Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (23): 4807-4814.doi: 10.3864/j.issn.0578-1752.2011.23.006

• PLANT PROTECTION • Previous Articles     Next Articles

The Complete Genome Sequence of the Gram-Positive Bacterium Bacillus subtils Bs-916

 WANG  Xiao-Yu, LUO  Chu-Ping, CHEN  Zhi-Yi, LIU  Yong-Feng, LIU  You-Zhou, NIE  Ya-Feng, YU  Jun-Jie, YIN  Xiao-Le   

  1. 1.江苏农业科学院植物保护研究所,南京 210014
  • Received:2011-03-14 Online:2011-12-01 Published:2011-09-02

Abstract: 【Objective】The objective of this study is to sequence the whole genome of Bacillus subtils Bs-916 and provide more information about molecular biology for future mining and utilizing the potential of this strain. 【Method】 Application of comparative genomics softwares, the whole genome sequence analysis was carried out with Bs168 strains. 【Result】 Bs-916 strains genome is 3 925 958 base pairs comprises 4 056 protein-coding genes. The average GC ratio is 46.4%, the highest compared with other whole-genome sequencing of Bacillus spp.. It contains 152 tandem repeat region, 103 transposons, 37 IS (Insert sequence), 46 tRNA, 39 rRNA. Through comparative genomics analysis, Bs-916 harbors eight giant gene clusters directing synthesis of bioactive peptides and polyketides by modularly organized mega-enzymes named non-ribosomal peptide synthetases, NRPS and polyketide synthases, PKS. Macrolactin, difficidin, and bacillomycin L are absent in Bs168 strains. Bs-916 also contains phytase gene, comAPQX and sfp related with biocontrol mechanism.【Conclusion】Bs-916 strain genome contains many gene cluster encoding a variety of antimicrobial substances, it can be considered a paradigm for an own group of plant-associated gram-positive bacteria with a huge potential for biocontrol and plant growth promotion. The complete genome sequence along with its amenability to genetic manipulation, should facilitate exploitation of the hitherto unappreciated potential of strain Bs-916 to produce secondary metabolites for developing agrobiological engineering preparations.

Key words: Bacillus subtils, comparative genomics, synteny, GC skew agents with predictable features

[1]陈志谊, 许志刚, 陆  凡, 刘永锋, 陈毓苓. 拮抗细菌B-916培养液对水稻纹枯病菌的抗生活性及其抗菌物质的研究. 江苏农业学报, 2000, 16(3): 148-152.

Chen Z Y, Xu Z G, Lu F, Liu Y F, Chen Y L. On Antagonism against Rhizoctonia solani of culture solution of strain B-916 and constituent of its antifungal substance. Jiangsu Journal of Agricultural Sciences, 2000, 16(3): 148-152. (in Chinese)

[2]陈志谊, 许志刚, 陆  凡, 刘永锋. 拮抗细菌B-916对水稻植株的抗性诱导作用. 西南农业学报, 2001, 14(2): 44-48.

Chen Z Y, Xu Z G, Lu F, Liu Y F. The inducing resistance effect of antagonistic bacterium B-916 on rice plant. Southwest China Journal of Agricultural Sciences, 2001, 14(2): 44-48. (in Chinese)

[3]罗楚平, 陈志谊, 刘永锋, 张  杰, 刘邮洲, 王晓宇, 聂亚锋. 转座子诱变生防枯草芽胞杆菌B-916及抗真菌活性相关基因的克隆. 农业生物技术学报, 2009, 17(4): 728-734.

Luo C P, Chen Z Y, Liu Y F, Zhang J, Liu Y Z, Wang X Y, Nie Y F. Screening mutants of biocontrol Bacillus subtilis B-916 by transposon tagging and cloning of the genes relative to the organism's antifungal activities. Journal of Agricultural Biotechnology, 2009, 17(4): 728-734. (in Chinese)

[4]王晓宇, 罗楚平, 刘永锋, 刘邮洲, 聂亚锋, 陈志谊. 生防菌Bs-916突变菌株M49芽胞形成和感受态形成能力. 微生物学报, 2009, 49(10): 1295-1300.

Wang X Y, Luo C P, Liu Y F, Liu Y Z, Nie Y F, Chen Z Y. Sporulation, competence development and biopesticide activity of a Bacillus subtilis mutant. Acta Microbiologica Sinica, 2009, 49(10): 1295-1300. (in Chinese)

[5]Wang X, Luo C, Liu Y, Nie Y, Liu Y, Zhang R, Chen Z. Three non-aspartate amino acid mutations in the ComA response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis. Journal of Microbiology Biotechnology, 2010, 20(2): 301-310.

[6]Nielsen P, Krogh A. Large-scale prokaryotic gene prediction and comparison to genome annotation. Bioinformatics, 2005, 21(24): 4322-4329.

[7]Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Research, 2005, 33(suppl.2): W451-W454.

[8]Delcher A L, Bratke K A, Powers E C, Salzberg S L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 2007, 23(6): 673-679.

[9]Marchler-Bauer A, Anderson J B, Derbyshire M K, DeWeese-Scott C, Gonzales N R, Gwadz M, Hao L, He S, Hurwitz D I, Jackson J D, Ke Z, Krylov D, Lanczycki C J, Liebert C A, Liu C, Lu F, Lu S, Marchler G H, Mullokandov M, Song J S, Thanki N, Yamashita R A, Yin J J, Zhang D, Bryant S H. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Research, 2007, 35(suppl.1): D237-D240.

