacillus humi 0.0010 0.0008 0.0084 0.0015 0.0025 0.0234 0.0009 0.0055
[7] 深层芽孢杆菌 Bacillus infernus 0.0039 0.0054 0.0144 0.0036 0.0025 0.0036 0.0343 0.0097
[8] 芽孢杆菌1 Bacillus sp.1 0.0000 0.0108 0.0000 0.0000 0.0659 0.0009 0.0009 0.0112
[9] 芽孢杆菌2 Bacillus sp.2 0.0614 0.2079 1.2836 0.4665 0.1327 0.7332 0.4033 0.4698
[10] 热乳芽孢杆菌Bacillus thermolactis 0.0010 0.0062 0.0120 0.0036 0.0025 0.0108 0.0158 0.0074
[11] 热碱芽孢杆菌CaldalkaLibacillus sp. 0.0000 0.0015 0.0000 0.0000 0.0008 0.0099 0.0018 0.0020
[12] 脱硫芽孢杆菌 Desulfuribacillus sp. 0.0088 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0014
[13] 地芽孢杆菌1 Geobacillus sp.1 0.0000 0.0054 0.0012 0.0000 0.0017 0.3603 0.0018 0.0529
[14] 嗜热嗜脂肪地芽孢杆菌Geobacillus stearothermophilus 0.0000 0.0015 0.0012 0.0029 0.0017 0.0018 0.0009 0.0014
[15] 纤细芽孢杆菌Gracilibacillus sp. 0.0029 0.0100 0.0036 0.0058 0.0017 0.3423 0.0326 0.0570
[16] 喜盐芽孢杆菌Halobacillus sp. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[17] 嗜盐盐乳芽孢杆菌 Halolactibacillus halophilus 0.0556 0.0031 0.0108 0.1844 0.0225 0.0117 0.0123 0.0429
[18] 盐乳芽孢杆菌Halothiobacillus sp. 0.0010 0.0000 0.0012 0.0146 0.0000 0.0018 0.0044 0.0033
[19] 食淀粉乳杆菌Lactobacillus amylovorus 0.1950 0.0254 0.0588 0.0722 0.0250 1.0145 0.1101 0.2144
[20] 动物乳杆菌Lactobacillus animalis 0.0010 0.0023 0.0000 0.0036 0.0000 0.0036 0.0000 0.0015
[21] 乳杆菌新种 Lactobacillus equicursoris 0.0010 0.0062 0.0000 0.0007 0.0000 0.0584 0.0044 0.0101
[22] 粘膜乳杆菌Lactobacillus mucosae 0.0000 0.0008 0.0000 0.0015 0.0000 0.0306 0.0000 0.0047
[23] 清酒乳杆菌Lactobacillus sakei 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
[24] 乳杆菌1 Lactobacillus sp.1 0.3246 0.0477 0.1465 0.4497 0.0209 0.6676 0.1330 0.2557
[25] 小鳟鱼大洋芽孢杆菌Oceanobacillus oncorhynchi 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
[26] 大洋芽孢杆菌1 Oceanobacillus sp.1 0.0000 0.0000 0.0000 0.0066 0.0000 0.0045 0.0026 0.0020
[27] 大洋芽孢杆菌2 Oceanobacillus sp.2 0.0049 0.0023 0.0024 0.0117 0.0000 0.0521 0.0070 0.0115
[28] 加利福尼亚鸟氨酸芽孢杆菌 Ornithinibacillus californiensis 0.0049 0.0154 0.0144 0.0117 0.0008 0.0279 0.0317 0.0152
[29] 鸟氨酸芽孢杆菌DX-3 Ornithinibacillus sp. DX-3 0.0019 0.0008 0.0060 0.0022 0.0025 0.0350 0.0352 0.0120
[30] 鸟氨酸芽孢杆菌GD05 Ornithinibacillus sp. GD05 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0026 0.0005
[31] 鸟氨酸芽孢杆菌HME7715 Ornithinibacillus sp. HME7715 0.0000 0.0000 0.0000 0.0000 0.0000 0.0180 0.0000 0.0026
[32] 类芽孢杆菌1 Paenibacillus sp.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 0.0009
[33] 类芽孢杆菌2 Paenibacillus sp.2 0.0078 0.0331 0.0096 0.0204 0.0150 0.0494 0.0819 0.0310
[34] 少盐芽孢杆菌1 Paucisalibacillus sp.1 0.0000 0.0000 0.0024 0.0000 0.0008 0.0009 0.0009 0.0007
