Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (21): 4515-4522.doi: 10.3864/j.issn.0578-1752.2013.21.014
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Ming-Ze, CHENG Qi
[1]谢传晓, 韩伟, 余增亮. 模式生物衣藻及其研究进展. 遗传, 2003, 25(3): 350-354. Xie C X, Han W, Yu Z L. Progress of Chlamydomonas as a model organism. Hereditas, 2003, 25(3): 350-354. (in Chinese) [2]Rochaix J D. Chlamydomonas reinhardtii as the photosynthetic yeast. Annual Review of Genetics, 1995, 29(1): 209-230. [3]Merchant S S, Prochnik S E, Vallon O, Harris E H, Karpowicz S J, Witman G B, Mittag M, Terry A, Salamov A, Fritz-Laylin L K, Maréchal-Drouard L, Marshall W F, Qu L H, Nelson D R, Sanderfoot A A, Spalding M H, Kapitonov V V, Ren Q H, Ferris P, Lindquist E, Shapiro H, Lucas S M, Grimwood J, Schmutz J, Rokhsar D S, Grossman R. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 2007, 318: 245-250. [4]O'Neill B M, Mikkelson K L, Gutierrez N M, Cunningham J L, Wolff K L, Szyjka S J, Yohn C B, Redding K E, Mendez M J. An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Research, 2012, 40(6): 2782-2792. [5]Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S. A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Research, 1999, 6(6): 369-373. [6]Depège N, Bellafiore S, Rochaix J D. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science Signaling, 2003, 299(5612): 1572. [7]Shikanai T, Muller-Moule P, Munekage Y, Nyogi K K, Pilon M. PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. The Plant Cell, 2003, 15: 1333-1346. [8]Dobberstein B, Blobel G, Chua N H. In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5- bisphosphate carboxylase of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the USA, 1977, 74: 1082-1085. [9]Schmidt G W, Devillers-Thiery A, Desruisseaux H, Blobel G, Chua N H. NH2-terminal amino acid sequences of precursor and mature forms of the ribulose-1, 5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii. The Journal of Cell Biology, 1979, 83(3): 615-622. [10]Keegstra K, Cline K. Protein import and routing systems of chloroplasts. The Plant Cell, 1999, 11(4): 557-570. [11]Lzister D. Chloroplast research in the genomic age. Trends in Genetics, 2003, 19(1): 47-56. [12]Ramesh V M, Bingham S E, Webber A N. A simple method for chloroplast transformation in Chlamydomonas reinhardtii// Photosynthesis Research Protocols. Humana Press, 2011: 313-320. [13]Tran M, Van C, Barrera D J, Pettersson P L, Peinado C D, Bui J, Mayfield S P. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proceedings of the National Academy of Sciences of the USA, 2013, 110(1): E15-E22. [14]Bhattacharya A, Kumar A, Desai N, Seema P. Organelle transformation//Plant Cell Culture Protocols. Humana Press, Springer Science Business Media, 2012: 401-406. [15]Rasala B A, Mayfield S P. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioengineered Bugs, 2011, 2(1): 50. [16]Lössl A G, Waheed M T. Chloroplast-derived vaccines against human diseases: Achievements, challenges and scopes. Plant Biotechnology Journal, 2011, 9(5): 527-539. . [17]Kindle K L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the USA, 1990, 87(3): 1228-1232. [18]Shimogawara K, Fujiwara S, Grossman A, Usuda H. High-frequency transformation of Chlamydomonas reinhardtii by electroporation. Genetics Society of America, 1998, 148(4): 1821-1828. [19]Berthold P, Shmitt R, Mages W. An engineered streptomyces hygroscopicus aph7 gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist, 2002, 153(4): 401-412. [20]Drocourt D. Calmels T, Reynes J P, Baron M, Tirbay G. Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Research, 1990, 18(13): 4009-4009. [21]Stevens D R, Rochaix J D, Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Molecular Genetics and Genomics, 1996, 251(1): 23-30. [22]Meslet-Cladière L, Vallon O. Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryot Cell, 2011, 10(12): 1670-1678. [23]Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich L D. