Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (1): 77-85.doi: 10.3864/j.issn.0578-1752.2017.01.007

• PLANT PROTECTION • Previous Articles     Next Articles

Gene cloning and functional analysis of OhPbs2 in Oidium heveae

FENG Xia, LIN ChunHua, KANG Xun, JIN Yang, LIU Xiao, HE QiGuang, LIU WenBo, MIAO WeiGuo, ZHENG FuCong   

  1. College of Environment and Plant Protection, Hainan University, Haikou 570228
  • Received:2016-10-08 Online:2017-01-01 Published:2017-01-01

Abstract: 【Objective】Pbs2 is one of the important members of HOG-MAPK pathway in MAPK signaling pathway, and plays an important role in osmotic regulation of plant pathogens. Oidium heveae is an obligate parasite. In this paper, the function and effect of Pbs2 of O. heveae were studied by using Colletotrichum gloeosporioides.【Method】The homologous cloning method was used to amplify the OhPbs2 by using the genomic DNA and cDNA as template. The domain of this gene was analyzed by bioinformatics. Phylogenetic analysis of seven homologous protein sequences of other fungi and OhPbs2 was conducted, and the phylogenetic tree was constructed by the maximum parsimony method in MEGA6 to further analyze and identify this gene. Using homologous recombination and protoplast transformation, OhPbs2 was transformed into the ΔCgPbs2 of C. gloeosporioides. The transformant was screened on PDA+1.5 mol·L-1 sorbitol. At the same time, the genome of the transformant was extracted as a template and identified with the primer pairs of OhPbs2, and the correct transformant ΔCgPbs2+OhPbs2 was selected for subsequent phenotypic determination. The growth state of ΔCgPbs2, ΔCgPbs2+OhPbs2 and wild type strains was compared under different culture conditions. And the pathogenicity of the three strains was detected by inoculating the leaves of the rubber tree.【Result】The full-length of the OhPbs2 is 1 927 bp, cDNA of the OhPbs2 is 1 860 bp, and contains an intron that encodes a 619 amino acids protein. Bioinformatics analysis showed that the protein had the same S_TKc domain as CgPbs2. The phylogenetic tree showed that the Pbs2 protein was closely related to Aspergillus fumigatus Pbs2 protein, and the similarity was 55%. And the similarity to Colletotrichum gloeosporioides was 49%, also it was close to Pbs2 protein of Neurospora crassa, Magnaporthe oryzae, Saccharomyces cerevisiae and Fusarium graminearum, the similarities were 54%, 53%, 53% and 50%, respectively. ΔCgPbs2+OhPbs2 strain could grow white colonies on PDA+1.5 mol·L-1 sorbitol medium, but ΔCgPbs2 strain could not grow. The sequencing results showed that the OhPbs2 had been successfully transferred into the ΔCgPbs2. The color of ΔCgPbs2+OhPbs2 in the MM medium colony was white with short aerial hyphae, which is different from the wild type strain. The growth rate of ΔCgPbs2, ΔCgPbs2+OhPbs2 and wild type strains decreased gradually with increasing concentration in MM medium containing different concentrations of NaCl, sorbitol, SDS, H2O2 and fludioxonil. OhPbs2 not only restored the ability of the wild type strain to tolerate osmolality, especially to sorbitol, but also to the susceptibility to fludioxonil, and even to enhance potency. But OhPbs2 complementary changed the color of C. gloeosporioides and inhibited the growth of aerial hyphae. CgPbs2 might be involved in the pathogenicity of C. gloeosporioides, however OhPbs2 did not restore its pathogenicity, but weakened its pathogenic ability to a certain extent.【Conclusion】OhPbs2 may be involved in the regulation of the vegetative growth, oxidative stress, osmotic pressure and cell wall formation of the pathogen, and enhance the corresponding function of the C. gloeosporioides. OhPbs2 may be involved in the pathogenicity of the pathogen, but pathogenicity may be different from CgPbs2.