[35] 少盐芽孢杆菌2 Paucisalibacillus sp.2 0.0029 0.0115 0.0060 0.0087 0.0025 0.0099 0.0123 0.0077
种名
Species name
丰度Species richness (%) 平均值
Average (%)
g1 g2 g3 g4 g5 g6 g7
[36] 少盐芽孢杆菌3 Paucisalibacillus sp.3 0.0049 0.0000 0.0072 0.0095 0.0025 0.0584 0.0088 0.0130
[37] 厚胞鲁梅尔芽孢杆菌Rummeliibacillus pycnus 0.0146 0.0062 0.0048 0.0073 0.0000 0.0045 0.0018 0.0056
[38] 森林土壤芽孢杆菌Solibacillus silvestris 0.0049 0.0000 0.0000 0.0000 0.0000 0.0009 0.0000 0.0008
[39] 硫化芽孢杆菌Sulfobacillus sp. 0.0000 0.0023 0.0024 0.0000 0.0000 0.0000 0.0018 0.0009
[40] 热芽孢杆菌1 Thermobacillus sp.1 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0114 0.0018
[41] 热芽孢杆菌2 Thermobacillus sp.2 0.0000 0.0069 0.0024 0.0000 0.0008 0.0036 0.0018 0.0022
[42] 热芽孢杆菌3 Thermobacillus sp.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[43] 热生肿块芽孢杆菌 Tuberibacillus calidus 0.0000 0.0008 0.0024 0.0029 0.0000 0.0009 0.0106 0.0025
[44] 肿块芽孢杆菌Tuberibacillus sp. 0.0000 0.0000 0.0216 0.8951 0.0000 0.0000 0.0379 0.1364
[45] 尿素芽孢杆菌Ureibacillus sp. 0.0058 0.0023 0.0000 0.0000 0.0008 0.0054 0.0141 0.0041
[46] 火山芽孢杆菌Vulcanibacillus sp. 0.0273 0.0008 0.0000 0.0153 0.0442 0.0027 0.0009 0.0130
总和Total 0.7381 0.4244 1.6377 2.2195 0.3527 3.5710 1.0278 1.4244

Table 6

Effect of the integrated microbiome agent on germination of mung bean (24 h)"

处理
Treatment
发芽率
Germination rate (%)
胚根长Radical length (RL, cm) 发芽指数Germination index (GI) 活力指数Vigor index (VI)
RL 比值Ratio GI 比值Ratio VI 比值Ratio
整合菌剂IMA 96.67±2.11a 2.64±0.77A 1.5808 57.67a 0.9885 152.25±13.29A 1.5626
清水对照CK 98.33±1.53a 1.67±0.23B 1.0000 58.34a 1.0000 97.43±10.67B 1.0000

Table 7

Effect of the integrated microbiome agent on culture of tomato seedling (30 d)"

处理组
Treatment
处理编号
Treatment number
整合菌剂含量IMA percent
(%)
番茄种苗生长状况Growth of tomato seedlings
出苗率
Emergence rate (%)
根长
Root length (cm)
株高
Plant height (cm)
茎粗
Stem diameter (cm)
高含量组
High content group
处理1 Treatment 1 30 9.04 0.70 1.50 0.70
处理2 Treatment 2 25 46.10 1.45 6.23 1.05
平均值Average 27.57c 1.08b 3.87c 0.88b
中含量组
Middle content group
处理3 Treatment 3 20 85.30 4.45 9.78 1.56
处理4 Treatment 4 15 86.03 4.85 9.67 1.45
平均值Average 85.67b 4.65a 9.73b 1.51a
低含量组
Low content group
处理5 Treatment 5 10 89.50 4.73 10.67 1.49
处理6 Treatment 6 5 88.90 4.62 11.92 1.51
平均值Average 89.20a 4.68a 11.30a 1.50a
空白对照CK 对照 CK 0 86.20b 4.68a 9.03b 1.40a

Table 8

Effect of the integrated microbiome agent on the control efficiency of tomato bacterial wilt"

处理组
Treatment
处理编号
Treatment number
整合菌剂含量
IMA percent (%)
出苗30 d后接种青枯病原菌液
Inoculation of R. solanacearum 30 days after emergence (106 cfu/mL)
10 d校正防效Corrected control efficacy of 10 d (%)
4 d后发病率
Incidence after 4 d (%)
7 d后发病率
Incidence after 7 d (%)
10 d后发病率
Incidence after 10 d (%)
