Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (10): 1772-1783.doi: 10.3864/j.issn.0578-1752.2019.10.010

• HORTICULTURE • Previous Articles     Next Articles

Screening, Cloning and Functional Research of the Rare Allelic Variation of Caffeine Synthase Gene (TCS1g) in Tea Plants

LIU YuFei1,2,JIN JiQiang1,YAO MingZhe1(),CHEN Liang1()   

  1. 1 Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008
    2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2018-12-04 Accepted:2019-02-25 Online:2019-05-16 Published:2019-05-23
  • Contact: MingZhe YAO,Liang CHEN E-mail:yaomz@tricaas.com;liangchen@tricaas.com

Abstract:

【Objective】 Tea caffeine synthase 1 (TCS1), a key enzyme in the caffeine biosynthesis pathway, shows a wide range of allelic variation within Camellia sect. Thea germplasm. Discovery of the specific alleles of TCS1 as the genetic basis of natural variation in caffeine levels will increase the understanding of the mechanism of caffeine synthesis and accumulation, and provide new genetic resources for improving caffeine content in tea plant. 【Method】 An unique PCR primer set, namely TCS1P InDel F/R, was used to detect TCS1 alleles in 673 accessions of tea germplasm. The primer set (TCS1cDNAF/R) was used to clone the full-length cDNA sequence of novel allele, whose function was subsequently validated by bioinformatics quantitative real-time PCR (qRT-PCR) and prokaryotic expression analysis. 【Result】 The novel rare allele, TCS1g, was identified in the several germplasm of C. taliensis. The TCS1g sequence was obtained by using the accession ‘LL17’, which contained both TCS1a and TCS1g. The CDS of TCS1g was 1098 bp, encoding 365 amino acids with a calculated molecular weight of 40.9 kD and a theoretical isoelectric point 5.1. The sequence similarities between TCS1g and TCS1a, TCS1b, TCS1c, TCS1d, TCS1e, TCS1f ranged from 94.1% to 99.2%. The TCS1g showed a high level (>96%) of amino acid sequence identity with the alleles (TCS1b and TCS1c) which had only theobromine synthase (TS) activity, while it was slightly lower for other alleles (TCS1a, TCS1d, TCS1e and TCS1f ) having both TS and caffeine synthase (CS) activity. The amino acid residue in position 221, located at the active center motif of TCS1, was histidine (His) in the TCS1g, as well as TCS1b and TCS1c, however it was arginine (Arg) for the others. The mutation (His to Arg) would change the isoelectric point and hydrophilicity from 5.05 to 5.06, and from -0.119 to -0.123, respectively. Meanwhile, the 5' upstream regulatory region of TCS1g, TCS1b and TCS1c was 15 bp longer than that of TCS1a, TCS1d, TCS1e and TCS1f. The results of prokaryotic expression analysis indicated that TCS1g had only TS activity (44.3 pkat/mg), and qRT-PCR analysis showed the TCS1g was expressed in the ‘LL17’. The contents of caffeine and theobromine in the ‘LL17’ were 40.3 mg·g -1and 5.4 mg·g -1, respectively. 【Conclusion】 A novel rare allele of TCS1 (TCS1g) was cloned, and the expression was detected in the ‘LL17’. TCS1g had TS activity, but no CS activity, which might be caused by the change of amino acid residue in position 221.

Key words: allelic variation, caffeine synthase, functional analysis, purine alkaloids, tea plant

Fig. 1

The major biosynthetic pathway of caffeine synthesis (1) 7-methylxanthosine synthase (xanthosine N-methyltransferase); (2) N-methylnucleosidase; (3) theobromine synthase (monomethylxanthine N-methyltransferase; TS): ICS1 (TCS1b), PCS1 (TCS1c); (4) caffeine synthase (dimethylxanthine N-methyltransferase; CS); (3-4) dual-functional caffeine synthase: TCS1a, TCS1d, TCS1e, TCS1f. SAM, S-adenosyl-Lmethionine; SAH, S-adenosyl-L-homocysteine. The picture refers to references [10-12]"

