Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3591-3599.doi: 10.3864/j.issn.0578-1752.2018.18.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Mapping and Annotating of Bactrian Camel MHC Gene by Using the Comparative Genomic Approach

LiKang ZHI, Erdemtu(), XiWen AN, Chao WANG, Rui WANG, Huar BAO, XiuZhen WANG   

  1. College of Veterinary Medicine, Inner Mongolia Agricultural University/Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture P. R. China, Hohhot 010018
  • Received:2017-12-13 Accepted:2018-07-06 Online:2018-09-16 Published:2018-09-16

Abstract:

【Objective】The objective of this study was to locate and annotate the major histocompatibility complex (MHC) gene sequence of Bactrian camel in order to provide scientific basis for further study on Bactrian camel MHC gene. 【Method】This study used comparative genomics method. The human MHC (HLA) gene coding sequence and bovine MHC (BoLA) gene coding sequence were extracted, compared with Bactrian camel transcripts on the gene sequences through blastn, to identify the scaffolds with higher similarity. By analyzing the sequence of HLA and BoLA gene sequences on their positions on these scaffolds, multiple pieces of scaffolds were spliced to obtain the Pseudo chromosome of Bactrian camel MHC. Then, the human MHC (HLA) gene coding sequence and bovine MHC (BoLA) gene coding sequence were extracted and analyzed with the spliced scaffolds of Bactrian camels through the genomic collinearity analysis. The selected scaffolds could be judged whether or not it was accurate, based on the linear relationship between Pseudo chromosome established by lastz and HLA and BoLA genome sequences; then by analyzing the linear relationship between MHC genes in the two species, MHC gene sequences were extracted from Bactrian camel genomes, and these sequences were genetically annotated; finally, according to the obtained Bactrian camel MHC gene, the phylogenetic tree was drawn to study the evolutionary relationship between their genes. 【Result】By comparing the HLA and BoLA gene coding sequences with the Bactrian camel transcripts through blastn, three scaffolds with high similarity were identified, namely NW_011511766.1 (full-length 4.1M), NW_011515227.1 (full-length 1.2 M) and NW_011514613.1 (15K in total length), and spliced to obtain Bactrian camel MHC Pseudo chromosome; By using the lastz colinear analysis, the HLA gene sequence and the BoLA gene sequence were identified and compared with MHC gene of the Bactrian camel to obtain the colinear region. It was consistent with the spliced Pseudo chromosome, which proved that the selected scaffolds was accurate. It was found that Class-I and Class-III genes were distributed on NW_011515227.1, while Class-II genes were distributed on NW_011511766.1 and NW_011514613.1. Further analysis revealed that Class-II genes were mainly distributed in NW_011511766.1 3.5 to 4.1M position; the sequences that existed in the collinear region were extracted and subjected to blat analysis, namely aligned with the coding sequence of the MHC gene on the Bactrian camel. Results reveal that a total of 24 genes highly similar to bovine BoLA gene were identified in Bactrian camel genome, including 1 of class I gene, 10 of class II gene and 13 of class III gene. The 24 MHC genes of Bactrian camels were annotated and phylogenetic trees were mapped. The results showed that the annotated Class-I and Class-II genes were on the same branch. 【Conclusion】The method of locating and annotating the MHC gene sequence in Bactrian camel was established by comparative genomics. The MHC gene sequence of Bactrian camel was mapped to three scaffolds, 24 MHC genes were found and annotated, and the Pseudo chromosome of the MHC gene of the Bactrian camel was drawn, which laid the foundation for further study of Bactrian camel MHC gene.