高含量组
High content group
处理1 Treatment 1 30
处理2 Treatment 2 25 6.25 23.00 66.67
平均值Average 6.25b 23.00a 66.67a 17.88
中含量组
Middle content group
处理3 Treatment 3 20 6.47 13.33 32.40
处理4 Treatment 4 15 8.33 16.57 28.50
平均值Average 7.40ab 14.95b 30.45ab 62.49
低含量组
Low content group
处理5 Treatment 5 10 6.67 14.47 18.30
处理6 Treatment 6 5 6.67 13.33 15.14
平均值Average 6.67b 13.90b 16.72b 79.41
空白对照CK 对照 CK 0 11.11a 33.33a 88.89a

Fig. 3

Effect of the integrated microbiome agent on tomato plug seedling and biocontrol of bacterial wilt"

[1] 曹怡, 王超群, 徐风, 贾秀虹, 刘广学, 杨生超, 龙光强, 陈中坚, 魏富刚, 杨绍周, 福田浩三, 王璇, 蔡少青 . 中药三七质量评价半微量方法及在三七连作障碍样品分析中的应用. 中国中药杂志, 2016,41(20):3773-3781.
CAO Y, WANG C Q, XU F, JIA X H, LIU G X, YANG S C, LONG G Q, CHEN Z J, WEI F G, YANG S Z, FUKUDA K, WANG X, CAI S Q . A semimicroquality evaluation method on Panax notoginseng and its application in analysis of continuous cropping obstacles research samples. China Journal of Chinese Materia Medica, 2016,41(20):3773-3781. (in Chinese)
[2] QIN S, YEBOAH S, CAO L, ZHANG J, SHI S, LIU Y . Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield. PLoS ONE, 2017,12(5):e0175934.
doi: 10.1371/journal.pone.0175934
[3] CHELLEMI D O, ROSSKOPF E N, KOKALIS-BURELLE N . The effect of transitional organic production practices on soilborne pests of tomato in a simulated microplot study. Phytopathology, 2013,103(8):792-801.
doi: 10.1094/PHYTO-09-12-0243-R
[4] 肖春萍, 杨利民, 马锋敏 . 栽培年限对人参根际土壤微生物活性及微生物量的影响. 中国中药杂志, 2014,39(24):4740-4747.
XIAO C P, YANG L M, MA F M . Effects of growing time on Panax ginseng rhizosphere soil microbial activity and biomass. China Journal of Chinese Materia Medica, 2014,39(24):4740-4747. (in Chinese)
[5] LUAN F G, ZHANG L L, LOU Y Y, WANG L, LIU Y N. ZHANG H Y . Analysis of microbial diversity and niche in rhizosphere soil of healthy and diseased cotton at the flowering stage in southern Xinjiang. Genetics and Molecular Research, 2015,14(1):1602-1611.
doi: 10.4238/2015.March.6.7
[6] 茹瑞红, 李烜桢, 黄晓书, 高峰, 王建明, 李本银, 张重义 . 食用菌菌渣缓解地黄连作障碍的研究. 中国中药杂志, 2014,39(16):3036-3041.
RU R H, LI X Z, HUNAG X S, GAO F, WANG J M, LI B Y, ZHANG Z Y . Effect of substrate of edible mushroom on continuously cropping obstacle of Rehmannia glutinosa. China Journal of Chinese Materia Medica, 2014,39(16):3036-3041. (in Chinese)
[7] 张重义, 李改玲, 牛苗苗, 范华敏, 李娟, 林文雄 . 连作地黄的生理生态响应与品质评价. 中国中药杂志, 2011,36(9):1133-1136.
ZHANG Z Y, LI G L, NIU M M, FAN H M, LI J, LIN W X . Responses of physiological ecology and quality evaluation of Rehmannia gltinosa in continuous cropping. China Journal of Chinese Materia Medica, 2011,36(9):1133-1136. (in Chinese)
[8] 尹文佳, 杜家方, 李娟, 张重义 . 连作对地黄生长的障碍效应及机制研究. 中国中药杂志, 2009,34(1):18-21.