Key words: Oidium heveae, OhPbs2, gene cloning, osmotic pressure, pathogenicity

[1]    万三连, 梁鹏, 刘文波, 张宇, 缪卫国, 郑服丛. 橡胶树与白粉病菌Oidium heveae亲和互作组织细胞学研究. 植物保护, 2014, 40(3): 26-36.
Wan S L, Liang P, LIU W B, Zhang Y, Miao W G, Zheng F  C. Cytological analysis of compatible interactions between rubber  tree and Oidium heveae. plant protection, 2014, 40(3): 26-36. (in Chinese)
[2]    Li X, Bi Z H, Di R, Liang P, He Q G, Liu W B, Miao W G, Zheng F C. Identification of powdery mildew responsive genes in Hevea brasiliensis through mRNA differential display. International Journal of Molecular Sciences, 2016, 17(2): 181.
[3]    Schaeffer H J, Weber M J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Molecular and Cellular Biology, 1999, 19(4): 2435-2444.
[4]    Xu J R. MAP kinases in fungal pathogens. Fungal Genetics and Biology, 2000, 31(3): 137-152.
[5]    巩校东, 张晓玉, 田兰, 王星懿, 李坡, 张盼, 王玥, 范永山, 韩建民, 谷守芹, 董金皋. 玉米大斑病菌MAPK超家族的全基因组鉴定及途径模型建立. 中国农业科学, 2014, 47(9): 1715-1724.
Gong X D, Zhang X Y, Tian L, Wang X Y, Li P, Zhang P, Wang Y, Fan Y S, Han J M, Gu S J, Dong J G. Genome-wide identification MAPK superfamily and establishment of the model of MAPK cascade pathway in Setosphaeria turcica. Scientia Agricultura Sinica, 2014, 47(9): 1715-1724. (in Chinese)
[6]    Herskowitz I. MAP kinase pathways in yeast: For mating and more. Cell, 1995, 80(2): 187-197.
[7]    Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science, 2005, 10(7): 339-346.
[8]    Hamel L P, Nicole M C, Duplessis S, Ellis B E. Mitogen-activated protein kinase signaling in plant-interacting fungi: Distinct messages from conserved messengers. The Plant Cell, 2012, 24(4): 1327-1351.
[9]    Gustin M C, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 1998, 62(4): 1264-1300.
[10]   张鑫, 曹志艳, 刘士伟, 郭丽媛, 董金皋. 玉米大斑病菌聚酮体合成酶基因StPKS功能分析. 中国农业科学, 2011, 44(8): 1603-1609.
Zhang X, Cao Z Y, Liu S W, Guo L Y, Dong J G. Functional analysis of polyketide synthase gene StPKS in Setosphaeria turcica. Scientia Agricultura Sinica, 2011, 44(8): 1603-1609. (in Chinese)
[11]   冯飞. 极细链格孢菌HOG1PBS2基因克隆及功能初步分析[D]. 北京: 中国农业科学院, 2007.
Feng F. Cloning and functional characterization of HOG1 and PBS2 genes of the fungus Alternaria tenuissima[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)
[12] Chen R E, Thorner J. Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta,2007, 1773: 1311-1340.
[13]   Zarrinpar A, Bhattacharyya R P, Nittler M P, Lim W  A. Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Molecular Cell, 2004, 14(6): 825-832.
[14]   Brewster J L, de Valoir T, Dwyer N D, Winter E, Gustin M C. An osmosensing signal transduction pathway in yeast. Science, 1993, 259: 1760-1763.
[15]   Hohmann S, Krantz M, Nordlander B. Yeast osmoregulation. Methods in Enzymology, 2007, 428: 29-45.
[16]   Adler L, Blomberg A, Nilsson A. Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. Journal of Bacteriology, 1985, 162(1): 300-306.
[17]   Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T. Fungicide activity through activation of a fungal signalling pathway. Molecular Microbiology, 2004, 53(6): 1785-1796.
[18]   Alonso-Monge R, Carvaihlo S, Nombela C, Rial E, Pla J. The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology, 2009, 155(2): 413-423.
[19]   Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 2002, 66(2): 300-372.
[20]   Posas F, Wurgler-MuqDhy S M, Maeda T, Witten E A, Thai T C, Saito H. Yeast HOG l MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLNl-YPDI-SSKl “two-component” osmoeensor. Cell, 1996, 86(6): 865-875.