Table 1

Primer sequences used in study"

引物名称 Primer name 引物序列Primer sequence (5′-3′)
TCS1P InDel F TATGTCATGTTTCTATTATTT
TCS1P InDel R TACTTTCTCCTTCTCCTCTGT
TCS1cDNAF CACTGCTGTGGCAGCTGGC
TCS1cDNAR CAACTTCTCATTTCTCCCAAC
TCS1gF CGGGATCCATGGGGAAGGTGAACGAAG
TCS1gR CGGAATTCCTATCCAACAATCTTGGAA
18S-F TCTCAACCATAAACGATGCCGACCAG
18S-R TTTCAGCCTTGCGACCATACTCCC
TCS1-CS-F TTACTTTTCTGACGAGGCA
TCS1-CS-R TGCGTTAAGAGCTTGAAGG
TCS1-TS-F ATTACTTTTCTCCGACGAGGCG
TCS1-TS-R TGCAGTAAGAGCTTGAAGAA
TCS1-Total-F AGCTGGCCTCTTTGCYATAA
TCS1-Total-R ACTAYTTTCTCCTTCTCCTC

Fig. 2

Comparison of allelic variations in 5’-untranslated region of TCS1g and other six allelic variants of TCS1"

Table 2

Coding region nucleotide (upper portion of matrix) and amino acid (bottom portion of matrix) sequence comparison (% similarity) between TCS1g and other six allelic variants of TCS1"

TCS1a TCS1b TCS1c TCS1d TCS1e TCS1f TCS1g
TCS1a - 94.6 94.1 97.4 96.4 97.8 95.3
TCS1b 91.0 - 99.2 94.5 95.4 95.3 98.9
TCS1c 89.9 98.6 - 94.1 94.7 94.7 98. 5
TCS1d 94.6 89.6 88.2 - 96.8 98.8 95.4
TCS1e 93.8 91.2 89.9 93.5 - 97.4 96.0
TCS1f 95.4 91.0 89.6 97.3 95.4 - 96.0
TCS1g 92.1 98.1 96.7 91.0 92.3 92.3 -

Fig. 3

Phylogenetic tree of N-methyltransferase CDS sequences (related to caffeine synthesis) from Camellia, Coffea and Theobroma The hollow triangles, hollow circles and hollow squares mark N-methyltransferase genes of Camellia, Coffea, and Theobroma, respectively. TCS1g is highlighted by bold"

Fig. 4

Comparison of amino acid sequences of TCS1g and other six allelic variants of TCS1 The proposed SAM-binding motifs (A, B’, and C) and conserved region that is nominated as ‘‘YFFF-region’’ are shown by red open boxes [15,28-29]. The amino acid residues indicated by a blue open box play a critical role in substrate recognition [15,17,30]. The TCS1b, TCS1c and TCS1 g variant sites compared to TCS1a, TCS1d, TCS1e and TCS1f are indicated by a brownish yellow triangle"

Fig. 5

Predicted tertiary structure homology-modeling of TCS1g gene In the interval 139-287, amino acid residues different from TCS1b, TCS1c, TCS1g and TCS1a, TCS1d, TCS1e, TCS1f are indicated in yellow. Green and red are labeled as amino acid residues that bind to the methyl acceptor and the methyl donor, respectively"

Table 3

Comparison of the activity and substrate selectivity of TCS1g recombinant enzymes"

重组蛋白
Recombinant enzyme
底物/甲基化位置
Substrate/Methylation position
Tb/7-mX
(%)
7-mX/3-N
(pkat/mg)
Tb/1-N
(pkat/mg)
TCS1a 111.9±5.0 27.1±0.1 24.2±1.1
TCS1c 17.9±0.9 ND 0
TCS1g 44.3±0.3 ND 0

