Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (21): 4515-4522.doi: 10.3864/j.issn.0578-1752.2013.21.014

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Expression and Analysis of Candida cloacae Long-Chain Fatty Alcohol Oxidase FAO1 by Nuclear Expression Vector in Chlamydomonas reinhardtii

 LI  Ming-Ze, CHENG  Qi   

  1. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2013-04-19 Online:2013-11-01 Published:2013-07-19

Abstract: 【Objective】 fao1 encods a iron-containing long-chain fatty alcohol oxidase in C.cloacae. By constructing the nuclear expression vector, according to the biological activity of protein we can judge whether fao1 can take full advantage of iron in Chlamydomonas reinhardtii chloroplast. Meanwhile it will provide a new direction for researches on the gene of iron-containing proteins.【Method】The PsaD transit peptide gene(TP), C. cloacae fatty-alcohol oxidase (fao1) gene and His-tag were cloned separately by polymerase chain reaction (PCR). The 3-piece fusion gene TFHis was inserted into pDBle. This construct was transformed into C. reinhardtii CW15 by glass beads method. The transgenic Chlamydomonas was obtained under the selection of zeocin and they were confirmed positive by PCR amplification and RT-PCR. The activity of the purified recombinant protein was tested by a color-linked assay. 【Result】 The correctness of the constructed pDBle-TFHis was confirmed by DNA sequencing. PCR and RT-PCR analysis of the genomic DNA and RNA from transgenic Chlamydomonas showed that the recombinant plasmid has been integrated into C. reinhardtii CW15 genome and transcribed successfully. Protein purification elution made substrate reaction turn blue.【Conclusion】In this study, fao1-bearing nuclear expression vector pDBle-TFHis was correctly constructed and integrated into C. reinhardtii CW15 genome and fao1 transcript was detected successfully. The recombinant protein was purified by an affinity column and the activity was tested.

Key words: long-chain fatty alcohol oxidase , transit peptide , His-tag , Chlamydomonas nuclear transformation , RT-PCR

[1]谢传晓, 韩伟, 余增亮. 模式生物衣藻及其研究进展. 遗传, 2003, 25(3): 350-354.

Xie C X, Han W, Yu Z L. Progress of Chlamydomonas as a model organism. Hereditas, 2003, 25(3): 350-354. (in Chinese)

[2]Rochaix J D. Chlamydomonas reinhardtii as the photosynthetic yeast. Annual Review of Genetics, 1995, 29(1): 209-230.

[3]Merchant S S, Prochnik S E, Vallon O, Harris E H, Karpowicz S J, Witman G B, Mittag M, Terry A, Salamov A, Fritz-Laylin L K, Maréchal-Drouard L, Marshall W F, Qu L H, Nelson D R, Sanderfoot A A, Spalding M H, Kapitonov V V, Ren Q H, Ferris P, Lindquist E, Shapiro H, Lucas S M, Grimwood J, Schmutz J, Rokhsar D S, Grossman R. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 2007, 318: 245-250.

[4]O'Neill B M, Mikkelson K L, Gutierrez N M, Cunningham J L, Wolff K L, Szyjka S J, Yohn C B, Redding K E, Mendez M J. An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Research, 2012, 40(6): 2782-2792.

[5]Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S. A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Research, 1999, 6(6): 369-373.

[6]Depège N, Bellafiore S, Rochaix J D. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science Signaling, 2003, 299(5612): 1572.

[7]Shikanai T, Muller-Moule P, Munekage Y, Nyogi K K, Pilon M. PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. The Plant Cell, 2003, 15: 1333-1346.

[8]Dobberstein B, Blobel G, Chua N H. In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5- bisphosphate carboxylase of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the USA, 1977, 74: 1082-1085.

[9]Schmidt G W, Devillers-Thiery A, Desruisseaux H, Blobel G, Chua N H. NH2-terminal amino acid sequences of precursor and mature forms of the ribulose-1, 5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii. The Journal of Cell Biology, 1979, 83(3): 615-622.

[10]Keegstra K, Cline K. Protein import and routing systems of chloroplasts. The Plant Cell, 1999, 11(4): 557-570.

[11]Lzister D. Chloroplast research in the genomic age. Trends in Genetics, 2003, 19(1): 47-56.

[12]Ramesh V M, Bingham S E, Webber A N. A simple method for chloroplast transformation in Chlamydomonas reinhardtii// Photosynthesis Research Protocols. Humana Press, 2011: 313-320.

[13]Tran M, Van C, Barrera D J, Pettersson P L, Peinado C D, Bui J, Mayfield S P. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proceedings of the National Academy of Sciences of the USA, 2013, 110(1): E15-E22.

[14]Bhattacharya A, Kumar A, Desai N, Seema P. Organelle transformation//Plant Cell Culture Protocols. Humana Press, Springer Science Business Media, 2012: 401-406.

[15]Rasala B A, Mayfield S P. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioengineered Bugs, 2011, 2(1): 50.       

[16]Lössl A G, Waheed M T. Chloroplast-derived vaccines against human diseases: Achievements, challenges and scopes. Plant Biotechnology Journal, 2011, 9(5): 527-539.   .

[17]Kindle K L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the USA, 1990, 87(3): 1228-1232.

[18]Shimogawara K, Fujiwara S, Grossman A, Usuda H. High-frequency transformation of Chlamydomonas reinhardtii by electroporation. Genetics Society of America, 1998, 148(4): 1821-1828.