YIN W J, DU J F, LI J, ZHANG Z Y . Effects of continuous cropping obstacle on growth of Rehmannia glutinosa. China Journal of Chinese Materia Medica, 2009,34(1):18-21. (in Chinese)
[9] 吴凤芝, 李敏, 曹鹏, 马亚飞, 王丽丽 . 小麦根系分泌物对黄瓜生长及土壤真菌群落结构的影响. 应用生态学报, 2014,25(10):2861-2867.
WU F Z, LI M, CAO P, MA Y F, WANG L L . Effects of wheat root exudates on cucumber growth and soil fungal community structure. Chinese Journal of Applied Ecology, 2014,25(10):2861-2867. (in Chinese)
[10] 赵娟, 薛泉宏, 杜军志, 陈姣姣 . 两株镰孢菌的鉴定及其粗毒素对甜瓜幼苗的化感作用. 应用生态学报, 2013,24(1):142-148.
ZHAO J, XUE Q H, DU J Z, CHEN J J . Identification of two Fusarium isolates and their crude toxin allelopathic effect on Cucumis melo seedlings. Chinese Journal of Applied Ecology, 2013,24(1):142-148. (in Chinese)
[11] 陈可, 孙吉庆, 刘润进, 李敏 . 丛枝菌根真菌对西瓜嫁接苗生长和根系防御性酶活性的影响. 应用生态学报, 2013,24(1):135-141.
CHEN K, SUN J Q, LIU R J, LI M . Effects of arbuscular mycorrhizal fungus on the seedling growth of grafted watermelon and the defensive enzyme activities in the seedling roots. Chinese Journal of Applied Ecology, 2013,24(1):135-141. (in Chinese)
[12] 孟品品, 刘星, 邱慧珍, 张文明, 张春红, 王蒂, 张俊莲, 沈其荣 . 连作马铃薯根际土壤真菌种群结构及其生物效应. 应用生态学报, 2012,23(11):3079-3086.
MENG P P, LIU X, QIU H Z, ZHANG W M, ZHANG C H, WANG D, ZHANG J L, SHEN Q R . Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. Chinese Journal of Applied Ecology, 2012,23(11):3079-3086. (in Chinese)
[13] 张新慧, 张恩和, 王惠珍, 郎多勇 . 连作对当归生长的障碍效应及机制研究. 中国中药杂志, 2010,35(10):1231-1234.
ZHANG X H, ZHANG E H, WANG H Z, LANG D Y . Effects of continuous cropping obstacle on growth of Angelica sinensis and its mechanism. China Journal of Chinese Materia Medica, 2010,35(10):1231-1234. (in Chinese)
[14] ZHANG X, LI X, ZHANG C, LI X, ZHANG H . Ecological risk of long-term chlorimuron-ethyl application to soil microbial community: an in situ investigation in a continuously cropped soybean field in Northeast China. Environmental Science and Pollution Research, 2011,18(3):407-415.
doi: 10.1007/s11356-010-0381-4
[15] 银福军, 瞿显友, 曾纬, 舒抒 . 黄连不同部位水浸液自毒作用研究. 中药材, 2009,32(3):329-330.
YIN F J, QU X Y, ZENG W, SHU S . Study on the autointoxication of aquatic extracts from different parts of Coptis chinensis. Journal of Chinese Medicinal Materials, 2009,32(3):329-330. (in Chinese)
[16] 张淑香, 高子勤 . 连作障碍与根际微生态研究Ⅱ. 根系分泌物与酚酸物质. 应用生态学报, 2000,11(1):152-156.
ZHANG S X, GAO Z Q . Continuous cropping obstacle and rhizospheric microecology. II. Root exudates and phenolic acids. Chinese Journal of Applied Ecology, 2000,11(1):152-156. (in Chinese)
[17] LI T, LIU T, ZHENG C, KANG C, YANG Z, YAO X, SONG F, ZHANG R, WANG X, XU N, ZHANG C, LI W, LI S . Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses. PLoS ONE, 2017,12(3):e0173923.
[18] YANG H, LI J, XIAO Y, GU Y, LIU H, LIANG Y, LIU X, HU J, MENG D, YIN H . An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease. Frontiers in Microbiology, 2017,8:2179.
doi: 10.3389/fmicb.2017.02179
[19] NOVELLO G, GAMALERO E, BONA E, BOATTI L, MIGNONE F, MASSA N, CESARO P, LINGUA G, BERTA G . The rhizosphere bacterial microbiota of Vitis vinifera cv. Pinot Noir in an integrated pest management vineyard. Frontiers in Microbiology, 2017,8:1528.