Key words: Bactrian camel, MHC, CBLA, BoLA, HLA, comparative genomic

Table 1

Gene sequences and data sources of Bactrian camel, human, bovine"

名称
Name
来源
Source
网址
URL
家养双峰驼参考基因组
Reference genome of domestic Bactrian camels

NCBI
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/767/855/GCF_000767855.1_Ca_bactrianus_MBC_1.0/GCF_000767855.1_Ca_bactrianus_MBC_1.0_genomic.fna.gz
人类HLA编码序列
Human HLA coding sequence

ensemble

ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapiens/cdna/
人类HLA全基因组序列
Human HLA whole genome sequence

ensemble

ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapiens/dna/
人类HLA注释文件
Human HLA annotation file

ensemble

ftp://ftp.ensembl.org/pub/release-90/gtf/homo_sapiens
牛BoLA编码序列
Cattle BoLA coding sequence

ensemble

ftp://ftp.ensembl.org/pub/release-90/fasta/bos_taurus/cdna/
牛BoLA全基因组序列
Cattle BoLA whole genome sequence

ensemble

ftp://ftp.ensembl.org/pub/release-90/fasta/bos_taurus/dna/
牛BoLA注释文件
Cattle BoLA annotation file

ensemble

ftp://ftp.ensembl.org/pub/release-90/gtf/bos_taurus

Fig. 1

Schematic diagram of structure for Bactrian camel MHC-Pseudo chromosome"

Fig. 2

Comparison of collinearity between human HLA gene and Bactrian camel MHC gene The horizontal axis is the gene sequence of human HLA, and the vertical axis is the gene sequence of Bactrian camel MHC"

Fig. 3

Comparison of collinearity between bovine BoLA gene and Bactrian camel MHC gene The horizontal axis is the gene sequence of bovine BoLA, and the vertical axis is the gene sequence of Bactrian camel MHC"

Table 2

The CBLA gene found by BLAT analysis"

基因区Class
基因编码
Genetic code
XM 010961543.1 XM 010949122.1
XM 010958395.1
XM 010949120.1
XM 010949126.1
XM 010949114.1
XM 010949113.1
XM 010949105.1
XM 010949127.1
XM 010949125.1
XM 010949153.1
XM 010961490.1
XM 010961476.1
XM 010961495.1
XM 010961533.1
XM 010961451.1
XM 010961470.1
XM 010961594.1
XM 010961447.1
XM 010961538.1
XM 010961482.1
XM 010961484.1
XM 010961536.1
XM 010961596.1

Table 3

Statistics table of MHC gene number in Human / bovine / Bactrian camels"

基因区Class 人类 MHC基因HLA 牛MHC基因BoLA 双峰驼MHC基因CBLA
36/106 1 1
33/59 11 10
59/59 13 13

Table 4

CBLA gene annotation information of Bactrian camel"

基因编码
Gene id
长度
Length
外显子
Exon
位置
Scaffold
起始点
Start
终止点
End
注释信息
Description
XM 010949105.1 2866 5 NW 011511766.1 3837314 3842070 PREDICTED:CBLA-DOA
XM 010949113.1 1189 5 NW 011511766.1 3874933 3878475 PREDICTED:CBLA-DMA
XM 010949114.1 1391 6 NW 011511766.1 3885523 3891578 PREDICTED:CBLA-DMB
XM 010949120.1 1381 6 NW 011511766.1 3965547 3972059 PREDICTED:CBLA-DOB
XM 010949122.1 813 5 NW 011511766.1 4106164 4114129 PREDICTED:CBLA-DRB2
XM 010949125.1 1177 5 NW 011511766.1 4047230 4051352 PREDICTED:CBLA-DQA
XM 010949126.1 1033 4 NW 011511766.1 4031979 4039091 PREDICTED:CBLA-DQB
XM 010949127.1 1307 5 NW 011511766.1 4120230 4124972 PREDICTED:CBLA-DRA
XM 010949153.1 759 4 NW 011511766.1 3992073 3995513 PREDICTED:CBLA-DYA
XM 010958395.1 1315 7 NW 011514613.1 5057 14519 PREDICTED:CBLA-DRB3
XM 010961447.1 1407 9 NW 011515227.1 42577 46241 PREDICTED:PBX2
XM 010961451.1 1602 8 NW 011515227.1 67307 73614 PREDICTED:PPT2
XM 010961470.1 1452 8 NW 011515227.1 175625 182554 PREDICTED:STK19
XM 010961476.1 2773 18 NW 011515227.1 207277 218549 PREDICTED:C2
XM 010961482.1 2376 1 NW 011515227.1 303003 305378 PREDICTED:HSPA1A
XM 010961484.1 2500 2 NW 011515227.1 305769 309435 PREDICTED:HSPA1L
XM 010961490.1 2657 25 NW 011515227.1 340559 355003 PREDICTED:MSH5
XM 010961495.1 1158 6 NW 011515227.1 357933 363242 PREDICTED:CLIC1
XM 010961533.1 668 6 NW 011515227.1 462534 464279 PREDICTED:AIF1
XM 010961536.1 688 4 NW 011515227.1 488003 489391 PREDICTED:LTA
XM 010961538.1 1318 5 NW 011515227.1 499275 507275 PREDICTED:NFKBIL1
XM 010961543.1 1513 9 NW 011515227.1 1073777 1105682 PREDICTED:CBLA-A
XM 010961594.1 6598 30 NW 011515227.1 17926 38510 PREDICTED:NOTCH4
XM 010961596.1 12304 45 NW 011515227.1 105330 155862 PREDICTED:TNXB