[19]Berthold P, Shmitt R, Mages W. An engineered streptomyces hygroscopicus aph7 gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist, 2002, 153(4): 401-412.

[20]Drocourt D. Calmels T, Reynes J P, Baron M, Tirbay G. Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Research, 1990, 18(13): 4009-4009.

[21]Stevens D R, Rochaix J D, Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Molecular Genetics and Genomics, 1996, 251(1): 23-30.

[22]Meslet-Cladière L, Vallon O. Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryot Cell, 2011, 10(12): 1670-1678.

[23]Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich L D. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology, 1992, 10(8): 894-898.

[24]Cheng Q, Sanglard D, Vanhanen S, Liu H T, Bombelli P, Smith A G, Slabas A R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochimicaet Biophysica Acta (BBA)-Molecular and Cell Biology of Lipid, 2005, 1735: 192-203. 

[25]Cheng Q, Liu H T, Bombelli P, Smith A G, Slabas A R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Letters, 2004, 574(1/3): 62-68.

[26]Kemp G D, Dickinson F M, Ratledge C. Inducible long chain alclhol oxidase from alkane-grown Candia tropicalis. Applied Microbiology and Biotechnology, 1988, 29(4): 370-374.

[27]Kemp G D, Dickinson F M, Ratledge C. Occurrence of fatty alcohol oxidase in alkane-and fatty-acid-utilising yeasts and moulds. Applied Microbiology and Biotechnology, 1994, 40(6): 873-875.

[28]Kemp G D, Dickinson F M, Ratledge C. Litght sensitivity of the n-alkane-induced fatty alcohol oxidase from Candida tropicalis and Yarrowia lipolytica. Applied Microbiology and Biotechnology, 1990, 32(4): 461-464.

[29]Dickinson F M, Catherine W. Purification and some properties of alcohol oxidase from alkane-grown Candia tropicalis. Biochemical Journal, 1992, 282: 325-331.

[30]孙枫, 杨雪, 王晓莉, 董汉松. 拟南芥长链脂肪醇氧化酶(AtFAO3)在抗病防卫反应中的作用分析. 华北农学报, 2009, 24(6): 1-5.

Sun F, Yang X, Wang X L, Dong H S. Functional analysis of Arabidopsis AtFAO3 in defense against pseudomonas syringae. Acta Agriculturae Boreali-Sinica, 2009, 24(6): 1-5. (in Chinese)

[31]Rajangam A S, Gidda S K, Craddock C, Mullen R T, Dyer J M, Eastmond P J. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds. Plant Physiology, 2013, 161(1): 72-80.

[32]Rasala B A, Lee P A, Shen Z, Briggs S P, Mendez M, Mayfield S P. Robust expression and secretion of xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. Public Library of Science, 2012, 7(8): e43349.

[33]Rochaix J D. Molecular genetics of chloroplasts and mitochondria in the unicellular green alga Chlamydomonas. FEMS Microbiology Letters, 1987, 46(1): 13-34.

[34]Tam L W, Lefebvre P A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics, 1993, 135(2): 375-384.

[35]Leon R, Fernandez E. Nuclear transformation of eukaryotic microalgae: Historical overview, achievements and problems. Advances in Experimental Medicine and Biology, 2007, 616: 1-11.

[36]Cerutti H, Johnson A M, Gillham N W, Boynton J E. Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. The Plant Cell, 1997, 9(6): 925-945.

[37]Wu-Scharf D, Jeong B, Zhang C, Cerutti H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Faculty Publications from the Center for Plant Science Onnovation, 2000, 290: 1159-1162.

[38]Wilde D C, Houdt V H, Buck D S, Angenon G, Jaeger G D, Depocker A. Plants as bioreactors for protein production: Avoiding the problem of transgene silencing. Plant Molecular Biology, 2000, 43: 347-359.

[39]Shaver S, Casas-Mollano J A, Cerny R L, Cerutti H. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics, 2010, 5(4): 301-312.

[40]Cheng Q, Yang J, Day A, Dowson-Day M, Dixon R. Evolutionary implication of nitrogenase-like genes in plant kingdom and prospects for nif gene transfer in model eukaryotes. Biological Nitrogen Fixation, Sustainable Agriculture and the Environment, 2005: 387-389.

[41]Cheng Q, Day A, Dowson-Day M, Shen G F, Dixon R. The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitute for the chlL gene in Chlamydomonas reinhardtii. Biochemical and Biophysical Research Commol/Lunication, 2005, 329: 966-975.

[42]Cheng Q. Perspectives in biological nitrogen fixation research. Journal of Integrative Plant Biology, 2008, 50(7): 784-796.
[1] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[2] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[3] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[4] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[5] XU JianJian,WANG YanJiao,DUAN Yu,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Construction of Genome-Length cDNA of Citrus Vein Enation Virus and Identification of Its Infectivity [J]. Scientia Agricultura Sinica, 2020, 53(18): 3707-3715.
[6] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[7] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[11] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[12] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[13] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[14] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[15] TANG YaFei,PEI Fan,LI ZhengGang,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Identification of Viruses Infecting Peppers in Guangdong by Small RNA Deep Sequencing [J]. Scientia Agricultura Sinica, 2019, 52(13): 2256-2267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!