[20] KALIVAS A, GANOPOULOS I, PSOMOPOULOS F, GRIGORIADIS I, XANTHOPOULOU A, HATZIGIANNAKIS E, OSATHANUNKUL M, TSAFTARIS A, MADESIS P . Comparative metagenomics reveals alterations in the soil bacterial community driven by N-fertilizer and amino 16® application in lettuce. Genomics Data, 2017,14:14-17.
doi: 10.1016/j.gdata.2017.07.013
[21] SHIVAJI S, CHATURVEDI P, SURESH K, REDDY G S, DUTT C B, WAINWRIGHT M, NARLIKAR J V, BHARGAVA P M . Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. International Journal of Systematic and Evolutionary Microbiology, 2006,56(7):1465-1473.
[22] HONG S W, PARK J M, KIM S J, CHUNG K S . Bacillus eiseniae sp. nov., a swarming, moderately halotolerant bacterium isolated from the intestinal tract of an earthworm( Eisenia fetida L.). International Journal of Systematic and Evolutionary Microbiology, 2012,62(9):2077-2083.
[23] SONALKAR V V, MAWLANKAR R, VENKATA RAMANA V, JOSEPH N, SHOUCHE Y S, DASTAGER S G . Bacillus filamentosus sp. nov., isolated from sediment sample. Antonie Van Leeuwenhoek, 2015,107(2):433-441.
[24] SEILER H, SCHMIDT V, WENNING M, SCHERER S . Bacillus kochii sp. nov., isolated from foods and a pharmaceuticals manufacturing site. International Journal of Systematic and Evolutionary Microbiology, 2012,62(5):1092-1097.
[25] MADHAIYAN M, POONGUZHALI S, LEE J S, LEE K C, HARI K . Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. Antonie Van Leeuwenhoek, 2011,100(3):437-444.
[26] COOREVITS A, DINSDALE A E, HEYRMAN J, SCHUMANN P, VAN LANDSCHOOT A, LOGAN NA, DE VOS P . Lysinibacillus macroides sp. nov., nom. rev. International Journal of Systematic and Evolutionary Microbiology, 2012,62(5):1121-1127.
[27] NAM J H, BAE W, LEE D H . Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated wastewater treatment system in Korea. International Journal of Systematic and Evolutionary Microbiology, 2008,58(5):1109-1113.
[28] SHIN N R, WHON T W, KIM M S, ROH S W, JUNG M J, KIM Y O, BAE J W . Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. Antonie Van Leeuwenhoek, 2012,101(1):147-154.
[29] YIN X, YANG Y, WANG S, ZHANG G . Virgibacillus oceani sp. nov. isolated from ocean sediment. International Journal of Systematic and Evolutionary Microbiology, 2015,65(1):159-164.
[30] CARRASCO I J, MÁRQUEZ M C, VENTOSA A . Virgibacillus salinus sp. nov., a moderately halophilic bacterium from sediment of a saline lake. International Journal of Systematic and Evolutionary Microbiology, 2009,59(12):3068-3073.
[31] CHEN Y G, GU F L, LI J H, XU F, HE S Z, FANG Y M . Bacillus vanillea sp. nov., isolated from the cured vanilla bean. Current Microbiology, 2015,70(2):235-239.
[32] HOOPER L V, GORDON J I . Commensal host-bacterial relationships in the gut. Science, 2001,292(5519):1115-1118.
doi: 10.1126/science.1058709
[33] KALLMEYER J, POCKALNY R, ADHIKARI R R, SMITH D C, D’HONDT S . Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(40):16213-16216.
doi: 10.1073/pnas.1203849109
[34] MENDES R, GARBEVA P, RAAIJMAKERS J M . The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganism. FEMS Microbiology Reviews, 2013,37(5):634-663.
doi: 10.1111/1574-6976.12028
[35] 李静, 李荣, 沈其荣, 俞萍, 余光辉 . 添加动物源氨基酸水解液研制生物有机肥. 环境科学研究, 2017,30(6):967-973.
LI J, LI R, SHEN Q R, YU P, YU G H . Development of bio-organic fertilizer by adding amino acids hydrolyzed from animal carcasses. Research of Environmental Sciences, 2017,30(6):967-973. (in Chinese)
[36] 陈智毅, 赵晓丽, 刘学铭 . 金针菇菌糠堆肥生产有机肥研究. 中国食用菌, 2012,31(4):30-31.