Fig. 4

Phylogenetic tree of Bactrian camel CBLA gene The blue line indicates the CBLA class- I gene, the red line indicates the CBLA-II gene, and the black line indicates the CBLA class-Ⅲ gene"

[1] 亢孝珍, 额尔敦木图, 姜建强, 包花尔, 王瑞, 王秀珍, 李盈. 阿拉善驼与苏尼特驼MHC-DRB3 exon2基因克隆及序列分析. 内蒙古农业大学学报(自然科学版), 2015(5): 5-11.
KANG X Z, ERDEMTU, JIANG J Q, BAO H, WANG R, WANG X Z, LI Y. Cloning and analysis of sequences of MHC–DRB3 exon2 genes in Alxa bactrian camel and Sunit bactrian camel. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2015(5): 5-11. (in Chinese)
[2] 李文娟, 李岩, 李美玉, 牟凯, 刘思思, 潘庆杰. MHC基因结构及其功能的研究进展. 青岛农业大学学报(自然科学版), 2014(3): 167-171.
doi: 10.3969/J.ISSN.1674-148X.2014.03.003
LI W J, LI Y, LI M Y, MOU K, LIU S S, PAN Q J.Research Progress of MHC Gene and Its Function. Journal of QingDao Agricultural University(Natural Science),2014(3): 167-171. (in Chinese)
doi: 10.3969/J.ISSN.1674-148X.2014.03.003
[3] KUMANOVICS A, TAKADA T, LINDAHL K F.Genomic organization of the mammalian MHC. Annual Review of Immunology, 2003(21): 629-657.
[4] CHAVES L D, KRUETH S B, REED K M.Defining the turkey MHC: sequence and genes of the B locus. Journal of Immunology, 2009, 183(10): 6530-6537.
doi: 10.4049/jimmunol.0901310 pmid: 19864609
[5] GARBUZ D G, ASTAKHOVA L N, ZATSEPINA O G, ARKHIPOVA I R, NUDLER E, EVGEN′EV M B. Functional organization of HSP70 cluster in camel(Camelus dromedarius) and other mammals. PLoS One, 2011, 6(11): e27205.
[6] SEQUENCING T B C G, CONSORTIUM A. Genome sequences of wild and domestic bactrian camels. Nature Communications, 2012, 3: 1202.
doi: 10.1038/ncomms2192 pmid: 3868263
[7] LONGJAM L A, DAS D.Major histocompatibility complex and its importance towards controlling infection. Research Gate, 2017, 8(2): 1-13.
[8] 亢孝珍, 额尔敦木图, 姜建强, 陈泽明, 刘图雅, 伊特格勒图, 沙日扣, 图雅. 主要组织相容性复合体(MHC)基因研究进展. 中国畜牧兽医, 2014, 41(05): 28-33.
KANG X Z, ERDEMTU, JIANG J Q, CHEN Z M, LIU T Y, YITEGELTU, SHARHU, TU Y. Research progress on major histocompatibility complex (MHC) gene. China Animal Husbandry & Veterinary Medicine, 2014, 41(05): 28-33. (in Chinese)
[9] KLEIN J.George Snell's first foray into the unexplored territory of the major histocompatibility complex. Genetics, 2001, 159(2): 435-439.
pmid: 11606523
[10] EDWARDS S V, HEDRICK P W.Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends in Ecology & Evolution, 1998, 13(8): 305-311.
doi: 10.1016/S0169-5347(98)01416-5 pmid: 21238318
[11] PLASIL M, MOHANDESAN E, FITAK R R, MUSILOVA P, KUBICKOVA S, BURGERE P A, HORIN P.The major histocompatibility complex in Old World camelids and low poly-morphism of its class Ⅱ genes. BMC Genomics, 2016, 17(1): 167.