Fig. 6

Real-time PCR was used to analyze TCS1g specific expression TCS1-CS, TCS1-TS, and TCS1-Total are the expression levels of allelic variation encoding proteins with both theobromine synthase (TS) and caffeine synthase (CS) activities, only with TS activities, and total TCS1, respectively"

Table 4

Purine alkaloid contents of LL17 containing rare TCS1g (mg·g-1)"

资源
Germplasm
学名
Scientific name
等位变异
TCS1 allelic variation
可可碱
Theobromine (mg·g-1)
咖啡碱
Caffeine (mg·g-1)
LJ43 Camellia sinensis TCS1a 1.8±0.0 31.2±0.1
CCT C. ptilophylla TCS1c 56.3±0.2 ND
LL17 C. taliensis TCS1aTCS1g 5.4±0.1 40.3±0.3
[1] 宛晓春 . 茶叶生物化学. 第三版. 北京: 中国农业出版社, 2008: 8-63.
WAN X C. Tea Biochemistry: 3th Edition. Beijing: China Agricultural Press, 2008: 8-63. (in Chinese)
[2] PARE W . The effect of caffeine and seconal on a visual discrimination task. Journal of Comparative and Physiological Psychology, 1961,54(5):506-509.
doi: 10.1037/h0040683
[3] SMITH A . Effects of caffeine on human behavior. Food and Chemical Toxicology, 2002,40(9):1243-1255.
doi: 10.1016/S0278-6915(02)00096-0
[4] 吴命燕, 范方媛, 梁月荣, 郑新强, 陆建良 . 咖啡碱的生理功能及其作用机制. 茶叶科学, 2010,30(4):235-242.
WU M Y, FAN F Y, LIANG Y R, ZHENGX Q, LU J L . The physiological functions of caffeine and their related mechanisms. Journal of Tea Science, 2010,30(4):235-242. (in Chinese)
[5] TSUANG Y H, SUN J S, CHEN L T, SUN S C, CHEN S C . Direct effects of caffeine on osteoblastic cells metabolism: The possible causal effect of caffeine on the formation of osteoporosis. Journal of Orthopaedic Surgery and Research, 2006,1(7):1-7.
doi: 10.1186/1749-799X-1-1
[6] GROSSO L M, BRACKEN M B . Caffeine metabolism, genetics, and perinatal outcomes: A review of exposure assessment considerations during pregnancy. Annals of Epidemiology, 2005,15(6):460-466.
doi: 10.1016/j.annepidem.2004.12.011
[7] HALLSTROM H, WOLK A, GLYNN A, MICHAËLSSON K . Coffee, tea plants and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos International, 2006: 17(7):1055-1064.
doi: 10.1007/s00198-006-0109-y
[8] 陈盛相, 齐桂年, 李建华, 夏建冰 . 低咖啡因茶树育种研究进展. 福建茶叶, 2009,32(1):2-3.
CHEN S X, QI G N, LI J H, XIA J B . Research progress in low caffeine content germplasm breeding of tea plants. Tea in Fujian, 2009,32(1):2-3. (in Chinese)
[9] 吴华玲, 陈栋, 李家贤 . 茶树咖啡碱代谢及低咖啡碱茶树育种研究进展. 热带作物学报, 2011,32(9):1780-1785.
WU H L, CHEN D, LI J X . Research progress in caffeine metabolism and low caffeine content germplasm breeding of tea plants (Camellia sinenesis(L.) O. Kuntze). Chinese Journal of Tropical Crops, 2011,32(9):1780-1785. (in Chinese)
[10] NEGISHI O, OZAWA T, IMAGAWA H . Conversion of xanthosine into caffeine in tea plants. Agricultural Biology and Chemistry, 1985,49(1):251-253.
[11] ASHIHARA H, SANO H, CROZIER A . Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry, 2008,69(4):841-856.
doi: 10.1016/j.phytochem.2007.10.029