CHEN Z Y, ZHAO X L, LIU X M . Study on composting of organic fertilizer produced by spent mushroom substrate from Flammulina velutipes. Edible Fungi of China, 2012,31(4):30-31. (in Chinese)
[37] 张志红, 李华兴, 冯宏, 赵兰凤, 李敏清, 胡伟 . 堆肥作为微生物菌剂载体的研究. 农业环境科学学报, 2010,29(7):1382-1387.
ZHANG Z H, LI H X, FENG H, ZHAO L F, LI M Q, HU W . Compost as a carrier for microbial inoculants. Journal of Agro-Environment Science, 2010,29(7):1382-1387. (in Chinese)
[38] 李季 . 堆肥发酵接种剂及规模化生物有机肥产业化. 中国科技奖励, 2008(10):21.
LI J . Composting fermentation inoculant and industrialization of large-scale bio-organic fertilizer. China Awards for Science and Technology, 2008(10):21. (in Chinese)
[39] 张发宝, 徐培智, 唐拴虎, 陈建生, 谢开治, 黄旭 . 畜禽粪好氧堆肥产品的理化性质及生物效应. 广东农业科学, 2008(5):54-57.
ZHANG F B, XU P Z, TANG S H, CHEN J S, XIE K Z, HUANG X . Physicochemical properties and biological effects of aerobically composted livestock manure products.Guangdong Agricultural Sciences, 2008(5):54-57. (in Chinese)
[40] 田旸, 柳丽芬, 张兴文, 杨凤林, 谭伟杰 . 秸秆与污泥混合堆肥研究. 大连理工大学学报, 2003,43(6):753-758.
TIAN Y, LIU L F, ZHANG X W, YANG F L, TAN W J . Study of co-composting of sewage sludge and straw biomass. Journal of Dalian University of Technology, 2003,43(6):753-758. (in Chinese)
[41] 扎史品楚, 农传江, 王宇蕴, 徐智 . 生物有机肥的发酵工艺及应用效果研究. 环境工程, 2015,33(增刊):1011-1014, 1020.
ZHASHIPC, NONG C J, WANG Y Y, XU Z . Research of microbial organic fertilizer fermentation process and its application. Environmental Engineering, 2015,33(Suppl.):1011-1014, 1020. (in Chinese)
[42] 陈谦, 张新雄, 赵海, 官家发 . 生物有机肥中几种功能微生物的研究及应用概况. 应用与环境生物学报, 2010,16(2):294-300.
CHEN Q, ZHANG X X, ZHAO H, GUAN J F . Advance in research and application of some functional microbes in bio-organic fertilizer. Chinese Journal of Applied and Environmental Biology, 2010,16(2):294-300. (in Chinese)
[43] 张毅民, 万先凯 . 微生物菌群在生物有机肥制备中研究进展. 化学工业与工程, 2003,20(6):523-527.
ZHANG Y M, WAN X K . Progress of microorganisms in bioorganic fertilizer production. Chemical Industry and Engineering, 2003,20(6):523-527. (in Chinese)
[44] 陈倩倩, 刘波, 王阶平, 刘国红, 车建美, 陈峥, 唐建阳 . 微生物发酵床猪舍不同发酵等级垫料中大肠杆菌的分离鉴定. 中国畜牧兽医, 2017,44(1):268-274.
CHEN Q Q, LIU B, WANG J P, LIU G H, CHE J M, CHEN Z, TANG J Y . Isolation and identification of E. coli in the microbial- fermentation bed of piggery. China Animal Husbandry and Veterinary Medicine, 2017,44(1):268-274. (in Chinese)
[45] 陈星言, 邵镜颐, 吕建洲 . 龙血竭制剂对绿豆种子萌发和幼苗生长的影响. 园艺与种苗, 2016(7):86-88.
CHEN X Y, SHAO J Y, LÜ J Z . Effect ofResina draconis on germination and seedling growth of mung bean. Horticulture and Seed, 2016(7):86-88. (in Chinese)
[46] 俞家楠, 刘照斌, 吕建洲 . 肌苷对绿豆种子萌发和幼苗生长的影响. 中国农学通报, 2015,31(17):53-57.