[21]   孙雅琦, 梁鹏, 刘文波, 缪卫国, 郑服丛. 橡胶树白粉菌MAPK级联信号途径全基因组鉴定及途径模型建立. 江苏农业科学, 2015, 43(12): 41-45.
Sun Y Q, Liang P, Liu W B, Miao W G, Zheng F C. Genome-wide identification and pathway model establishment of MAPK cascade signal pathway in rubber tree. Jiangsu Agricultural Sciences, 2015, 43(12): 41-45. (in Chinese)
[22]   林春花, 郑服丛. 稻瘟菌MgORP1基因敲除突变株的构建及其表型分析. 微生物学报, 2008, 48(9): 1160-1167.
Lin C H, Zheng F C. Characterization of oxysterol binding protein homolog MgORP1 in the rice blast fungus Magnaporthe grisea. Acta Microbiologica Sinica, 2008, 48(9): 1160-1167. (in Chinese)
[23]   崔华威, 杨艳丽, 黎敬涛, 罗文富, 苗爱敏, 胡振兴, 韩小女. 一种基于photoshop的叶片相对病斑面积快速测定方法. 安徽农业科学, 2009, 37(22): 10760-10762, 10805.
Cui H W, Yang Y L, Li J T, Luo W F, Miao A M, Hu Z X, Han X N. A faster method for measuring relative lesion area on leaves based on software photoshop. Journal of Anhui Agricultural Sciences, 2009, 37(22): 10760-10762, 10805. (in Chinese)
[24]   万三连, 梁鹏, 宋风雅, 张宇, 刘文波, 缪卫国, 郑服丛. 橡胶树白粉病菌分生孢子在不同介质的萌发过程及其内容物的变化. 植物病理学报, 2014, 44(6): 595-602.
Wan S L, Liang P, Song F Y, Zhang Y, Liu W B, Miao W G, Zheng F C. Germination morphology of conidia of Oidium heveae in different media and its content changes. Acta Phytopathologica Sinica, 2014, 44(6): 595-602. (in Chinese)
[25]   祝春晓. 芸薹生链格孢AbPbs2基因功能及下游MAPK锚定作用位点的研究[D]. 泰安: 山东农业大学, 2015.
Zhu C X. Studies on the function of Pbs2 gene of Alternaria brassicae and downstream MAPK anchorsite[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
[26]   田兰. 玉米大斑病菌HOG-MAPK级联途径中StPBS2基因的结构分析及功能研究[D]. 保定: 河北农业大学, 2014.
Tian L. Structural and functional analysis of StPBS2 gene in encoding a MAPK kinase HOG-MAPK cascade pathway of Setosphaeria turcica[D]. Baoding: Agricultural University of Hebei, 2014. (in Chinese)
[27]   马彦, 乔建军, 刘伟, 李若瑜. 烟曲霉pbs2基因功能初步探讨. 中华微生物学和免疫学杂志, 2008, 28(12): 1126-1130.
Ma Y, Qiao J J, Liu W, Li R Y. Cloning and functional analysis of pbs2 gene in Aspergillus fumigatus. Chinese Journal of Microbiology and Immunology, 2008, 28(12): 1126-1130. (in Chinese)
[28]   马冬梅, 季雅娟, 阳芳, 刘伟, 万喆, 李若瑜. 烟曲霉sho1pbs2基因额外拷贝对几种应激能力的影响. 中国真菌学杂志, 2012, 7(4): 193-198.
Ma D M, Ji Y J, Yang F, Liu W, Wan J, Li R Y. The effect of extra copies of shol or pbs2 gene on the adaptive ability of Aspergillus fumigatus to several stresses. Chinese Journal of Mycology, 2012, 7(4): 193-198. (in Chinese)
[29]   闫潇敏, 宁斌科, 王列平, 张媛媛. 新型杀菌剂氟咯菌腈及其研究开发进展. 世界农药, 2010, 32(3): 36-46.
Yan X M, Ning B K, Wang L P, Zhang Y Y. Advances in the research and development of a new fungicide fludioxonil. World Pesticides, 2010, 32(3): 36-46. (in Chinese)
[30]   Wu D X, Zhang R S, Han X, Wang J X, Zhou M G, Chen C  J. Resistance risk assessment for fludioxonil in Stemphylium solani. Annals of Applied Biology, 2015, 167(2): 277-284.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[3] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[4] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[5] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[6] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[7] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[8] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[9] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[10] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[11] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[12] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[15] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!