[12] MOHANPURIA P, KUMAR V, YADAV S K . Tea caffeine: metabolism, functions, and reduction strategies. Food Science and Biotechnology, 2010,19(2):275-287.
doi: 10.1007/s10068-010-0041-y
[13] SUZUKI T . The participation of S-adenosylmethionine in the biosynthesis of caffeine in the tea plants. FEBS Letters, 1972,24(1):18-20.
[14] KATO M, MIZUNO K, CROZIER A, FUJIMURA T, ASHIHARA H . Caffeine synthase gene from tea leaves. Nature, 2000,406(6799):956-957.
doi: 10.1038/35023072
[15] YONEYAMA N, MORIMOTO H, YE C X, ASHIHARA H, MIZUNO K, KATO M . Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Molecular Genetics and Genomics, 2006,275(2):125-135.
[16] 金基强, 周晨阳, 马春雷, 姚明哲, 马建强, 陈亮 . 我国代表性茶树种质嘌呤生物碱的鉴定. 植物遗传资源学报, 2014,15(2):279-285.
JIN J Q, ZHOU C Y, MA C L, YAO M Z, MA J Q, CHEN L . Identification on purine alkaloids of representative tea germplasms in China. Journal of Plant Genetic Resources, 2014,15(2):279-285. (in Chinese)
[17] JIN J Q, YAO M Z, MA C L, MA J Q, CHEN L . Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species. Plant Physiology and Biochemistry, 2016,100(1):18-26.
doi: 10.1016/j.plaphy.2015.12.020
[18] OGAWA M, HERAI Y, KOIZUMI N, KUSANO T, SANO HIROSHI . 7-Methylxanthine methyltransferase of coffee plants. Gene isolation and enzymatic properties. The Journal of Biological Chemistry, 2001,276(11):8213-8218.
doi: 10.1074/jbc.M009480200
[19] PICHERSKY E, LEWINSOHN E . Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology, 2011,62(1):549-566.
doi: 10.1146/annurev-arplant-042110-103814
[20] XIA E H, ZHANG H B, SHENG J, LI K, ZHANG Q J, KIM C, ZHANG Y, LIU Y, ZHU T, LI W, HUANG H, TONG Y, NAN H, SHI C, SHI C, JIANG J J, MAO S Y, JIAO J Y, ZHANG D, ZHAO Y, ZHAO Y J, ZHANG L P, LIU Y L, LIU B Y, YU Y, SHAO S F, NI D J, EICHLER E E, GAO L Z . The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant, 2017,10(6):866-877.
doi: 10.1016/j.molp.2017.04.002
[21] WEI C, YANG H, WANG S, ZHAO J, LIU C, GAO L, XIA E, LU Y, TAI Y, SHE G, SUN J, CAO H, TONG W, GAO Q, LI Y, DENG W, JIANG X, WANG W, CHEN Q, ZHANG S, LI H, WU J, WANG P, LI P, SHI C, ZHENG F, JIAN J, HUANG B, SHAN D, SHI M, FANG C, YUE Y, LI F, LI D, WEI S, HAN B, JIANG C, YIN Y, XIA T, ZHANG Z, BENNETZEN J L, ZHAO S, WAN X . Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(18):4151-4158.
[22] 张宏达, 叶创兴, 张润梅, 马应丹, 曾沛 . 中国发现新的茶树资源-可可茶. 中山大学学报, 1988(3):131-133.
ZHANG H D, YE C X, ZHANG R M, MA Y D, ZENG Q . China discovers new tea resources, one cocoa tea(Camellia ptilophylla Chang). Journal of Yatsen University, 1988(3):131-133. (in Chinese)
[23] ASHIHARA H, KATO M, YE C X . Biosynthesis and metabolism of purine alkaloids in leaves of Cocoa tea (Camellia ptilophylla). Journal of Plant Research, 1998,111(4):599-604.
[24] 杨晓绒 . 野生五柱茶和厚轴茶主要生化成分的研究[D]. 广州: 中山大学, 2005: 41-42.