YU J N, LIU Z B, LÜ J Z . Effects of inosine on seed germination and seedling growth of mung bean. Chinese Agricultural Science Bulletin, 2015,31(17):53-57. (in Chinese)
[47] 邢亚亮, 成月娇 . 青霉素对绿豆发芽及幼苗生长的影响. 农业技术与装备, 2013(7):66-68.
XING Y L, CHENG Y J . Effects of penicillin on seed germination and seedling growth of mung bean.Agricultural Technology and Equipment, 2013(7):66-68. (in Chinese)
[48] 高小宽, 魏淑珍 . 根际微生物对绿豆发芽率的影响. 江苏农业科学, 2010(1):106-108.
GAO X K, WEI S Z . Effects of rhizospheric microorganism on seed germination of mung bean.Jiangsu Agricultural Sciences, 2010(1):106-108. (in Chinese)
[1] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[2] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
[3] Fen LU,RunJie MENG,Jie WU,JianJiang ZHAO,Yang LI,QiuYan BI,XiuYing HAN,JingHua LI,WenQiao WANG. Monitoring of Resistance Dynamics of Phytophthora infestans to Cymoxanil and Control Efficacy Validation of Cymoxanil-Containing Fungicides Against Potato Late Blight [J]. Scientia Agricultura Sinica, 2022, 55(18): 3556-3564.
[4] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[5] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[6] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[7] CHUAI HongYun,SHI YanXia,CHAI ALi,YANG Jie,XIE XueWen,LI BaoJu. Development of 10% Diethofencarb·Procymidone Micropowder and Its Control Efficacy to Cucumber Corynespora Leaf Spot [J]. Scientia Agricultura Sinica, 2019, 52(6): 1009-1020.
[8] BAI RuXia,ZENG HuiWen,FAN Qian,YIN Jie,SUI ZongMing,YUAN Ling. Effects of Ceriporia lacerata on Gummy Stem Blight Control, Growth Promotion and Yield Increase of Cucumbers [J]. Scientia Agricultura Sinica, 2019, 52(15): 2604-2615.
[9] ZHAO TianYao, ZHANG YaHong, JIN Tao, KANG YuFan. The Changes of Protein Components and Subunits in Process of Mung Bean Germination [J]. Scientia Agricultura Sinica, 2018, 51(9): 1783-1794.
[10] HE LiFei, CHEN LeLe, XIAO Bin, ZHAO ShiFeng, LI XiuHuan, MU Wei, LIU Feng. Establishment of Sensitivity Baseline and Evaluation of Field Control Efficacy of Fludioxonil Against Fulvia fulva [J]. Scientia Agricultura Sinica, 2018, 51(8): 1475-1483.
[11] HaiChao CAO,XiuHuan LI,XiaoKun WANG,HaiXiu BAI,Wei MU,Feng LIU. Control Efficacy of Pyraclostrobin and Triazole Fungicides Against Tomato Crown and Root Rot [J]. Scientia Agricultura Sinica, 2018, 51(21): 4065-4075.
[12] ZHENG XueFang, LIU Bo, ZHU YuJing, CHEN DeJu, CHEN XiaoQiang. Heterogeneity Analysis of Ralstonia solanacearum Mutants by Tn5 Transposon Using High Performance Ion-Exchange Chromatography [J]. Scientia Agricultura Sinica, 2018, 51(2): 268-278.
[13] LU Fen, ZHAO JianJiang, LIU XiaoYun, MENG RunJie, WU Jie, HAN XiuYing, WANG WenQiao. Monitoring of Resistance of Phytophthora infestans on Potato to Metalaxyl and the Control Efficacy of Alternative Fungicides [J]. Scientia Agricultura Sinica, 2018, 51(14): 2700-2710.
[14] HUANG XuePing, SONG YuFei, LUO Jian, ZHAO ShiFeng, MU Wei, LIU Feng. Sensitivity of Sclerotinia sclerotiorum to Fluopyram and Evaluation of Its Application Potential in Controlling Sclerotinia Stem Rot [J]. Scientia Agricultura Sinica, 2018, 51(14): 2711-2718.
[15] GAO YangYang, HE LiFei, LI BeiXing, LIN Jin, MU Wei, LIU Feng. Identification of the Pathogen Causing Pepper Anthracnose in Shandong Province and Screening of Highly Effective Fungicides [J]. Scientia Agricultura Sinica, 2017, 50(8): 1452-1464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!