doi: 10.1186/s12864-016-2500-1 pmid: 4774177
[12] AVILA F, DAS P J, KUTZLER M, OWENS E, PERELMAN P, RUBES J, HORNAK M, JOHNSON W E, RAUDSEPP T.Development and application of camelid molecular cytogenetic tools. Journal of Heredity, 2014, 105(6): 858-869.
doi: 10.1093/jhered/ess067 pmid: 4207859
[13] DAVIES C J, ANDERSSON L, ELLIS S A, HENSEN E J, LEWIN H A, MIKKO S, MUGGLI-COCKETT N E, POEL J J, RUSSELL G C. Nomenclature for factors of the BoLA system, 1996: report of the IS AG BoLA Nomenclature Committee. Animal Genetics, 2015, 28(3): 159-168.
[14] BALMUS G, TRIFONOV V A, BILTUEVA L S, O'BRIEN P C M, ALKALAEVA E S, FU B Y, SKIDMORE J A, ALLEN T, GRAPHODATSKY A S, YANG F T, FERGUSON-SMITH M A. Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Research, 2007, 15(4): 499-514.
[15] 贾震虎, 夏春. 硬骨鱼类MHCⅠ基因结构及表达研究. 中国兽医杂志, 2008, 44(11): 54-55.
doi: 10.3969/j.issn.0529-6005.2008.11.030
JIA Z H, XIA C.Study on the structure and expression of MHCⅠgene in teleosts. Chinese Journal of Veterinary Medicine, 2008, 44(11): 54-55. (in Chinese)
doi: 10.3969/j.issn.0529-6005.2008.11.030
[16] WU H G, GUANG X M, l-FAGEEH M B, CAO J W, PAN S K, ZHOU H M, Zhang L, ABUTARBOUSH M H, XING Y P, XIE Z Y, ALSHANQEETI A S, ZHANG Y R, YAO Q L, AL-SHOMRANI B M, ZHANG D, LI J, MANEE M M, YANG Z L, YANG L F, LIU Y Y, ZHANG J L, ALTAMMAMI M A, WANG S Y, YU L L, ZHANG W B, LIU S Y, BA L, LIU C X, YANG X K, MENG F H, WANG S W, LI L, LI E L, LI X Q, WU K F, ZHANG S, WANG J Y, YIN Y, YANG H M, AL-SWAILEM A M, WANG J. ACamelid genomes reveal evolution and adaptation to desert environments. Nature Communications, 2014, 5(5): 5188.
doi: 10.1038/ncomms6188 pmid: 25333821
[17] ANTCZAK D. Major histocompatibility complex genes of the dromedary camel.2013(2013): BIOP 015.
[18] SIDDLE H V, DEAKIN J E, COGGILL P, WHILMING L, HARROW J, KAUFMAN J, BECK S, BELOV K.The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genomics, 2011, 12(1): 421.
doi: 10.1186/1471-2164-12-421 pmid: 3179965
[19] 潘增祥, 许丹, 张金璧, 林飞, 吴宝江, 刘红林. 基于直向同源序列的比较基因组学研究. 遗传, 2009, 31(05): 457-463.
PAN Z X, XU D, ZHANG J B, LIN F, WU B J, LIU H L.Reviews in comparative genomic research based on orthologs. Hereditas, 2009, 31(05): 457-463. (in Chinese)
[20] CONSORTIUM T M S. Complete sequence and gene map of a human major histocompatibility complex. Nature, 1999, 401(6756): 921-923.
[21] SAMBROOK J G, FIGUEROA F, BECK S.A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genomics, 2005, 6(1): 152.
doi: 10.1186/1471-2164-6-152 pmid: 1309616
[22] KELLEY J, WALTER L, TROWSDALE J.Comparative genomics of major histocompatibility complexes. Immunogenetics, 2005, 56(10): 683-695.