YANG X R . Studies on the main biochemistry components of wild Camellia pentastyla and Camellia crassicolumna [D]. Guangzhou: Sun Yat-sen University, 2005: 41-42. (in Chinese)
[25] 闵天禄, 李炳钧, 王春, 龙春林, 张文驹, 杨世雄, 李学东, 许秀坤 . 一种富含茶碱的保健茶及其制备方法. 中国, 1145178A[P]. 1997-03-17.
MIN T L, LI B J, WANG C, LONG C L, ZHANG W J, YANG S X, LI X D, XU X K . Health-care tea rich in theophylline and preparation method thereof. China, 1145178A[P]. 1997-03-17. (in Chinese)
[26] 周卫龙, 徐建峰, 黄伙水, 刘相真, 陆小磊, 林锻炼, 王启灿 . GB/T 8313-2018 茶叶中茶多酚与儿茶素含量的检测方法. 北京: 中国标准出版社, 2018.
ZHOU W L, XU J F, HUANG H S, LIU Z X, LU X L, LIN D L, WANG Q C. GB/T 8313-2018 Determination of total polyphenols and catechins content in tea. Beijing: China Standard Press, 2018. (in Chinese)
[27] GUEX N, PEITSCH M C . SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 1997,18(15):2714-2723.
doi: 10.1002/(ISSN)1522-2683
[28] ZUBIETA C, ROSS J R, KOSCHESKI P, YANG Y, PICHERSKY E, NOEL J P . Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell, 2003,15(8):1704-1716.
doi: 10.1105/tpc.014548
[29] ISHIDA M, KITAO N, MIZUNO K, TANIKAWA N, KATO M . Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants. Planta, 2009,229(3):559-568.
[30] 李萌萌 . 茶树咖啡碱生物合成相关酶基因原核多基因表达载体的构建及其体外表达调控[D]. 合肥: 安徽农业大学, 2014.
LI M M . Construction of the multi-gene prokaryotic expression vector for tea caffeine biosynthesis and expression regulation in vitro[D]. Hefei: Anhui Agricultural University, 2014. (in Chinese)
[31] JIN J Q, CHAI Y F, LIU Y F, ZHANG J, YAO M Z, CHEN L . Hongyacha, a naturally caffeine-free tea plant from Fujian, China. Journal of Agricultural and Food Chemistry, 2018,66(43):11311-11319.
doi: 10.1021/acs.jafc.8b03433
[32] DENOEUD F, CARRETERO-PAULET L, DEREEPER A, DROC G, GUYOT R, PIETRELLA M, ZHENG C, ALBERTI A, ANTHONY F, APREA G, AURY J M, BENTO P, BERNARD M, BOCS S, CAMPA C, CENCI A, COMBES M C, CROUZILLAT D, DA SILVA C, DADDIEGO L ,et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 2014,345(6201):1181-1185.
[33] 许勇泉, 尹军峰, 袁海波, 陈建新, 汪芳 . 茶叶脱咖啡因技术研究进展. 茶叶科学, 2008,28(1):1-8.
XU Y Q, YIN J F, YUAN H B, CHEN J X, WANG F . A review on the technique of tea decaffeination. Journal of Tea Science, 2008,28(1):1-8. (in Chinese)
[34] 王雪敏, 姚明哲, 金基强, 马春雷, 陈亮 . 低咖啡碱茶树遗传群体的咖啡碱含量与分子变异分析. 茶叶科学, 2012,32(3):276-282.
WANG X M, YAO M Z, JIN J Q, MA C L, CHEN L . Analysis of caffeine content and molecular variance of low-caffeine tea plants. Journal of Tea Science, 2012,32(3):276-282. (in Chinese)
[1] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[2] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[3] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[4] FAN Xin,ZHAO LeiLin,ZHAI HongHong,WANG Yuan,MENG ZhiGang,LIANG ChengZhen,ZHANG Rui,GUO SanDui,SUN GuoQing. Functional Characterization of AtNEK6 Overexpression in Cotton Under Drought and Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(22): 4230-4240.