[10]Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402.

[11]Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research, 2000, 28(1): 45-48.

[12]Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy S R, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 2005, 33(suppl.1): D121-D124.

[13]罗楚平, 王晓宇, 陈志谊, 刘永锋, 张  杰, 刘邮洲, 聂亚锋, 于 俊杰, 尹小乐. 枯草芽孢杆菌Bs916中脂肽抗生素Bacillomycin L的操纵子结构及生物活性. 中国农业科学, 2010, 43(22): 4624-4634.

Luo C P, Wang X Y, Chen Z Y, Liu Y F, Zhang J, Liu Y Z, Nie Y F, Yu J J, Yin X L. The operon, structure and biological activities of the lipopeptide bacillomycin L produced by Bacillus subtilis Bs916. Scientia Agricultura Sinica, 2010, 43(22): 4624-4634. (in Chinese)

[14]Zimmerman S B, Schwartz C D, Monaghan R L, Pelak B A, Weissberger B, Gilfillan E C, Mochales S, Hernandez S, Currie S A, Tejera E. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity. The Journal of Antibiotics, 1987, 40(12): 1677-1681.

[15]Wilson K E, Flor J E, Schwartz R E, Joshua H, Smith J L, Pelak B A, Liesch J M, Hensens O D. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physico-chemical characterization. The Journal of Antibiotics, 1987, 40(12): 1682-1691.

[16]Zweerink M M, Edison A. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. III. Mode of action of difficidin. The Journal of Antibiotics, 1987, 40(12): 1692-1697.

[17]Jaruchoktaweechai C, Suwanborirux K, Tanasupawatt S, Kittakoop P, Menasveta P. New macrolactins from a marine Bacillus sp. Sc026. Journal of Natural Products, 2000, 63(7): 984-986.

[18]Boyd J, Oza M N, Murphy J R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(15): 5968-5972.

[19]Peters W J, Warren R A. Itoic acid synthesis in Bacillus subtilis. Journal of Bacteriology, 1968, 95(2): 360-366.

[20]Peters W J, Warren R A. Phenolic acids and iron transport in Bacillus subtilis. Biochimica et Biophysica Acta, 1968, 165(2): 225-232.

[21]Kunst F, Ogasawara N, Moszer I, Albertini A M, Alloni G. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997, 390(6657): 249-256.

[22]Phister T G, O'Sullivan D J, McKay L L. Identification of bacilysin, chlorotetaine, and iturin a produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Applied and Environmental Microbiology, 2004, 70(1): 631-634.

[23]Wojciechowski M, Milewski S, Mazerski J, Borowski E. Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design. Acta Biochimica Polonica, 2005, 52(3): 647-653.

[24]Patel P S, Huang S, Fisher S, Pirnik D, Aklonis C, Dean L, Meyers E, Fernandes P, Mayerl F. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity. The Journal of Antibiotics, 1995, 48(9): 997-1003.

[25]Butcher R A, Schroeder F C, Fischbach M A, Straight P D, Kolter R, Walsh C T, Clardy J. The identification of bacillaene, the product of the pKSX megacomplex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1506-1509.

[26]高学文, 姚仕义, Pham H, Vater J, 王金生. 枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定. 微生物学报, 2003, 43(5): 647-652.

Gao X W, Yao S Y, Pham H, Vater J, Wang J S. Purification and identification of surfactin isoforms produced by Bacillus subtilis B2 strain. Acta Microbiologica Sinica, 2003, 43(5): 647-652. (in Chinese)

[27]Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008, 16(3): 115-125.

[28]冯  固, 李晓林, 张福锁, 李生秀. 施磷和接种AM真菌对玉米耐盐性的影响. 植物资源与环境学报, 2000, 9(2): 22-26.

Gu F, Li X L, Zhang F S, Li S X. Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment. Journal of Plant Resources and Environment, 2000, 9(2): 22-26. (in Chinese)

[29]Idriss E E, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology, 2002, 148: 2097-2109.

[30]Li X, Wu Z, Li W, Yan R, Li L, Li J, Li Y, Li M. Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Applied Microbiology and Biotechnology, 2007, 74(5): 1120-1125.

[31]Nakano M M, Marahiel M A, Zuber P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. Journal of Bacteriology, 1988, 170(12): 5662-5668.
[1] WANG Xiao-bo, MA Yuan, CHENG Feng, WU Jian, LIANG Jian-li, WANG Xiao-wu. The Influence of Whole-Genome Triplication (WGT) on the Candidate Genes of Pollen Specific Expression in Brassica rapa [J]. Scientia Agricultura Sinica, 2015, 48(18): 3727-3732.
[2] LIU Jin, ZHANG Ji-fang, LIANG Jian-li, CHENG Feng, WU Jian, WANG Xiao-wu. Evolutionary Study of MAM Genes Which Function in the Process  of Glucosinolates Synthesis in Brassica rapa [J]. Scientia Agricultura Sinica, 2014, 47(21): 4309-4317.
[3] PAN Zeng-xiang,ZHANG Jin-bi,LIN Fei,LI Qi-fa,XIE Zhuang,LIU Hong-lin
. In Silico Study on a New Orthologs SLC25A3 and It’s Experimental Verification in Porcine Ovary
[J]. Scientia Agricultura Sinica, 2010, 43(9): 1926-1932 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!