[23] DIDINGER C, EIMES J A, LILLIE M, WALDM B.Multiple major histocompatibility complex class I genes in Asian anurans: Ontogeny and phylogeny. Developmental & Comparative Immunology, 2017, 70: 69-79.
[24] CHAVES L D.The Major Histocompatibility Complex of the Turkey.[D]. Twin Cities: University ofMinnesota .2010.
[25] 郭秀丽, 代红星, 李祥龙, 周荣艳, 王立泽. 不同物种MHC-DQA1基因部分序列的生物信息分析. 中国畜牧兽医, 2007, 34(1): 65-67.
GUO X L, DAI H X, LI X L, ZHOU R Y, WANG L Z.Bioinformatics analysis of part of mhc-dqa1 gene in different species. China Animal Husbandry & Veterinary Medicine, 2007, 34(1): 65-67. (in Chinese)
[26] BEHL J D, VERMA N K, TYAGI N, MISHRA P, BEHL R, JOSHI B K.The major histocompatibility complex in bovines: A review. ISRN Veterinary Science, 2012, (872710): 1-12.
[27] LIAN X D, ZHANG X H, DAI Z X, ZHENG Y T.Characterization of classical major histocompatibility complex (MHC) classⅡ genes in northern pig-tailed macaques (Macaca leonina). Infection, Genetics & Evolution, 2017, 56: 26-35.
doi: 10.1016/j.meegid.2017.10.015
[28] JIANLIN H, MBURU D, OCHIENG J, KAUFMANN B, REGE JE O, HANOTTE O.Application of New World Camelidae microsatellite primers for amplification of polymorphic loci in Old World camelids. Animal Genetics, 2010, 31(6): 404-406.
doi: 10.1111/j.1365-2052.2000.00683.pp.x pmid: 11167529
[29] VILA C, SEDDON J, ELLEGREN H.Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends in Genetics, 2005, 21(4): 214-218.
doi: 10.1016/j.tig.2005.02.004 pmid: 15797616
[30] SATO A, FIGUEROA F, O'HUIGIN C, REZNICK D N, KLEIN J.Identification of major histocompatibility complex genes in the guppy, Poecilia reticulata. Immunogenetics, 1995, 43(1-2): 38-49.
[31] FITAK R R, MOHANDESAN E, CORANDER J, BURGER P A.The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Molecular Ecology Resources, 2016, 16(1): 314-324.
doi: 10.1111/1755-0998.12443
[1] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[2] MuKang LUO,XuChao JIA,RuiFen ZHANG,Lei LIU,LiHong DONG,JianWei CHI,YaJuan BAI,MingWei ZHANG. Phenolic Content, Bioavailability and Antioxidant Activity of Carambola [J]. Scientia Agricultura Sinica, 2020, 53(7): 1459-1472.
[3] KaiYuan GONG,Liang HE,DingRong WU,ChangHe LÜ,Jun LI,WenBin ZHOU,Jun DU,Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[4] JiRong LI,TangWei ZHANG,DeJi CIREN,XiaoJun YANG,Dun CI. Fractionation Effect of Stable Isotopic Ratios in Tsamba Processing [J]. Scientia Agricultura Sinica, 2019, 52(24): 4592-4602.
[5] YiXuan LIU,DongLin HUANG,Na LIU,ZhiYuan YAO,Dan YIN,YuanYong MENG,HuBing ZHAO,YaYun GAO,ZhaoHui WANG. The Increasing Effect and Influencing Factors of Leguminous Green Manure on Wheat Grain Zn in Weibei Highland [J]. Scientia Agricultura Sinica, 2018, 51(21): 4030-4039.