[5] GAO WeiWei, CHEN SiPing, WANG LiPing, CHEN LiKai, GUO Tao, WANG Hui, CHEN ZhiQiang. Association Analysis of Rice Cooking Quality Traits with Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(4): 599-611.
[6] FENG YiLu, FU XiaoBin, WU Fan, CUI HongChun, LI HongLiang. Molecular Cloning, Prokaryotic Expression and Binding Functions of Pheromone Binding Protein 2 (PBP2) in the Ectropis obliqua [J]. Scientia Agricultura Sinica, 2017, 50(3): 504-512.
[7] ZHANG Chang-quan, ZHAO Dong-sheng, LI Qian-feng, GU Ming-hong, LIU Qiao-quan. Progresses in Research on Cloning and Functional Analysis of Key Genes Involving in Rice Grain Quality [J]. Scientia Agricultura Sinica, 2016, 49(22): 4267-4283.
[8] WANG Yu-chun, HAO Xin-yuan, HUANG Yu-ting, YUE Chuan, WANG Bo, CAO Hong-li, WANG Lu, WANG Xin-chao, YANG Ya-jun, XIAO Bin. Phylogenetic Study of Colletotrichum Species Associated with Camellia sinensis from the Major Tea Areas in China [J]. Scientia Agricultura Sinica, 2015, 48(24): 4924-4935.
[9] LI Yang, LI Li-qun, GAO Xin, YANG Lu, KOU Cheng, Lü Qian, LIU Tian-hong, DU Deng-feng, LI Xue-jun. The Coding Regions Allelic Variations of TaGW2-6A and the Relationship Between the Allele and Drought Tolerance of Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2015, 48(21): 4209-4218.
[10] WU Pei-pei, SONG Shuang, ZHANG Fu-yan, CHEN Feng, CUI Dang-qun. The Allelic Variation of Lipoxygenase Genes in Bread Wheat Cultivars from the Yellow and Huai Wheat Areas of China [J]. Scientia Agricultura Sinica, 2015, 48(2): 207-214.
[11] JIA Ya-jun, WANG Xiao-ting, XU Na, GUO Na, XING Han. Cloning and Function Analysis of Salicylic Acid Binding Protein Gene GmSABP2 from Soybean [J]. Scientia Agricultura Sinica, 2015, 48(18): 3580-3588.
[12] NIE Xin-hui, YOU Chun-yuan, BAO Jian, LI Xiao-fang, HUI Hui, LIU Hong-liang, QIN Jiang-hong, LIN Zhong-xu. Exploration of Elite Alleles of Agronomic and Fiber Quality Traits in Xinluzao Cotton Varieties by Association Analysis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2891-2910.
[13] ZHU Ling, CHEN Xiao-qiong, DU Kang-xi, HAN Bao-lin, RAN Xiu-hua, ZHANG Hong-yu, XU Pei-zhou, WU Xian-jun. Gene Cloning and Expression Analysis of Long Empty Glumes Mutants in Rice [J]. Scientia Agricultura Sinica, 2015, 48(11): 2085-2095.
[14] ZHAO Dong-Mei, YANG Zhi-Hui, XU Jin, ZHU Jie-Hua, ZHU Li-Dan. Cloning and Functional Analysis of Gene PITG_10839 of NLP Family in Phytophthora infestans [J]. Scientia Agricultura Sinica, 2014, 47(5): 895-902.
[15] YUE Chuan, CAO Hong-li, ZHOU Yan-hua, WANG Lu, HAO Xin-yuan, WANG Xin-chao, YANG Ya-jun. Cloning and Expression Analysis of Glutathione Reductase Genes(CsGRs) in Tea Plant (Camellia sinensis) [J]. Scientia Agricultura Sinica, 2014, 47(16): 3277-3289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!