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology, 1992, 10(8): 894-898. [24]Cheng Q, Sanglard D, Vanhanen S, Liu H T, Bombelli P, Smith A G, Slabas A R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochimicaet Biophysica Acta (BBA)-Molecular and Cell Biology of Lipid, 2005, 1735: 192-203. [25]Cheng Q, Liu H T, Bombelli P, Smith A G, Slabas A R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Letters, 2004, 574(1/3): 62-68. [26]Kemp G D, Dickinson F M, Ratledge C. Inducible long chain alclhol oxidase from alkane-grown Candia tropicalis. Applied Microbiology and Biotechnology, 1988, 29(4): 370-374. [27]Kemp G D, Dickinson F M, Ratledge C. Occurrence of fatty alcohol oxidase in alkane-and fatty-acid-utilising yeasts and moulds. Applied Microbiology and Biotechnology, 1994, 40(6): 873-875. [28]Kemp G D, Dickinson F M, Ratledge C. Litght sensitivity of the n-alkane-induced fatty alcohol oxidase from Candida tropicalis and Yarrowia lipolytica. Applied Microbiology and Biotechnology, 1990, 32(4): 461-464. [29]Dickinson F M, Catherine W. Purification and some properties of alcohol oxidase from alkane-grown Candia tropicalis. Biochemical Journal, 1992, 282: 325-331. [30]孙枫, 杨雪, 王晓莉, 董汉松. 拟南芥长链脂肪醇氧化酶(AtFAO3)在抗病防卫反应中的作用分析. 华北农学报, 2009, 24(6): 1-5. Sun F, Yang X, Wang X L, Dong H S. Functional analysis of Arabidopsis AtFAO3 in defense against pseudomonas syringae. Acta Agriculturae Boreali-Sinica, 2009, 24(6): 1-5. (in Chinese) [31]Rajangam A S, Gidda S K, Craddock C, Mullen R T, Dyer J M, Eastmond P J. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds. Plant Physiology, 2013, 161(1): 72-80. [32]Rasala B A, Lee P A, Shen Z, Briggs S P, Mendez M, Mayfield S P. Robust expression and secretion of xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. Public Library of Science, 2012, 7(8): e43349. [33]Rochaix J D. Molecular genetics of chloroplasts and mitochondria in the unicellular green alga Chlamydomonas. FEMS Microbiology Letters, 1987, 46(1): 13-34. [34]Tam L W, Lefebvre P A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics, 1993, 135(2): 375-384. [35]Leon R, Fernandez E. Nuclear transformation of eukaryotic microalgae: Historical overview, achievements and problems. Advances in Experimental Medicine and Biology, 2007, 616: 1-11. [36]Cerutti H, Johnson A M, Gillham N W, Boynton J E. Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. The Plant Cell, 1997, 9(6): 925-945. [37]Wu-Scharf D, Jeong B, Zhang C, Cerutti H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Faculty Publications from the Center for Plant Science Onnovation, 2000, 290: 1159-1162. [38]Wilde D C, Houdt V H, Buck D S, Angenon G, Jaeger G D, Depocker A. Plants as bioreactors for protein production: Avoiding the problem of transgene silencing. Plant Molecular Biology, 2000, 43: 347-359. [39]Shaver S, Casas-Mollano J A, Cerny R L, Cerutti H. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics, 2010, 5(4): 301-312. [40]Cheng Q, Yang J, Day A, Dowson-Day M, Dixon R. Evolutionary implication of nitrogenase-like genes in plant kingdom and prospects for nif gene transfer in model eukaryotes. Biological Nitrogen Fixation, Sustainable Agriculture and the Environment, 2005: 387-389. [41]Cheng Q, Day A, Dowson-Day M, Shen G F, Dixon R. The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitute for the chlL gene in Chlamydomonas reinhardtii. Biochemical and Biophysical Research Commol/Lunication, 2005, 329: 966-975. [42]Cheng Q. Perspectives in biological nitrogen fixation research. Journal of Integrative Plant Biology, 2008, 50(7): 784-796. |
[1] | WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192. |
[2] | WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578. |
[3] | XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418. |
[4] | KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260. |
[5] | XU JianJian,WANG YanJiao,DUAN Yu,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Construction of Genome-Length cDNA of Citrus Vein Enation Virus and Identification of Its Infectivity [J]. Scientia Agricultura Sinica, 2020, 53(18): 3707-3715. |
[6] | ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119. |
[7] | LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019. |
[8] | DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246. |
[9] | TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477. |
[10] | JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526. |
[11] | WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227. |
[12] | YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284. |
[13] | LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356. |
[14] | ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366. |
[15] | TANG YaFei,PEI Fan,LI ZhengGang,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Identification of Viruses Infecting Peppers in Guangdong by Small RNA Deep Sequencing [J]. Scientia Agricultura Sinica, 2019, 52(13): 2256-2267. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 239
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|