[6] XU ZongGui, SUN Lei, WANG Hao, WANG ShuLan, WANG XiaoLi, LI Jun. Effects of Different Planting Densities on Photosynthetic Characteristics and Yield of Different Variety Types of Spring Maize on Dryland [J]. Scientia Agricultura Sinica, 2017, 50(13): 2463-2475.
[7] Lü Wei, LI Jun, YUE Zhi-fang, CHEN Ning-ning, WANG Shu-lan. Effects of Rotational Tillage on Soil Organic Matter and Soil Total Nitrogen Contents of Continuous Cropping Wheat Field in Weibei Highland [J]. Scientia Agricultura Sinica, 2015, 48(16): 3186-3200.
[8] PEI Le, ZHANG Wen-bin, Hasisurong. Determination of the Activities of Bactrian Camel CYP3A Enzyme by Specific Probe Drug [J]. Scientia Agricultura Sinica, 2015, 48(16): 3266-3274.
[9] ZHANG Yu-jiao, LI Jun, GUO Zheng, YUE Zhi-fang. Long-Term Simulation of Winter Wheat Yield and Soil Water Response to Conservation Tillage Rotation in Weibei Highland [J]. Scientia Agricultura Sinica, 2015, 48(14): 2730-2746.
[10] BAI Wei-Xia-1, LI Jun-1, WANG Yu-Ling-1, WANG Li-2. Effects of Different Tillage Methods on Soil Water and Crop Yield of Winter Wheat-Spring Maize Rotation Region in Weibei Highland [J]. Scientia Agricultura Sinica, 2014, 47(5): 880-894.
[11] LUO De-Qiang-1, 2 , WANG Shao-Hua-1, JIANG Xue-Hai-1, 2 , LI Gang-Hua-1, ZHOU Wei-Jia-2, LI Min-2, JI Guang-Mei-2, DING Yan-Feng-1, LING Qi-Hong-1, LIU Zheng-Hui-1. Effects of Accurate Fertilizer Model (AF) on Yield and Population Quality of Hybrid Indica Rice Cultivars in Guizhou Highland Area [J]. Scientia Agricultura Sinica, 2014, 47(11): 2099-2108.
[12] LI Ming-Ze, CHENG Qi. Expression and Analysis of Candida cloacae Long-Chain Fatty Alcohol Oxidase FAO1 by Nuclear Expression Vector in Chlamydomonas reinhardtii [J]. Scientia Agricultura Sinica, 2013, 46(21): 4515-4522.
[13] ZHANG Ji-yu,TONG Zhao-guo,GAO Zhi-hong ,LUO Chang-guo,QU Shen-chun,ZHANG Zhen
. Expression of MhWRKY1 Gene Induced by the Elicitors SA,MeJA, ACC and the Apple Ring Spot Pathogen
[J]. Scientia Agricultura Sinica, 2011, 44(5): 990-999 .
[14] WANG Xiao-Yu, LUO Chu-Ping, CHEN Zhi-Yi, LIU Yong-Feng, LIU You-Zhou, NIE Ya-Feng, YU Jun-Jie, YIN Xiao-Le. The Complete Genome Sequence of the Gram-Positive Bacterium Bacillus subtils Bs-916 [J]. Scientia Agricultura Sinica, 2011, 44(23): 4807-4814.
[15] PAN Zeng-xiang,ZHANG Jin-bi,LIN Fei,LI Qi-fa,XIE Zhuang,LIU Hong-lin
. In Silico Study on a New Orthologs SLC25A3 and It’s Experimental Verification in Porcine Ovary
[J]. Scientia Agricultura Sinica, 2010, 43(9): 1926-1932 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!